首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the decolorization, dearomatization, and mineralization efficiencies of different advanced oxidation processes (AOPs; namely O3, O3/Fe(II), O3/Fe(II)/UVA, and O3/TiO2/UVA) were investigated for the azo dye C.I. Reactive Red 194 (RR194). The effects of pH (3–11), amount of TiO2 (0.05–1 g/L), and concentration of Fe(II) (0.1–1.6 mM) were investigated for the applied methods. The decolorization and mineralization efficiencies of the photocatalytic ozonation system (O3/TiO2/UVA) were increased by decreasing the pH of the dye solution in contrast to the ozonation system (O3). Decolorization of RR194 was increased in the photocatalytic ozonation system with an increasing amount of catalyst however, a decreasing was occurred for the homogeneous catalytic system (O3/Fe(II)) when increasing the concentration of catalyst. The decolorization efficiency of the homogeneous catalytic system (O3/Fe(II)) was enhanced when combined with UVA light. In our study, the most efficient method for dearomatization and mineralization was the O3/TiO2/UVA among the applied AOPs.  相似文献   

2.
Pharmaceutical compounds, widely produced and used all around the world, are partly responsible for the widespread water pollution in the environment. Carbamazepine (CBZ) is an antiepileptic drug that persists in the environment for many years. In the present study, we used the TiO2/UV, nanoparticulate zero‐valent iron (NZVI), and NZVI/H2O2 treatment processes to compare efficiency of CBZ removal from water. Influence of NZVI loading, H2O2 concentration, TiO2 loading, UV lamp power, and the matrix (distilled water and groundwater) on CBZ removal efficiency was evaluated using full factorial design. Results indicated that the NZVI/H2O2 process oxidized CBZ within 5 min. On the other hand, the NZVI process alone did not reduce CBZ concentration after 120 min of process time. The NZVI/H2O2 process was equally effective in CBZ removal from both distilled water and groundwater whereas the TiO2/UV process was less effective due to the presence of ions in groundwater. CBZ removal efficiency of the TiO2/UV process declined 30% when the matrix was changed from distilled water to groundwater. Negative divalent ions, i.e., and , were the main cause of reduction of CBZ removal efficiency from groundwater. It is likely that these two ions adsorb onto, and consequently prevent the superoxide anion and hydroxyl radical OH? from being generated on, the surface of the TiO2.  相似文献   

3.
The decomposition of dichloroacetic acid (DCAA) in water using a UV/H2O2/micro‐aeration process was investigated in this paper. DCAA cannot be removed by UV radiation, H2O2 oxidation or micro‐aeration alone, while UV/H2O2/micro‐aeration combination processes have proved effective and can degrade this compound completely. With initial concentrations of about 110 μg/L, more than 95.1% of DCAA can be removed in 180 min under UV intensity of 1048.7 μW/cm2, H2O2 dosage of 30 mg/L and micro‐aeration flow rate of 2 L/min. However, more than 30 μg/L of DCAA was left after 180 min by UV/H2O2 combination process without micro‐aeration with the same UV intensity and H2O2 dosage. The effects of applied UV radiation intensity, H2O2 dose, initial DCAA concentration and pH on the degradation of DCAA have been examined in this study. Degradation mechanisms of DCAA with hydroxyl radical oxidation have been discussed. The removal rate of DCAA was sensitive to operational parameters. There was a linear relationship between rate constant k and UV intensity and initial H2O2 concentration, which indicated that a higher removal capacity can be achieved by improvement of both factors. A newly found nitrogenous disinfection by‐product (N‐DBP)‐DCAcAm, which has the potential to form DCAA, was easier to remove than DCAA by UV/H2O2 and UV/H2O2/micro‐aeration processes. Finally, a preliminary cost comparison revealed that the UV/H2O2/micro‐aeration process was more cost‐effective than the UV/H2O2 process in the removal of DCAA from drinking water.  相似文献   

4.
Wastewater production in a hospital laundry and the treatment of the most critical wastewater stream, are assessed. Hospital laundry wastewaters are hazardous to the environment due to their high pollutant concentrations and the chemicals added during the clothes washing process. Heterogeneous photocatalysis with UV, O3 and TiO2 and their possible combinations were used for disinfection purposes. A ramp‐type reactor was used for TiO2 (P25 Degussa) fixation and for photochemical diffusion of the ozonized air. After assessing 5‐day biological oxygen demand, chemical oxygen demand, pH, turbidity, and surfactant content, and checking for the presence of thermotolerant coliforms and Escherichia coli, it was concluded that UV/O3/TiO2 was the best process/combination, yielding a 100% disinfection rate and a microbiological inactivation of 0.5070 min–1 for E. coli and of 0.5505 min–1 for thermotolerant coliforms.  相似文献   

5.
This study illustrates the degradation of an azo dye, Reactive Yellow 81 (RY81), by the combined irradiation of UV‐C and ultrasound in the presence of homogeneous (Fe2+) and heterogeneous (TiO2, ZnO) catalysts. The efficiency of homogeneous and heterogeneous oxidation systems was evaluated in regard of the decolorization and mineralization of RY81. Decolorization followed pseudo‐first‐order kinetics with homogeneous and heterogeneous catalysts. Complete color removal was accomplished by homogeneous sonocatalytic and sonophotocatalytic oxidation processes with apparent rate constants of 0.96 × 10?3 and 46.77 × 10?3 s?1, respectively, in the presence of Fe2+. However, partial color removal was obtained by heterogeneous sonocatalytic, photocatalytic, and sonophotocatalytic oxidation processes with apparent rate constants of 2.32 × 10?3, 3.60 × 10?3, and 3.67 × 10?3 s?1, respectively, in the presence of ZnO. TiO2 had the worst catalytic effect of all of the oxidation processes. The addition of hydrogen peroxide increased the rate constants of the heterogeneous oxidation processes and decreased the rate constants of the homogeneous oxidation processes. RY81 mineralization was 62.8% for the US/UV/Fe2+ homogeneous oxidation process, which was the best oxidation process, whereas it was 43.5% for the US/UV/ZnO/H2O2 heterogeneous oxidation process within 2 h reaction time.  相似文献   

6.
This study examined the UV/H2O2 decolorization efficiency under high UV photon flux (intensity normalized by photon energy) irradiation; the incident UV was ranging from 3.13 × 10?8 to 3.13 × 10?6 einstein cm?2 s?1. The experimental results showed that complete decolorization of 20 mg L?1 methylene blue (MB) can be achieved within 5 s and 99% decolorization of 1000 mg L?1 MB can be achieved in 180 s under the best condition of high UV intensity UV/H2O2 process. To the best of our knowledge, UV/H2O2 decolorization process in such a short time has not been reported. The electrical energy per order of the process was 16.21 kWh m?3 order?1 and it is relatively economical compared with other advanced oxidation processes. The kinetics of decolorization follows pseudo‐first order. There is a linear relationship between rate constant and UV intensity, which indicates that increasing UV intensity does not cause decline in light utilization efficiency. The experiment related to initial substrate concentration shows decolorization rate of different substrate concentration (20–1000 mg L?1) are closed to each other. Besides, optimal H2O2 concentration, comparative study with low photon flux light, decolorization of other types of dyes and TOC removal were also studied.  相似文献   

7.
Bezafibrate (BZF), a widely used lipid regulator, is a potential threat to ecosystems and human health in water, and the recent research showed that advanced oxidation processes (AOPs) are much more effective for BZF degradation. In this study, we investigated the photochemical decomposition of BZF in surface water and effluent from waste water treatment plants (WWTP) by UV/H2O2 process. The results showed that the UV/H2O2 process was a promising method to remove BZF at low concentration, generally at µg L?1 level. When initial concentrations reach 100 µg L?1 in the deionized water, >99.8% of BZF could be removed in 16 min under UV intensity of 61.4 µm cm?2, at the H2O2 concentration of 0.1 mg L?1, and neutral pH condition. Moreover, BZF degradation was inhibited in this process when humic acid (HA) and inorganic solution anions were added to the deionized water solutions, including chloride, nitrate, bicarbonate, and sulfate, significantly. In the surface water and effluent of WWTP, however, the removal efficiency of BZF was lower than that in the deionized water because of the interference of complex constituents in the surface water and effluent. Some main intermediates at the m/z range of 100–400 were observed by high performance LC‐MS (HPLC/MS) and a simple pathway of BZF degradation by UV/H2O2 was proposed.  相似文献   

8.
The relative ability of Coriolus versicolor to grow on coir fiber as a ligninocellulosic material was examined. Addition of yeast extract to the culture increased laccase activity, which was further enhanced to the level of 1976 U/L by addition of 1 mM copper sulfate. Laccase thus produced was used without further purification for the decolorization of various dye solutions. Decolorization efficiency was compared with the conventional environment friendly oxidation technique using hydrogen peroxide in the presence of UV radiations. Laccase showed good decolorization in most of the cases. Excellent results were achieved when the dye solution was treated successively with laccase and UV/H2O2 wherein more than 80% decolorization was achieved. This value is remarkably higher than that attained either by the enzyme or UV/H2O2 photolysis alone.  相似文献   

9.
The oxidation of organic matter from wastewater using ozone, ultraviolet radiation and ozone/UV oxidation was evaluated in a pilot plant, applying a continuous effluent arising from the Autonomous Metropolitan University wastewater treatment plant. The oxidation was measured as the efficiency to remove organic load, measured as chemical oxygen demand. The use of ozone and UV was evaluated separately and in combination through a continuous process. Three different ozone doses (0.6–1.2 mg O3/L) and three different UV radiation fluencies (6.7–20.12 mJ/cm2) were assessed. A synergistic effect of the combined process ozone/UV was demonstrated, and a maximal chemical oxygen demand reduction was achieved both processes. Due to residence times used (less than 1 min), 36% of chemical oxygen demand reduction was obtained when ozone treatment was evaluate separately and only 9% using ultraviolet radiation.  相似文献   

10.
Kaolin, cordierite, and calcite are investigated as supports for TiO2. The prepared TiO2/support samples are examined for the removal of organic dyes from wastewater. The samples are preliminarily investigated to identify the optimal loaded system using synthetic wastewater containing methylene blue (MB). Data indicate that the investigated support significantly affects the photocatalytic activity of the supported TiO2. Low photocatalytic activity toward MB degradation is observed upon using TiO2/calcite when compared to the unsupported TiO2. Interaction between calcite and titania species probably occurrs to produce the less photoactive CaTiO3 amorphous species. Anatase TiO2 is obtained upon using kaolin and cordierite as supports. The low photocatalytic performance of the TiO2/kaolin sample is also observed. A high concentration of MB on TiO2/kaolin surfaces blocks the photoactive sites. TiO2/cordierite shows the highest photocatalytic activity compared to the unsupported TiO2 as well as the other TiO2/support samples. Rigid cordierite particles suppress the agglomeration of TiO2 particles during the preparation, leading to a high exposed surface of TiO2 towards light illumination. TiO2/cordierite is investigated for the removal of organic dye from real wastewater collected from a textile dyeing factory. Color removal of up to 46% is achieved upon UV irradiation.  相似文献   

11.
The degradation of two pesticides: atrazine and metazachlor was investigated in aqueous solution under UV-irradiation with and without H2O2. Rate constants of the photochemical degradation were determined applying a first order kinetics and quantum yields of the processes were calculated. This approach leads to an apparent decrease of the quantum yield with increasing initial pesticide concentration. At low H2O2 initial concentrations, the pesticide degradation was shown to be much more efficient than the degradation under UV-irradiation only. However, at high H2O2 concentrations (>2 mmol L?1), the efficiency of the UV/H2O2 system dropped down and the quantum yields of degradation were lower than for the direct photolysis. In the absence of H2O2, no influence of the pH value on the photodegradation of the pesticides could be noticed in a range between pH 3 and pH 11. At low H2O2 initial concentrations, the photochemical degradation of the pesticides was much faster at pH 3 and pH 7 compared with the degradation at pH 11. The results emphasize the potential of optimized reaction conditions in advanced oxidation.  相似文献   

12.
The degradation pathway for the oxidation of EDTA in the UV/H2O2-process was investigated. In absence of iron ions, the mineralization of EDTA is dominated by the reaction of the HO-radicals generated by the photolysis of H2O2. The organic degradation products iminodiacetate (IMDA), glycinate, oxamate, glyoxylate, oxalate and formate, and the inorganic degradation products carbon dioxide, ammonia, nitrate, nitrite, and cyanate were found. In the presence of iron ions, photolytic decarboxylation processes inside the complex get an important role during degradation, and the organic degradation products ethylenediaminetriacetate (ED3A), ethylenediaminediacetate (EDDA), ethylenediaminemonoacetate (EDMA) were also found. By combining product studies with balances of carbon and nitrogen, the degradation pathway in the UV/H2O2-process could be elucidated. The degradation of EDTA was fast (kdeg = 0.012 s–1), and no toxic degradation products were identified. Therefore, the process is well suited for the elimination of EDTA in water treatment.  相似文献   

13.
Ambient concentrations of sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) were measured at 51 sampling points by passive sampling technique in Kocaeli, an important industrial city in Turkey. Samples were analyzed by UV‐spectrophotometry for NO2 and O3 and by ion chromatography for SO2, respectively. Concentrations of SO2, NO2, and O3 were determined to investigate their spatial distribution and source characterization. The sampling campaigns revealed an average concentration of 8 µg/m3 (max. 82 µg/m3) for SO2, and 14 µg/m3 (max. 40 µg/m3) for NO2, in summer; while average winter concentrations were 25 µg/m3 (max. 61 µg/m3) for SO2, and 50 µg/m3 (max. 100 µg/m3) for NO2. The maximum ozone concentrations were determined to be 86 µg/m3 in summer and 61 µg/m3 in winter downwind of the source areas of the precursor pollutant emissions. The results showed that NO2 and SO2 concentrations in industrial and urban areas were two to four times higher compared with rural areas in the summer and winter. In the light of the information obtained from the spatial interpolation of the pollutant concentrations, a selection of appropriate locations for continuous monitoring was suggested according to the European Community (EU) directives.  相似文献   

14.
Response surface methodology (RSM) and artificial neural networks (ANNs) based on a multivariate central composite design (CCD) were applied to model and optimize the photocatalytic degradation of N,N‐diethyl‐m‐toluamide (DEET). The individual and interaction effects of three main operating factors (mass of TiO2, initial DEET concentration, and irradiation intensity) on process efficiency were estimated, proving their important effect on % DEET removal. Among the independent variables, TiO2 concentration displayed the highest effect on DEET degradation followed by initial DEET concentration and UV intensity. The optimization and prediction capabilities of ANNs and RSM were compared on the basis of root mean squared error, mean absolute error, absolute average deviation, and correlation coefficient values. Results proved the usefulness and capability of the experimental design strategy for successful investigation and modeling of the photocatalytic process. Moreover, the selected ANN gave better estimation capabilities throughout the range of variables than RSM. Based on the models and the related experimental conditions, the optimal values of each parameter were determined. Under optimum conditions, DEET and total organic carbon (TOC) followed pseudo‐first order kinetics. Nearly complete degradation of DEET took place within 15 min whereas high TOC removal percentages (>85%) was achieved after 90 min irradiation time.  相似文献   

15.
In Germany, the gasoline additive methyl tert‐butyl ether (MTBE) is almost constantly detected in measurable concentrations in surface waters and is not significantly removed during riverbank filtration. The removal of MTBE from water has been the focus of many studies that mostly were performed at high concentration levels and centred in understanding the mechanisms of elimination. In order to assess the performance of conventional and advanced water treatment technologies for MTBE removal in the low concentration range further studies were undertaken. Laboratory experiments included aeration, granulated activated carbon (GAC) adsorption, ozonation and advanced oxidation processes (AOP). The results show that the removal of MTBE by conventional technologies is not easily achieved. MTBE is only removed by aeration at high expense. Ozonation at neutral pH values did not prove to be effective in eliminating MTBE at all. The use of ozone/H2O2 (AOP) may lead to a partly elimination of MTBE. However, the ozone/H2O2 concentrations required for a complete removal of MTBE from natural waters is much higher than the ozone levels applied nowadays in waterworks. MTBE is only poorly adsorbed on activated carbon, thus GAC filtration is not efficient in eliminating MTBE. A comparison with real‐life data from German waterworks reveals that if MTBE is detected in the raw water it is most often found in the corresponding drinking water as well due to the poor removal efficiency of conventional treatment steps.  相似文献   

16.
The amination water (AW) effluent stream from the industrial production of the trifluraline herbicide was submitted to an oxidation‐coagulation treatment with potassium ferrate, combined with advanced oxidation processes. The experimental results obtained by analysis of variance (ANOVA) for the oxidation‐coagulation‐Fenton process, evaluating the variables pH (A), Fe(VI) concentration (B), and H2O2 concentration (C), demonstrated that the regression equation resulting from the Response Surface Methodology (RSM) experimental design, for the quadratic model, was ηAbs (%) = 36.9– 21.58A + 8.37A2 + 1.36B + 0.92B2 + 1.08C + 1.52C2 + 1.27AB – 1.34AC + 1.33BC. The maximum absorptiometric color reduction occurred at pH 3, with corresponding maximum amounts of iron and hydrogen peroxide. The absorptiometric color and COD reduction were 96% and 57%, respectively. For the oxidation‐coagulation‐photo‐Fenton process, the analyzed variables were pH (A), Fe(VI) concentration (B), H2O2 concentration (C), and temperature (D). The regression equation resulting from the quadratic model was ηAbs (%) = 38.3 – 20.2A + 8.12A2 – 0.27B + 3.73B2 + 0.3C + 3.6C2 + 1.67D + 3.1D2 + 1.72AB + 0.51AC – 1.82AD + 0.74BC – 1.11BD + 0.03CD. The ANOVA response showed that the highest absorptiometric color reduction occurred at pH 3, with respective maximum amounts of iron and hydrogen peroxide at 60°C. The maximum efficiencies achieved by the proposed treatment process for the trifluraline effluent stream were 95% and 85%, for absorptiometric color and COD reduction, respectively.  相似文献   

17.
Comparative studies of the use of chlorine/ultraviolet (Cl2/UV) and hydrogen peroxide/ultraviolet (H2O2/UV) Advanced oxidation processes (AOPs) to remove trichloroethylene (TCE) from groundwater in a pump‐and‐treat application were conducted for the first time at the full‐scale operational level at two water treatment facilities in Northern California. In these studies, aqueous chlorine replaced hydrogen peroxide in the AOP treatment step, where the oxidant is exposed to UV light to produce highly reactive radical species that degrade groundwater contaminants. TCE removal rates as a function of initial chlorine dose and pH were then determined. At the site where the natural pH of the water was 7.1, TCE was removed (to a concentration of less than 0.5 µg/L) for nearly every chlorine dose point tested, and pH adjustment slightly enhanced the treatment process at this facility. The second site had a high natural pH of 7.7, and here, TCE was not completely removed for any chlorine dose up to 5.7 mg/L, although TCE removal did increase when the chlorine dose increased between 0.9 and 3.6 mg/L. Residual TCE remaining in the water post‐Cl2/UV was readily removed using active carbon filtration, which is part of the overall treatment train at this facility. These studies also verified that Cl2/UV AOP did not interfere with the photolysis of N‐nitrosodimethylamine or result in an effluent acutely toxic toward Ceriodaphnia dubia. Comparative economic analysis revealed that the chemical costs associated with Cl2/UV AOP were 25 to 50% of the costs associated with in place H2O2/UV AOP treatment.  相似文献   

18.
In this study, bench‐scale experiments were conducted to examine the UV/H2O2 oxidation of 17α‐ethynyestradiol (EE2) in water in a batch operation mode. The EE2 degradation exhibited pseudo‐first‐order kinetics, and the removal was ascribed to the production of hydroxyl radicals (?OH) by the UV/H2O2 system. Typically, the EE2 oxidation rate increased with increasing UV intensity and H2O2 dose, and with deceasing initial EE2 levels and solution pH. At EE20 = 650 µg/L, UV intensity = 154 µW/cm2, H2O2 = 5 mg/L, and neutral pH, the UV/H2O2 treatment was able to remove 90% of the EE2 content within 30 min. Four anions commonly present in water were found to inhibit EE2 degradation to varying degrees: > > Cl? > . Our results demonstrate that the described UV/H2O2 process is an effective method to control EE2 pollution in water.  相似文献   

19.
The degradation reactions of two monoazo pigments, namely, Red 53:1 and Red 48:2, by Fenton, photo‐Fenton and UV/H2O2 systems have been studied. The efficiencies of the Fenton reactions increased with temperature, but the formation of solid agglomerates was observed when the reactions were carried out above 50°C indicating a coagulant action of Fe+2 or Fe+3. Photo‐Fenton reactions irradiated by sunlight presented the best rate constants for cleavage of the azo bond and the naphthalene rings. The UV/H2O2 system exhibited the highest efficiency with respect to the consumption of H2O2. The presence of a carbonyl group in the ortho position of the naphthol ring hampered the oxidation of pigment Red 48:2 by hydroxyl radicals. This finding may be explained in terms of the acceptor character of the COOH group, and suggests the formation of a complex containing two six‐membered rings between Fe+3 and the pigment molecule.  相似文献   

20.
Magma type and tectonic setting discrimination using immobile elements   总被引:1,自引:0,他引:1  
Five minor and trace elements have been variously combined to produce a set of binary diagrams in addition to total alkali-SiO2 diagrams, that discriminate between fresh tholeiitic and alkali basalts. These diagrams are TiO2-Zr, TiO2-Y/Nb, P2O5-Zr, TiO2-Zr/P2O5, and Nb/Y-Zr/P2O5. A clear discrimination between alkaline and tholeiitic basalts can be obtained, although no meaningful separation can be made between the broad groups of oceanic and continental basalts, of either magma type, on the diagrams. As these elements (Ti, P, Zr, Y and Nb) are generally considered immobile during alteration processes, it should be possible to distinguish the magma type of ancient basic volcanics that have been subjected to submarine weathering, spilitization and low-grade metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号