首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In laboratory investigations with model waters, the behaviour of selected cation-exchange resins (Amberlite 200 C, Duolite C-25, Lewatit S-100, Wofatit KPS and Wofatit KS-10) is tested. The usable volume capacity of the resins in the forms of H, Na and NH4 as well as the water content and the total volume capacity after 25 cycles of loading/regeneration are determined. It is recommended to use Amberlite 200 C and Wofatit KS-10.  相似文献   

2.
3.
Removal of copper, nickel, and zinc ions from synthetic electroplating rinse water was investigated using cationic exchange resin (Ceralite IR 120). Batch ion exchange studies were carried out to optimize the various experimental parameters (such as contact time, pH, and dosage). Influence of co‐existing cations, chelating agent EDTA on the removal of metal ion of interest was also studied. Sorption isotherm data obtained at different experimental conditions were fitted with Langmuir, Freundlich, Redlich–Peterson, and Toth models. A maximum adsorption capacity of 164 mg g?1 for Cu(II), 109 mg g?1 for Ni(II), and 105 mg g?1 for Zn(II) was observed at optimum experimental conditions according to Langmuir model. The kinetic data for metal ions adsorption process follows pseudo second‐order. Presence of EDTA and co‐ions markedly alters the metal ion removal. Continuous column ion exchange experiments were also conducted. The breakeven point of the column was obtained after recovering effectively several liters of rinse water. The treated rinse water could be recycled in rinsing operations. The Thomas and Adams–Bohart models were applied to column studies and the constants were evaluated. Desorption of the adsorbed metal ions from the resin column was studied by conducting a model experiments with Cu(II) ions loaded ion exchange resin column using sulfuric acid as eluant. A novel lead oxide coated Ti substrate dimensionally stable (DSA) anode was prepared for recovery of copper ions as metal foil from regenerated liquor by electro winning at different current densities (50–300 A cm?2).  相似文献   

4.
Investigating adsorption of methyl parathion on the activated carbons Filtrasorb 400 and F 44 and on the adsorption polymer Wofatit Y 77 we found a stronger adsorption on the carbons at smaller concentration whereas the resin has the larger capacity at higher concentration. Adsorbents were regenerated through hydrolysis of the pesticide at pH = 11.7. The velocity of hydrolysis in the adsorbed state is reduced to a tenth of that in solution. However, a transport resistance in the pores of adsorbents seems to be negligible as may be concluded from the very small measured particle diameter dependence of the velocity constants. In adsorption-regeneration measurements the capacity of the adsorbents stabilized at about 70% of that of the fresh adsorbents.  相似文献   

5.
The present article describes As(III) sorption behavior of novel calix[4]arene appended TS‐4 resin. The sorption ability of TS‐4 resin has been evaluated at wide range of pH, i.e., pH 2–14. The maximum As(III) sorption efficiency (95%) was achieved at pH 2, which shows that the TS‐4 resin possesses greater affinity for As(III) at this pH. Column sorption mechanism was evaluated through various operating parameters, i.e., change in concentration, flow rate, bed heights, and pH. The experimental data were also tested against bed depth service time model and from the results; it has been observed that the data is in close agreement with the theoretically calculated values. Thus, from the data it has been revealed that TS‐4 resin has maximum column efficiency of 0.13 mmol g?1. Application of TS‐4 to real samples indicates a slight decrease (2–3%) in extraction efficiency of TS‐4 because of high concentration of total dissolved salts. Thermal behavior was tested by differential scanning calorimetry and it has been observed that TS‐4 resin is stable up to 160°C. TS‐4 resin was found to be regenerable and best regeneration was achieved by using 4% solution of NaOH. It can be deduced from the study that the resin will find its applicability in small as well as industrial scale water purification plants.  相似文献   

6.
Application of Some Complexing Ion Exchangers for Copper Recovery from Natural Water and Wastewater The rational use of water resources is one of the urgent environmental control problems. These problems can be solved by the treatment of sewage. Removal of different non‐ferrous heavy metal ions from wastewater is of great importance. Besides, the selective complexing ion exchangers are of interest because of their good sorption properties. The present paper is devoted to the study of some complexing resins for copper recovery from natural water and sewage. The following carboxylic resins were studied: the cation exchangers KB‐2T, KB‐4 and the amphoteric ion exchangers ANKB 35, AMF‐2T, and AMF‐2S (manufacturer – “TOKEM” company, Kemerovo, Russia). The exchangers investigated differed from each other both by their functional groups and by their matrix physical structures. The copper recovery from CuCl2‐, CuSO4‐, and Cu(NO3)2‐solutions was studied in batch‐experiments (in presence of NaCl, Na2SO4, and NaNO3). The initial copper concentration in the solutions was 0.0002...0.008 mol/L; pH values were 1.0...5.0. After equilibrium (24 h) the resins were separated from the solution. The copper concentration in the solutions after the sorption was determined by the photometrical method with pyridylazoresorcin (λ = 500 nm). On the basis of the experimental data distribution ratio, the separation factors, equilibrium constants, and stability constants of copper complexes in the exchanger phase were calculated. It was found out in this work that the amphoteric ion exchanger AMF‐2T of macroreticular structure is the most effective for the copper sorption from sewage.  相似文献   

7.
Monitoring of runoff and erosion in farmers' fields and their impacts gives a better understanding of erosion. However, it is rare that monitoring at frequent intervals is done over a prolonged period. A part of the upper Wissey catchment in central Norfolk, eastern England was monitored for 10 years to assess the extent and frequency of erosion and runoff, their causes and impacts. Surface wash occurred more widely and more frequently than expected. Runoff and erosion took place a number of times in a year in a range of autumn‐ and spring‐sown crops, and occurred dominantly down tractor wheelings or ruts left after harvesting potatoes or sugar beet under wet conditions. Over 10 years erosion affected about half the 105 fields monitored, often more than once. Erosion was more extensive in autumn‐sown cereal fields, but often more severe and with greater off‐field effects, for example muddy flooding of roads from spring‐sown late harvested crops such as potatoes and sugar beet. Runoff from outdoor pig fields also flooded roads and houses. This study confirms other studies of the extent, frequency and severity of erosion in Britain, that rill erosion does not occur in every field in the landscape, that in the main, fields do not erode frequently and rates of erosion are generally small. Runoff and erosion within a field took place more frequently than had been suspected. Compaction and destruction of topsoil structure by machinery especially at harvest, or by outdoor pigs, is important in initiating runoff. Rates of erosion were generally very low and will not affect soil productivity adversely over the short‐term. However, flooding of roads and property, and especially pollution of water courses by sediment, nutrients and pesticides are important off‐field impacts and are the primary reason, over the short‐term, for mitigating runoff and erosion. Monitoring such as this sheds light on the problems of modelling to predict risk of erosion based on erosion rates. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
The following possible techniques of nitrate removal from drinking water are compared with respect to their efficiency: reserved osmosis, electrodialysis and ion exchange. It can be shown by test products that it is possible, in principle, to synthesize nitrate-selective anion exchange resins. Today it is assumed that from this a preferential position of the technology of ion exchange can be expected for the elimination of nitrate from drinking water.  相似文献   

9.
This paper reports on an approach for separating vanillin and syringaldehyde (VSA) from oxygen delignification spent liquor using non‐polar macroporous resin. The effects of temperature and pH on the adsorption isotherms were studied. The adsorption capacity and adsorption equilibrium constant were obtained using the Langmuir adsorption model at pH<4.5, where the ionization of the VSA to ionic forms was negligible. The standard enthalpy change was calculated using the van't Hoff equation and clearly showed that the adsorption is an exothermic process. The effect of pH on the adsorption isotherm is well‐described by a modified Langmuir model and shows that the adsorption equilibrium constant decreases significantly with the increasing pH. The VSA adsorbed on macroporous resin was eluted by ethyl ether. The separated VSA contained 37.51% vanillin, 31.88% syringaldehyde. The recoveries of VSA were 96.2 and 94.7%, respectively.  相似文献   

10.
Study of Sorptional Properties of the Cation Exchanger KB-2M with Macroreticular Structure for Recovery of Zinc Ions from Sewage and Rinsing Water Although a number of ion-exchange methods have been employed for the recovery of some transition metals from industrial effluents, knowledge about ion-exchange resins with macroreticular structure is poor. The present paper describes the mechanism of sorption on such exchangers and their application for recovery of zinc from sewage rinsing water. Ion exchanger of macroreticular structure are polymers with long-chained cross-linking agents. We have synthesized carboxylic ion-exchange resins by hydrolysis of copolymerisates of methyl acrylate with different cross-linking agents: divinylbenzene, divinyl sulfide, divinyl ester of ethylene glycol and divinyl ester of di- or triethylene glycol. The sorption process on modifications of the carboxylic resins KB-2 of various structure was studied with different methods: potentiometric titration, infrared spectroscopy, electron microscopy, X-ray structural analysis. The initial zinc concentration in rinsing water was 0.05 mol/L at pH from 3 to 6. For the sorption, 0.2…1.0 g of resin were equilibrated with 100 mL of zinc solution. After equilibrium (12 h), the resin was separated from solution. The zinc ions were determined by atomic absorption spectrometry after stripping with 100 mL of 10% sulfuric acid. The distribution ratio D was calculated (D: mmole of Zn sorbed per gram of resin divided by mmole of Zn per millilitre of solution). By means of infrared spectroscopy, the mechanism of sorption of zinc ions from rinsing water was determined. There may be a possibility of the formation of complexes in the cation-exchange resin phase. It was found out in this paper that the cation-exchanger KB-2M of macroreticular structure is the most effective for the sorption of the Zn2+-ions from sewage and rinsing water.  相似文献   

11.
In the present work the kinetics and the feasibility of batch anaerobic filter operations for the treatment of beet molasses distillery slops have been investigated. Up to 50% of the influent COD up to 25 g/l are removed after 5… 10 h and up to 80% after 24… 40 h treating time. Highest removal rates were obtained for 50% removal and influent COD concentration ≧13 kg. m?3. The highest methane productivity was observed in the same range of COD influent concentration during the first 10 hours (initial velocity) of the treatment. The benefits of the anaerobic treatment of waste water applying systems with biomass retention are discussed.  相似文献   

12.
This work presents a solid phase extraction (SPE) method for simultaneous preconcentration of trace elements in water samples prior to their ICP-OES determination. Dowex 50W-x8 and Chelex-100 resins were used as SPE sorbent materials for preconcentration of trace Cd, Co, Cr, Cu, Fe, Ni, Pb and Zn. The optimum sample pH, eluent concentration and sample flow rates were found to 6, 3.0 mol L−1 and 3.0 mL min−1, respectively. In terms of multi-element preconcentration capabilities, Dowex 50W-x8 appeared to be a better sorbent. The recoveries for all the tested analytes were >95%. However, Chelex-100 showed a better performance in terms of recovery (>95%) towards Cu, Fe and Zn. Under optimized conditions using Dowex 50W-x8, the relative standard deviations for different metals were <3%. The limits of detection and limits of quantification ranged from 0.01–0.39 μg L−1 and 0.05–0.1.3 μg L−1, respectively. The accuracy of the preconcentration method was confirmed by spike recovery test and the analysis of certified reference materials. The SPE method was applied for preconcentration of the analyte ions in tap water, bottled water and wastewater samples.  相似文献   

13.
A characterization method for AOX in surface water samples was developed and tested. The method involves fractionation using a hydrophobic C18 resin and a weak anionic exchange resin and allows the fractionation of the AOX pool of surface water samples into four fractions: (1) hydrophilic acidic, (2) hydrophilic non‐acidic, (3) hydrophobic acidic, and (4) hydrophobic non‐acidic. The adsorption analysis was verified with AOX‐relevant model compounds and was applied to characterize the AOX pool of a stream sample from the Moskva river (Russia). In addition to the fractionation analysis, size‐exclusion chromatography was used to characterize the AOX pool of the sample studied. Hydrophilic acids made up the major fraction of the AOX pool (55 %). Among this fraction chlorinated high‐molecular acids (humic substances) made up the main fraction (35 %).  相似文献   

14.
On a bench scale the treatment of electroplating effluents (ZnCl2, NiCl2, NH4Cl, NH3 and two polyether compounds) with Wofatit CA20 is investigated. If the capacity of the resin is utilized to a high degree for the heavy metal ions, the organic matter remains in the filtrate. The results are discussed with regard to the recovery and waste-disposal technology on a large scale.  相似文献   

15.
The Cercis siliquastrum tree leaves are introduced as a low cost biosorbent for removal of Ag(I) from aqueous solution in a batch system. FT‐IR, XRD analysis, and potentiometric titration illustrate that the adsorption took place and the acidic functional group (carboxyl) of the sorbent was involved in the biosorption process. In addition, it was observed that the pH beyond pHpzc 4.4 is favorable for the removal procedure. The effect of operating variables such as initial pH, temperature, initial metal ion concentration, and sorbent mass on the Ag(I) biosorption was analyzed using response surface methodology (RSM). The proposed quadratic model resulting from the central composite design approach (CCD) fitted very well to the experimental data. The optimum condition obtained with RSM was an initial concentration of Ag(I) of 85 mg L?1, pH = 6.3 and sorbent mass 0.19 g. The applicability of different kinetic and isotherm models for current biosorption process was evaluated. The isotherm, kinetic, and thermodynamic studies showed the details of sorbate‐sorbent behavior. The competitive effect of alkaline and alkaline earth metal ions during the loading of Ag(I) was also considered.  相似文献   

16.
The method described uses the separation of As(III) and As(V) species in aqueous samples by means of the anion‐exchange resin Amberlite IRA‐93. The samples were acidified using acetic acid and passed through a glass column filled with pre‐treated Amberlite IRA‐93 resin. As(III) was poorly adsorbed on the anionic exchanger material, whereas As(V) was retained. The arsenic concentration was measured in the column effluent by graphite furnace AAS (GF‐AAS). The retained As(V) was eluted from the column using 1 M NaOH. Prior to the determination of the As(V) concentration in the NaOH eluate, the eluate was passed through a glass column filled with a cation‐exchange resin (Amberlite 200) to remove sodium ions and minimize the Na+ interference with the AAS determination. After calibration the method was applied to the separation of As(III) and As(V) species in two aqueous extracts of arsenic contaminated soils. The results were compared with those obtained from an on‐line separation and determination of As(III) and As(V) in the aqueous soil extracts using a state of the art HPLC‐ICP‐MS system.  相似文献   

17.
The present work examines the possible use of major ion chemistry and multivariate statistical techniques as a rapid and relatively cost‐effective method of identifying the extent of groundwater and surface water (GW–SW) interaction in an urban setting. The original hydrogeochemical dataset consists of groundwater (n = 114), stream water (n = 42) and drain water (n = 24) samples, collected twice in a year for the pre‐ and post‐monsoon seasons, for three successive years along an 8 km reach of the Delhi segment of River Yamuna, India. The dynamic and similar seasonal changes of hydro‐geochemical facies and major ion trends of river, drain and groundwater samples indicate the existence of an empirical relationship between GW and SW. Results of both R‐ and Q‐mode factor and cluster analyses highlight multi‐scale control of the fluid exchange distributions, with distinct seasonal alteration in mode and extent of GW–SW interaction, namely, the influence of the mixing zones between urban river and groundwater and the pattern of groundwater flow through the river bed. Hierarchical cluster analysis (HCA) of sampling locations efficiently illustrates different groups that comprise samples severely influenced by contaminated surface water downstream and the upstream fresh water samples. These results substantiate the strong exchange processes between GW and SW all along the stretch. The study shows that the combination of an empirical and statistical relationship between different ionic species and sampling locations can provide greater confidence in identifying the extent of GW–SW interaction/exchange processes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The study of soil loss due to crop harvesting (SLCH) started only recently in soil erosion research. It describes the mass of adhering soil, soil clods and rock fragments that is lost from arable land during the harvesting of crops such as potato, sugar beet, sweet potato and cassava. Some research on mechanized agriculture in Europe revealed that soil loss rates due to crop harvesting can be comparable to water and tillage erosion rates. However, little is known about soil losses caused by manually harvested crops in other parts of the world. This study investigated SLCH for potato and sugar beet plots on farmer's fields spread over four regions in northeast China where harvesting is carried out by hand. Soil losses for sugar beet were on average 1·0 Mg/ha/harvest, ranging from 0·2 to 1·9 Mg/ha/harvest, and SLCH for potato ranged from 0·2 to 3·0 Mg/ha/harvest with an average of 1·2 Mg/ha/harvest. Soil moisture content, average root mass and plant density could explain 45 to 67 per cent of the variability of SLCH for sugar beet. The effect of soil texture was the opposite to findings of other studies, which could be attributed to the strong correlations among the variables and to the effect of the harvesting operator. SLCH variability for potatoes could best be explained by soil texture. SLCH for sugar beet was much lower than European SLCH values for this crop, which can be explained by differences in harvesting technique and agronomic practices. SLCH for potato was comparable to soil losses measured in Belgium, especially if clods are removed on the harvesting machine. However, clay contents of the soils were larger in this study and soil losses were lower than in Belgium for comparable clay contents. Although SLCH is not the dominant soil erosion process in NE China, it contributes to overall soil loss rates, which have already exceeded their critical tolerance limits in this region. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
An on‐line solid phase extraction method for the preconcentration and determination of Cu(II) by flame atomic absorption spectrometry has been described. The procedure is based on the retention of Cu(II) ions at pH 6.0 on a minicolumn packed with Amberlite XAD‐1180 resin impregnated with chrome azurol S. After preconcentration, Cu(II) ions adsorbed on the impregnated resin were eluted by 1 mol L?1 HNO3 solution. Several parameters, such as pH, type of eluent, flow rates of sample and eluent solutions, amount of resin were evaluated. At optimized conditions, for 3.5 min of preconcentration time, the system achieved a detection limit of 1.0 µg L?1, and a relative standard deviation of 1.2% at 0.2 µg mL?1 copper. An enrichment factor of 56‐fold was obtained with respect to the copper determination. The proposed method was successfully validated by the analysis of standard reference material (TMDA 54.4 lake water) and recovery studies. The method was applied to the preconcentration of Cu(II) in natural water samples.  相似文献   

20.
Four fluorotensides which are used mainly industrially are investigated with respect to their removability from waters. Since, in general, fluorotensides are difficult to remove or not at all removable biochemically, the effects of chemical or physicochemical treatment processes are tested. As the results represented in pictures and tables show, different modes of behaviour can be recognized with respect to the respective purification effect for the investigated fluorotensides, partly among them. Flocculation with Al- and Fe-salts as well as chlorination and ozonization show only partial effects. But all the investigated fluorotensides can be adsorptively eliminated by means of powder or granular active charcoal and adsorbent resin Wofatit EA60.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号