首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We exploit a natural experiment caused by an extreme flood (~500 year recurrence interval) and sediment pulse derived from more than 2500 concurrent landslides to explore the influence of valley‐scale geomorphic controls on sediment slug evolution and the impact of sediment pulse passage and slug deposition and dispersion on channel stability and channel form. Sediment slug movement is a crucial process that shapes gravel‐bed rivers and alluvial valleys and is an important mechanism of downstream bed material transport. Further, increased bed material transport rates during slug deposition can trigger channel responses including increases in lateral mobility, channel width, and alluvial bar dominance. Pre‐ and post‐flood LiDAR and aerial photographs bracketing the 2007 flood on the Chehalis River in south‐western Washington State, USA, document the channel response with high spatial and temporal definition. The sediment slug behaved as a Gilbert Wave, with both channel aggradation and sequestration of large volumes of material in floodplains of headwaters' reaches and reaches where confined valleys enter into broad alluvial valleys. Differences between the valley form of two separate sub‐basins impacted by the pulse highlight the important role channel and channel‐floodplain connectivity play in governing downstream movement of sediment slug material. Finally, channel response to the extreme flood and sediment pulse illustrate the connection between bed material transport and channel form. Specifically, the channel widened, lateral channel mobility increased, and the proportion of the active channel covered by bars increased in all reaches in the study area. The response scaled tightly with the relative amount of bed material sediment transport through individual reaches, indicating that the amount of morphological change caused by the flood was conditioned by the simultaneous introduction of a sediment pulse to the channel network. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Floodplains are depositional features of riverine landscapes that display complex sedimentation patterns that are amenable to multi‐scale approaches. We examined sedimentation in the Lower Balonne floodplain, Queensland, Australia, at three different spatial scales: the channel (103 km), floodplain process zone (10 km) and geomorphic unit (102 m) scales, and compared scale‐related patterns evident from stratigraphy with those evident from quantitative multivariate analysis. Three stratigraphic sequences were found in the Lower Balonne floodplain: generally fining upward, episodic fining upward, and mud‐dominated. Stratigraphical analysis revealed the detailed character of sedimentary sequences embedded within the scale patterns derived from multivariate analysis. Multivariate statistical analyses of a range of textural and geochemical data revealed different patterns of floodplain sedimentation at each scale. At the channel scale, sediment texture and geochemistry were more heterogeneous in the Culgoa River than in Briarie Creek. At the floodplain process zone scale clear patterns of sediment texture and geochemistry were observed along the upper, mid and lower floodplain process zones of Briarie Creek, but not along the Culgoa River. At the geomorphic unit scale, clear patterns of sediment texture and geochemistry were observed among the bank, buried channel and flat floodplain units of the Culgoa River, but were not as clear in Briarie Creek. Recognition of rivers as hierarchically organized systems is an emerging paradigm in river science. Our study supports this paradigm by demonstrating that different sedimentation patterns occur at different scales to reveal a hierarchically organized floodplain environment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
This paper investigates the origin and geomorphic evolution of Stillerust Vlei, a 189 ha wetland located approximately 150 km northwest of Durban in the temperate submontane foothills of the KwaZulu‐Natal Drakensberg Mountains. The investigation confirms the findings of previous research on the arid to semi‐arid South African interior, which established that many floodplain wetlands in eastern South Africa are located upstream of resistant rock barriers (dolerite intrusions) that cross river courses and form stable local base levels. Upstream of these barriers, rivers laterally plane less resistant Karoo sedimentary rocks (sandstones, mudstones), creating broad, low gradient valleys conducive to the formation of floodplain wetlands. In addition, the study examines how local levee and alluvial ridge accretion on the floodplain of Stillerust Vlei has impounded a small tributary valley, and drawing on observations of similar wetlands in the region, the paper explains the origin and geomorphic evolution of wetlands in floodplain‐abutting valleys, and associated streams that commonly become discontinuous toward their confluence with the trunk (floodplain) river. Controls on the origin and geomorphic evolution of Stillerust Vlei are placed within the context of slope‐channel decoupling and (dis)connectivity in sediment delivery, illustrating that wetlands are environments of deposition. As a result of dynamic trunk‐tributary relations, Stillerust Vlei holds a diversity of geomorphic features, and thus provides potential habitat for a diversity of biota. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Beaver dam analogs (BDAs) are a stream restoration technique that is rapidly gaining popularity in the western United States. These low-cost, stream-spanning structures, designed after natural beaver dams, are being installed to confer the ecologic, hydrologic, and geomorphic benefits of beaver dams in streams that are often too degraded to provide suitable beaver habitat. BDAs are intended to slow streamflow, reduce the erosive power of the stream, and promote aggradation, making them attractive restoration tools in incised channels. Despite increasing adoption of BDAs, few studies to date have monitored the impacts of BDAs on channel form. Here, we examine the geomorphic changes that occurred within the first year of restoration efforts in Wyoming using high-resolution visible light orthomosaics and elevation data collected with unoccupied aerial vehicles (UAVs). By leveraging the advantages of rapidly acquired images from UAV surveys with recent advancements in structure-from-motion photogrammetry, we constructed centimeter-scale digital elevation models (DEMs) of the restoration reach and an upstream control reach. Through DEM differencing, we identified areas of enhanced erosion and deposition near the BDAs, suggesting BDA installation initiated a unique geomorphic response in the channel. Both reaches were characterized by net erosion during the first year of restoration efforts. While erosion around the BDAs may seem counter to the long-term goal of BDA-induced aggradation, short-term net erosion is consistent with high precipitation during the study and with theoretical channel evolution models of beaver-related stream restoration that predict initial channel widening and erosion before net deposition. To better understand the impacts of BDAs on channel morphology and restoration efforts in the western United States, it is imperative that we consistently assess the effects of beaver-inspired restoration projects across a range of hydrologic and geomorphic settings and that we continue this monitoring in the future.  相似文献   

5.
This paper uses numerical simulation of flood inundation based on a coupled one‐dimensional–two‐dimensional treatment to explore the impacts upon flood extent of both long‐term climate changes, predicted to the 2050s and 2080s, and short‐term river channel changes in response to sediment delivery, for a temperate upland gravel‐bed river. Results show that 16 months of measured in‐channel sedimentation in an upland gravel‐bed river cause about half of the increase in inundation extent that was simulated to arise from climate change. Consideration of the joint impacts of climate change and sedimentation emphasized the non‐linear nature of system response, and the possibly severe and synergistic effects that come from combined direct effects of climate change and sediment delivery. Such effects are likely to be exacerbated further as a result of the impacts of climate change upon coarse sediment delivery. In generic terms, these processes are commonly overlooked in flood risk mapping exercises and are likely to be important in any river system where there are high rates of sediment delivery and long‐term transfer of sediment to floodplain storage (i.e. alluviation involving active channel aggradation and migration). Similarly, attempts to reduce channel migration through river bank stabilization are likely to exacerbate this process as without bank erosion, channel capacity cannot be maintained. Finally, many flood risk mapping studies rely upon calibration based upon combining contemporary bed surveys with historical flood outlines, and this will lead to underestimation of the magnitude and frequency of floodplain inundation in an aggrading system for a flood of a given magnitude. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
We evaluated controls on locations of channel incision, variation in channel evolution pathways and the time required to reconnect incised channels to their historical floodplains in the Walla Walla and Tucannon River basins, northwestern USA. Controls on incision locations are hierarchically nested. A first‐order geological control defines locations of channels prone to incision, and a second‐order control determines which of these channels are incised. Channels prone to incision are reaches with silt‐dominated valley fills, which have sediment source areas dominated by loess deposits and channel slopes less than 0·1(area)?0·45. Among channels prone to incision, channels below a second slope–area threshold (slope = 0·15(area)?0·8) did not incise. Once incised, channels follow two different evolution models. Small, deeply incised channels follow Model I, which is characterized by the absence of a significant widening phase following incision. Widening is limited by accumulation of bank failure deposits at the base of banks, which reduces lateral channel migration. Larger channels follow Model II, in which widening is followed by development of an inset floodplain and aggradation. In contrast to patterns observed elsewhere, we found the widest incised channels upstream of narrower reaches, which reflects a downstream decrease in bed load supply. Based on literature values of floodplain aggradation rates, we estimate recovery times for incised channels (the time required to reconnect to the historical floodplain) between 60 and 275 years. Restoration actions such as allowing modest beaver recolonization can decrease recovery time by 17–33 per cent. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

7.
Fluvial sediment delivery is the main form of sediment transfer from the land to the sea, but this process is currently undergoing significant variations due to the alteration of catchment and base level controls related to climate change and human activities, especially the widespread construction of dams. Using the lower Wei River as an example and an integrated approach, this study investigates the variation of fluvial sediment delivery, as well as the connectivity under the effects of both controls. Based on hydrological records and channel cross‐section surveys, sediment budgets were constructed for two periods (1960–1970, 1970–1990) after the dam was closed in 1960. In the period 1960–1969, due to the elevated base level (327.2 ± 1.62 m) caused by the dam, the aggradation rate was 0.451 × 108 t yr‐1 in the channel and 0.716 × 108 t yr‐1 on the floodplain, indicating that the positive lateral connectivity between these locations was enhanced. As a consequence, serious sediment storage resulted in a sediment delivery ratio (SDR) that was smaller than that occurring before 1960. In the period 1970–1990, sweeping soil and water conservation (SWC) measures were implemented, resulting in a reduction of the connectivity between the trunk and tributaries, and a decrease of ~31% in the mean sediment input. In addition, together with the base level fluctuation in the range of 327.47 ± 0.49 m, the annual variation in sediment storage was primarily dependent on the water–sediment regime affected by the SWC. The negative lateral connectivity was enhanced between the channel and floodplain via bank erosion. Consequently, the aggradation rate was reduced by 89% on the floodplain and by 96% in the channel. Sediment output continued to decrease primarily due to the SWC practices and climate changes in this period, whereas the SDR increased due to the enhanced longitudinal connectivity between the upstream and downstream. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Restoration projects in the United States typically have among the stated goals those of increasing channel stability and sediment storage within the reach. Increased interest in ecologically based restoration techniques has led to the consideration of introducing beavers to degraded channels with the hope that the construction of beaver dams will aggrade the channel. Most research on beaver dam modification to channels has focused on the long‐term effects of beavers on the landscape with data primarily from rivers in the western United States. This study illustrated that a role exists for beavers in the restoration of fine‐grained, low gradient channels. A channel on the Atlantic Coastal Plain was analyzed before, during, and after beaver dams were constructed to evaluate the lasting impact of the beaver on channel morphology. The channel was actively evolving in a former reservoir area upstream of a dam break. Colonization by the beaver focused the flow into the channel, allowed for deposition along the channel banks, and reduced the channel width such that when the beaver dams were destroyed in a flood, there was no channel migration and net sediment storage in the reach had increased. However, the majority of the deposition occurred at the channel banks, narrowing the channel width, while the channel incised between sequential beaver dams. The study indicated that where channels are unstable laterally and bank erosion is a concern, the introduction of beavers can be a useful restoration tool. However, because of the likelihood of increased channel bed erosion in a reach with multiple beaver dams, they may not be the best solution where aggradation of an incised channel bed is the desired result. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A bank and floodplain sediment budget was created for three Piedmont streams tributary to the Chesapeake Bay. The watersheds of each stream varied in land use from urban (Difficult Run) to urbanizing (Little Conestoga Creek) to agricultural (Linganore Creek). The purpose of the study was to determine the relation between geomorphic parameters and sediment dynamics and to develop a floodplain trapping metric for comparing streams with variable characteristics. Net site sediment budgets were best explained by gradient at Difficult Run, floodplain width at Little Conestoga Creek, and the relation of channel cross‐sectional area to floodplain width at Linganore Creek. A correlation for all streams indicated that net site sediment budget was best explained by relative floodplain width (ratio of channel width to floodplain width). A new geomorphic metric, the floodplain trapping factor, was used to compare sediment budgets between streams with differing suspended sediment yields. Site sediment budgets were normalized by floodplain area and divided by the stream's sediment yield to provide a unitless measure of floodplain sediment trapping. A floodplain trapping factor represents the amount of upland sediment that a particular floodplain site can trap (e.g. a factor of 5 would indicate that a particular floodplain site traps the equivalent of 5 times that area in upland erosional source area). Using this factor we determined that Linganore Creek had the highest gross and net (floodplain deposition minus bank erosion) floodplain trapping factor (107 and 46, respectively) that Difficult Run the lowest gross floodplain trapping factor (29) and Little Conestoga Creek had the lowest net floodplain trapping factor (–14, indicating that study sites were net contributors to the suspended sediment load). The trapping factor is a robust metric for comparing three streams of varied watershed and geomorphic character, it promises to be a useful tool for future stream assessments. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

10.
We draw on published studies of floodplain organic carbon storage, wildfire-related effects on floodplains in temperate and high latitudes, and case studies to propose a conceptual model of the effects of wildfire on floodplain organic carbon storage in relation to climate and valley geometry. Soil organic carbon typically constitutes the largest carbon stock in floodplains in fire-prone regions, although downed wood can contain significant organic carbon. We focus on the influence of wildfire on soil organic carbon and downed wood as opposed to standing vegetation to emphasize the geomorphic influences resulting from wildfire on floodplain organic carbon stocks. The net effect of wildfire varies depending on site-specific characteristics including climate and valley geometry. Wildfire is likely to reduce carbon stock in steep, confined valley segments because increased water and sediment yields following fire create net floodplain erosion. The net effect of fire in partly confined valleys depends on site-specific interactions among floodplain aggradation and erosion, and, in high-latitude regions, permafrost degradation. In unconfined valleys in temperate latitudes, wildfire is likely to slightly increase floodplain organic carbon stock as a result of floodplain aggradation and wood deposition. In unconfined valleys in high latitudes underlain by permafrost, wildfire is likely in the short-term to significantly decrease floodplain organic carbon via permafrost degradation and reduce organic-layer thickness. Permafrost degradation reduces floodplain erosional resistance, leading to enhanced stream bank erosion and greater carbon fluxes into channels. The implications of warming climate and increased wildfires for floodplain organic carbon stock thus vary. Increasing wildfire extent, frequency, and severity may result in significant redistribution of organic carbon from floodplains to the atmosphere via combustion in all environments examined here, as well as redistribution from upper to lower portions of watersheds in the temperate zone and from floodplains to the oceans via riverine transport in the high-latitudes. © 2019 John Wiley & Sons, Ltd.  相似文献   

11.
Suspended‐sediment concentration data are a missing link in reconstructions of the River Waal in the early 1800s. These reconstructions serve as a basis for assessing the long‐term effects of major interventions carried out between 1850 AD and the early 20th century. We used a 2D physics‐based morphodynamic model accounting for the influence of floodplain vegetation to fill in this gap. Historical discharge hydrographs were derived from a correlation between flow discharge records at Cologne and water level measurements of the Rhine branches in the Netherlands, taking into account the discharge distribution between the branches. Historical floodplain sedimentation rates were estimated using old cartographic information and recent geomorphologic field work. The computed historical sedimentation rates are found to be within the range of measured data, which suggests that fine suspended sediment concentrations in the early 1800s were comparable to contemporary ones. The computations show also how vegetation enhances the formation of natural levees close to the main channel and at the same time decreases the sedimentation rates in farther areas of the floodplain. A sensitivity analysis shows suspended sediment composition to have a strong influence on the resulting quantities and patterns of floodplain deposition. The reconstruction has also provided validation of the modelling tools to reproduce the effects of vegetation on sediment dynamics, enabling their implementation to study other cases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Beavers are widely recognized as ecosystem engineers for their ability to shape river corridors by building dams, digging small canals, and altering riparian vegetation. Through these activities, beavers create beaver meadows, which are segments of river corridor characterized by high geomorphic heterogeneity, attenuation of downstream fluxes, and biodiversity. We examine seven beaver meadows on the eastern side of the Rocky Mountain National Park, Colorado, USA with differing levels of beaver activity. We divide these sites into the four categories of active, partially active, recently abandoned (< 20 years), and long abandoned (> 30 years). We characterize geomorphic units within the river corridor and calculate metrics of surface geomorphic heterogeneity relative to category of beaver activity. We also use measures of subsurface geomorphic heterogeneity (soil moisture, soil depth, percent clay content, organic carbon concentration) to compare heterogeneity across beaver meadow categories. Finally, we calculate organic carbon stock within the upper 1.5 m of each meadow and compare these values to category of beaver activity. We find that surface geomorphic heterogeneity and mean soil moisture differ significantly only between active and long abandoned meadows, suggesting a non-linear decrease with time following beaver abandonment of a meadow. Soil depth and organic carbon stock do not differ consistently in relation to category of beaver meadow, suggesting that larger-scale geologic controls that foster deep floodplain soils can continue to maintain substantial organic carbon stocks after beavers abandon a meadow. These results also indicate that the effects of beaver ecosystem engineering can persist for nearly three decades after the animals largely abandon a river corridor. © 2018 John Wiley & Sons, Ltd.  相似文献   

13.
Many beaver ponds in the Rocky Mountains, that have been described in the literature, are in‐channel ponds that are relatively small and short‐lived. This paper describes floodplain beaver ponds on low‐gradient deltas in glacial finger lakes in Glacier National Park, Montana. These ponds are distinctly larger, probably fed by hyporheic flow, and stable and long‐lived. Ponds examined were, with one exception, 44 years old. Glacial discharge is present in each valley where beaver ponds occupy low‐gradient deltas, and this discharge likely sustains pond water level over the course of the summer. As glaciers recede and disappear, deltaic beaver ponds dependent on hyporheic flow may be negatively affected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The long term (Holocene) channel and floodplain dynamics of a low gradient, low energy, fine grained aggradational fluvial system within a formerly glaciated landscape in central Scotland, the Kelvin Valley, are described from a series of sediment stratigraphic transects and 12 14C assays in a headwater reach between Kirkintilloch and Kilsyth. The 14C assays and dated archaeological sites on the floodplain together suggest that the River Kelvin ceased to aggrade more than 2000 years ago, probably much more, so the 4–6 m of channel and floodplain deposits are almost entirely of early to mid‐Holocene age. The Kelvin Valley is characterized, despite its low flow characteristics, by a highly variable floodplain architecture, in which some transects suggest long term channel stability and strong partitioning of floodplain sedimentation and others indicate high channel mobility. This variation makes the application of general models of fluvial evolution difficult. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Beaver dam analogues (BDAs) are a cost-effective stream restoration approach that leverages the recognized environmental benefits of natural beaver dams on channel stability and local hydrology. Although natural beaver dams are known to exert considerable influence on the hydrologic conditions of a stream system by mediating geomorphic processes, nutrient cycling, and groundwater–surface water interactions, the impacts of beaver-derived restoration methods on groundwater–surface water exchange are poorly characterized. To address this deficit, we monitored hyporheic exchange fluxes and streambed porewater biogeochemistry across a sequence of BDAs installed along a central Wyoming stream during the summer of 2019. Streambed fluxes were quantified by heat tracing methods and vertical hydraulic gradients. Biogeochemical activity was evaluated using major ion porewater chemistry and principal component analysis. Vertical fluxes of approximately 1.0 m/day were observed around the BDAs, as was the development of spatially heterogeneous zones of nitrate production, groundwater upwelling, and anaerobic reduction. Strong contrasts in hyporheic zone processes were observed across BDAs of differing sizes. This suggests that structures may function with size-dependent behaviour, only altering groundwater–surface water interactions after a threshold hydraulic step height is exceeded. Patterns of hyporheic exchange and biogeochemical cycling around the studied BDAs resemble those around natural beaver dams, suggesting that BDAs may provide comparable benefits to channel complexity and near-stream function over a 1-year period.  相似文献   

16.
The study investigates interactions, water and sediment exchanges, between a rapidly migrating meander and its associated floodplain at fine temporal and spatial scales. The Beni River, an Amazonian free meandering river, makes the transition between Andean ranges and Amazonian lowlands. For the period 2002–2006, an assemblage of tools and methods (water and sediment discharges, topometric and bathymetric surveys, sedimentation rate estimations from unsupported 210Pb and sediment trapping system) was used to jointly analyse the influence on the sediment budget of external factors (mainly water and sediment discharge) and the inherent behaviour of the system. The main issue addressed is the investigation of the complex relationship between ‘morphological conditioning’ of fluvial landform and process. The first part of the study was undertaken with the aim of linking erosion–deposition in an active meander with water and sediment fluxes. The three inter‐annual evolutions are characterized by very unequal sediment budgets; the first two intervals underwent predominant erosion, and the latter slight accumulation. Digital elevation models, evaluated for the active meander, demonstrate that sedimentation on the point bar depends more on external factors than erosion of the concave bank, which fluctuates slightly. The second part of the study, focusing on water and sediment exchanges between active bend and floodplain, examines the respective parts played by overbank flow and by an abandoned channel on the diffusion and sequestration of sediment. The association of short‐ and long‐term estimation of sedimentation rates suggests that floodplain construction is associated with two different processes and rhythms of sediment transportation. Finally, a sediment budget is proposed for the Beni River in the upper part of the Amazonian lowlands. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Intensive field monitoring of a reach of upland gravel‐bed river illustrates the temporal and spatial variability of in‐channel sedimentation. Over the six‐year monitoring period, the mean bed level in the channel has risen by 0·17 m with a maximum bed level rise of 0·5 m noted at one location over a five month winter period. These rapid levels of aggradation have a profound impact on the number and duration of overbank flows with flood frequency increasing on average 2·6 times and overbank flow time increasing by 12·8 hours. This work raises the profile of coarse sediment transfer in the design and operation of river management, specifically engineering schemes. It emphasizes the need for the implementation of strategic monitoring programmes before engineering work occurs to identify zones where aggradation is likely to be problematic. Exploration of the sediment supply and transfer system can explain patterns of channel sedimentation. The complex spatial, seasonal and annual variability in sediment supply and transfer raise uncertainties into the system's response to potential changes in climate and land‐use. Thus, there is a demand for schemes that monitor coarse sediment transfer and channel response. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Two centuries of human activities in the Greater Yellowstone Ecosystem (GYE) have strongly influenced beaver activity on small streams, raising questions about the suitability of the historical (Euro‐American) period for establishing stream reference conditions. We used beaver‐pond deposits as proxy records of beaver occupation to compare historical beaver activity to that throughout the Holocene. Forty‐nine carbon‐14 (14C) ages on beaver‐pond deposits from Grand Teton National Park indicate that beaver activity was episodic, where multi‐century periods lacking dated beaver‐pond deposits have similar timing to those previously documented in Yellowstone National Park. These gaps in the sequence of dated deposits coincide with episodes of severe, prolonged drought, e.g. within the Medieval Climatic Anomaly 1000–600 cal yr bp , when small streams likely became ephemeral. In contrast, many beaver‐pond deposits date to 500–100 cal yr bp , corresponding to the colder, effectively wetter Little Ice Age. Abundant historical beaver activity in the early 1900s is coincident with a climate cooler and wetter than present and more abundant willow and aspen, but also regulation of beaver trapping and the removal of wolves (the beaver's main predator), all favorable for expanded beaver populations. Reduced beaver populations after the 1920s, particularly in the northern Yellowstone winter range, are in part a response to elk overbrowsing of willow and aspen that later stemmed from wolf extirpation. Beaver populations on small streams were also impacted by low streamflows during severe droughts in the 1930s and late 1980s to present. Thus, both abundant beaver in the 1920s and reduced beaver activity at present reflect the combined influence of management practices and climate, and underscore the limitations of the early historical period for defining reference conditions. The Holocene record of beaver activity prior to Euro‐American activities provides a better indication of the natural range of variability in beaver‐influenced small stream systems of the GYE. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Current global warming projections suggest a possible increase in wildfire and drought, augmenting the need to understand how drought following wildfire affects the recovery of stream channels in relation to sediment dynamics. We investigated post‐wildfire geomorphic responses caused by storms during a prolonged drought following the 2013 Springs Fire in southern California (USA), using multi‐temporal terrestrial laser scanning and detailed field measurements. After the fire, a dry‐season dry‐ravel sediment pulse contributed sand and small gravel to hillslope‐channel margins in Big Sycamore Creek and its tributaries. A small storm in WY 2014 generated sufficient flow to mobilize a portion of the sediment derived from the dry‐ravel pulse and deposited the fine sediment in the channel, totaling ~0.60 m3/m of volume per unit length of channel. The sediment deposit buried step‐pool habitat structure and reduced roughness by over 90%. These changes altered sediment transport characteristics of the bed material present before and after the storm; the ratio of available to critical shear stress (τoc) increased by five times. Storms during WY 2015 contributed additional fine sediment from tributaries and lower hillslopes and hyperconcentrated flow transported and deposited additional sediment in the channel. Together these sources delivered sediment on the order of six times that in 2014, further increasing τo/τc. These storms during multi‐year drought following wildfire transformed channel dynamics. The increased sediment transport capacity persisted during the drought period characterized by the longer residence time of relatively fine‐grained post‐fire channel sedimentation. This contrasts with wetter years, when post‐fire sediment is transported from the fluvial system during the same season as the post‐fire sediment pulse. Results of this short‐term study highlight the complex and substantial effects of multi‐year drought on geomorphic responses following wildfire. These responses influence pool habitat that is critical to longer‐term post‐wildfire riparian ecosystem recovery. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Controls on the characteristics of floodplain wetlands in drylands are diverse and may include extrinsic factors such as tectonic activity, lithology and climate, and intrinsic thresholds of channel change. Correct analysis of the interplay between these controls is important for assessing possible channel–floodplain responses to changing environmental conditions. Using analysis of aerial imagery, geological maps and field data, this paper investigates floodplain wetland characteristics in the Tshwane and Pienaars catchments, northern South Africa, and combines the findings with previous research to develop a new conceptual model highlighting the influence of variations in aridity on flow, sediment transport, and channel–floodplain morphology. The Tshwane–Pienaars floodplain wetlands have formed in response to a complex interplay between climatic, lithological, and intrinsic controls. In this semi‐arid setting, net aggradation (alluvium >7 m thick) in the wetlands is promoted by marked downstream declines in discharge and stream power that are related to transmission losses and declining downstream gradients. Consideration of the Tshwane–Pienaars wetlands in their broader catchment and regional context highlights the key influence of climate, and demonstrates how floodplain wetland characteristics vary along a subhumid to semi‐arid climatic gradient. Increasing aridity tends to be associated with a reduction in the ability of rivers to maintain through‐going channels and an increase in the propensity for channel breakdown and floodout formation. Understanding the interplay between climate, hydrology and geomorphology may help to anticipate and manage pathways of floodplain wetland development under future drier, more variable climates, both in South African and other drylands. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号