首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Michigan basin regional ground water flow discharge to three Great Lakes   总被引:1,自引:1,他引:0  
Ground water discharge to the Great Lakes around the Lower Peninsula of Michigan is primarily from recharge in riparian basins and proximal upland areas that are especially important to the northern half of the Lake Michigan shoreline. A steady-state finite-difference model was developed to simulate ground water flow in four regional aquifers in Michigan's Lower Peninsula: the Glaciofluvial, Saginaw, Parma-Bayport, and Marshall aquifers interlayered with the Till/"red beds," Saginaw, and Michigan confining units, respectively. The model domain was laterally bound by a continuous specified-head boundary, formed from lakes Michigan, Huron, St. Clair, and Erie, with the St. Clair and Detroit River connecting channels. The model was developed to quantify regional ground water flow in the aquifer systems using independently determined recharge estimates. According to the flow model, local stream stages and discharges account for 95% of the overall model water budget; only 50% enters the lakes directly from the ground water system. Direct ground water discharge to the Great Lakes' shorelines was calculated at 36 m3/sec, accounting for 5% of the overall model water budget. Lowland areas contribute far less ground water discharge to the Great Lakes than upland areas. The model indicates that Saginaw Bay receives only approximately 1.13 m3/sec ground water; the southern half of the Lake Michigan shoreline receives only approximately 2.83 m3/sec. In contrast, the northern half of the Lake Michigan shoreline receives more than 17 m3/sec from upland areas.  相似文献   

2.
A large number of rivers are frozen annually, and the river ice cover has an influence on the geomorphological processes. These processes in cohesive sediment rivers are not fully understood. Therefore, this paper demonstrates the impact of river ice cover on sediment transport, i.e. turbidity, suspended sediment loads and erosion potential, compared with a river with ice‐free flow conditions. The present sediment transportation conditions during the annual cycle are analysed, and the implications of climate change on wintertime geomorphological processes are estimated. A one‐dimensional hydrodynamic model has been applied to the Kokemäenjoki River in Southwest Finland. The shear stress forces directed to the river bed are simulated with present and projected hydroclimatic conditions. The results of shear stress simulations indicate that a thermally formed smooth ice cover diminishes river bed erosion, compared with an ice‐free river with similar discharges. Based on long‐term field data, the river ice cover reduces turbidity statistically significantly. Furthermore, suspended sediment concentrations measured in ice‐free and ice‐covered river water reveal a diminishing effect of ice cover on riverine sediment load. The hydrodynamic simulations suggest that the influence of rippled ice cover on shear stress is varying. Climate change is projected to increase the winter discharges by 27–77% on average by 2070–2099. Thus, the increasing winter discharges and possible diminishing ice cover periods both increase the erosion potential of the river bed. Hence, the wintertime sediment load of the river is expected to become larger in the future. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Debris flows can grow greatly in size by entrainment of bed material, enhancing their runout and hazardous impact. Here, we experimentally investigate the effects of debris‐flow composition on the amount and spatial patterns of bed scour and erosion downstream of a fixed to erodible bed transition. The experimental debris flows were observed to entrain bed particles both grain by grain and en masse, and the majority of entrainment was observed to occur during passage of the flow front. The spatial bed scour patterns are highly variable, but large‐scale patterns are largely similar over 22.5–35° channel slopes for debris flows of similar composition. Scour depth is generally largest slightly downstream of the fixed to erodible bed transition, except for clay‐rich debris flows, which cause a relatively uniform scour pattern. The spatial variability in the scour depth decreases with increasing water, gravel (= grain size) and clay fraction. Basal scour depth increases with channel slope, flow velocity, flow depth, discharge and shear stress in our experiments, whereas there is no correlation with grain collisional stress. The strongest correlation is between basal scour and shear stress and discharge. There are substantial differences in the scour caused by different types of debris flows. In general, mean and maximum scour depths become larger with increasing water fraction and grain size, and decrease with increasing clay content. However, the erodibility of coarse‐grained experimental debris flows (gravel fraction = 0.64) is similar on a wide range of channel slopes, flow depths, flow velocities, discharges and shear stresses. This probably relates to the relatively large influence of grain‐collisional stress to the total bed stress in these flows (30–50%). The relative effect of grain‐collisional stress is low in the other experimental debris flows (<5%), causing erosion to be largely controlled by basal shear stress. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
This paper describes delta development processes with particular reference to Cimanuk Delta in Indonesia. Cimanuk river delta, the most rapidly growing river delta in Indonesia, is located on the northern coast of Java Island. The delta is subject to ocean waves of less than 1 m height due to its position in the semi‐enclosed Java Sea in the Indonesian archipelago. The study has been carried out using a hydrodynamic model that accounts for sediment movement through the rivers and estuaries. As an advanced approach to management of river deltas, a numerical model, namely MIKE‐21, is used as a tool in the management of Cimanuk river delta. From calibration and verification of hydrodynamic model, it was found that the best value of bed roughness was 0·1 m. For the sediment‐transport model, the calibration parameters were adjusted to obtain the most satisfactory results of suspended sediment concentration and volume of deposition. By comparing the computed and observed data in the calibration, the best values of critical bed shear stress for deposition, critical bed shear stress for erosion and erosion coefficient were 0·05 N m?2, 0·15 N m?2, and 0·00001 kg m?2 s?1, respectively. The calibrated model was then used to analyse sensitivity of model parameters and to simulate delta development during the periods 1945–1963 and 1981–1997. It was found that the sensitive model parameters were bed shear stresses for deposition and erosion, while the important model inputs were river suspended sediment concentration, sediment characteristics and hydrodynamic. The model result showed reasonable agreement with the observed data. As evidenced by field data, the mathematical model proves that the Cimanuk river delta is a river‐dominated delta because of its protrusion pattern and very high sediment loads from the Cimanuk river. It was concluded that 86% of sediment load from the Cimanuk river was deposited in the Cimanuk delta. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The effects of large floods on river morphology are variable and poorly understood. In this study, we apply multi‐temporal datasets collected with small unmanned aircraft systems (UASs) to analyze three‐dimensional morphodynamic changes associated with an extreme flood event that occurred from 19 to 23 June 2013 on the Elbow River, Alberta. We documented reach‐scale spatial patterns of erosion and deposition using high‐resolution (4–5 cm/pixel) orthoimagery and digital elevation models (DEMs) produced from photogrammetry. Significant bank erosion and channel widening occurred, with an average elevation change of ?0.24 m. The channel pattern was reorganized and overall elevation variation increased as the channel adjusted to full mobilization of most of the bed surface sediments. To test the extent to which geomorphic changes can be predicted from initial conditions, we compared shear stresses from a two‐dimensional hydrodynamic model of peak discharge to critical shear stresses for bed surface sediment sizes. We found no relation between modeled normalized shear stresses and patterns of scour and fill, confirming the complex nature of sediment mobilization and flux in high‐magnitude events. However, comparing modeled peak flows through the pre‐ and post‐flood topography showed that the flood resulted in an adjustment that contributes to overall stability, with lower percentages of bed area below thresholds for full mobility in the post‐flood geomorphic configuration. Overall, this work highlights the potential of UAS‐based remote sensing for measuring three‐dimensional changes in fluvial settings and provides a detailed analysis of potential relationships between flood forces and geomorphic change. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
7.
洞庭湖冲淤变化分析(1956-1995年)   总被引:23,自引:1,他引:22  
施修端  夏薇  杨彬 《湖泊科学》1999,11(3):199-205
根据1956-1995年洞庭湖水文泥沙原型观测和地形测绘等翔实资料,运用输沙量法和地形法对洞庭湖冲瘀变化进行了认真的统计分析,分析结果表明,洞庭湖来水量以四水为主,占57.8%,来沙量以四口为主,多年平均沉积率为74.0%,出湖仅占26.0%;淤积量及湖水沙量随着四分流分沙比的减少而减少。  相似文献   

8.
In this study an incompressible smoothed particle hydrodynamics (ISPH) approach coupled with the sediment erosion model is developed to investigate the sediment bed scour and grain movement under the dam break flows. Two-phase formulations are used in the ISPH numerical algorithms to examine the free surface and bed evolution profiles, in which the entrained sediments are treated as a different fluid component as compared with the water. The sediment bed erosion model is based on the concept of pick-up flow velocity and the sediment is initiated when the local flow velocity exceeds a critical value. The proposed model is used to reproduce the sediment erosion and follow-on entrainment process under an instantaneous dam break flow and the results are compared with those from the weakly compressible moving particle semi-implicit (WCMPS) method as well as the experimental data. It has been demonstrated that the two-phase ISPH model performed well with the experimental data. The study shows that the ISPH modelling approach can accurately predict the dynamic sediment scouring process without the need to use empirical sediment transport formulas.  相似文献   

9.
Confluences with low discharge and momentum ratios, where narrow steep tributaries with high sediment load join a wide low‐gradient main channel that provides the main discharge, are often observed in high mountain regions such as in the upper‐Rhone river catchment in Switzerland. Few existing studies have examined the hydro‐morphodynamics of this type of river confluence while considering sediment discharge in both confluent channels. This paper presents the evolution of the bed morphology and hydrodynamics as observed in an experimental facility with a movable bed. For that purpose, one experiment was carried out in a laboratory confluence with low discharge and momentum ratios, where constant sediment rates were supplied to both flumes. During the experiment, bed topography and water surface elevations were systematically recorded. When the bed topography reached a steady state (so‐called equilibrium) and the outgoing sediment rate approximated the incoming rate, flow velocity was measured at 12 different points distributed throughout the confluence, and the grain size distribution of the bed surface was analyzed. Typical morphodynamic features of discordant confluences such as a bank‐attached bar and a flow deflection zone are identified in this study. Nevertheless, the presence of a marked scour hole in the discordant confluence and distinct flow regimes for the tributary and main channel, differ from results obtained in previous studies. Strong acceleration of the flow along the outer bank of the main channel is responsible for the scour hole. This erosion is facilitated by the sediment discharge into the confluence from the main channel which inhibits bed armoring in this region. The supercritical flow regime observed in the tributary is the hydrodynamic response to the imposed sediment rate in the tributary. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A critical concern regarding river bed stabilization and river engineering is the short‐term general scour that occurs in a field setting far from a river‐crossing structure or embankment during a typhoon‐induced flood. This study investigated the improvement of existing techniques that have been used to measure river bed scour. One of these techniques is the numbered‐brick column or scour chains method, in which only the maximum general scour depth of river bed is observed. A wireless tracer for monitoring real‐time scour was set‐up with a numbered‐brick column and was employed to collect synchronous data. The proposed method was successfully used to observe both real‐time scour and the maximum depth at flood peak. This observation was conducted at a steep gravel‐bed reach of the Shuideliaw Embankment on the intermittent Choshui River in Central Taiwan during Typhoon Soulik, which occurred in 2013. Future studies must be conducted to complete the development of an automatic real‐time scour and flood monitoring system for use in severe weather and flow conditions; this would facilitate the identification of river bed scour during conditions of unstable flow and the improvement of flood prevention engineering, bridge closure detection and emergency evacuation procedures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The aim of this study is to examine the annual regime of channel scour and fill by monitoring bed‐elevation changes in a reach of Squamish River in southwestern British Columbia, Canada. Sonar surveys of 13 river cross‐sections in a sandy gravel‐bed single‐channel study reach were repeated biweekly over a full hydrologic year (1995/6). The survey results show that bedload movement occurs as waves or pulses forming bedwaves that appear to maintain an overall coherence with movement downstream. These bedwaves propagate downstream by a mode here termed pulse scour and pulse fill, a process distinguished from the conventional mode of scour and fill commonly associated with flood events (here termed local scour and local fill). Bedwave celerity was estimated to be about 15·5 m d−1 corresponding to a bedwave residence time in the study reach of almost one hydrologic year. The total amount of local bed‐elevation change ranged between 0·22 m and 2·41 m during the period of study. Analysis of the bed‐elevation and flow data reveals that, because of the bedwave phenomenon, there is no simple relation between the mean bed‐elevation and discharge nor any strong linear correlation among cross‐sectional behaviour. The bed‐elevation data also suggest that complex changes to the bed within a cross‐section are masked when the bed is viewed in one dimension, although no definitive trends in bed behaviour were found in the two‐dimensional analysis. Although a weak seasonal effect is evident in this study, the bed‐elevation regime is dominated by sediment supply‐driven fluctuations in bedload transport occurring at timescales shorter than the seasonal fluctuation in discharge. The study also indicates that bed‐elevation monitoring on Squamish River, and others like it, for purposes of detecting and measuring aggradation/degradation must take into account very considerable and normal channel‐bed variability operating at timescales from hours to months. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
Along the lower reaches of the Waipaoa River, New Zealand, cross‐section survey data indicate there was a 23 per cent decrease in bankfull width and a 22 per cent reduction in channel cross‐section area between 1948 and 2000, as the channel responded to increased inputs of fine (suspended) sediment following deforestation of the headwaters in late C19 and early C20. We determined the bankfull discharge within a ~39 km long reach by routing known discharges through the one‐dimensional MIKE 11 flow model. The model runs suggest that the bankfull discharge varies between ~800 and ~2300 m3 s?1 and that the average recurrence interval is 4 ± 2 years on the annual maximum series; by contrast, the effective flow (360 m3 s?1) is equaled or exceeded three times a year. The variability in bankfull discharge arises because the banks tend to be lower in places where flood flows are constricted than in reaches where overbank flow is dispersed over a wide area, and because scour has counteracted aggradation in some locations. There is no downstream variation in Shields stress, or in relative shear stress, within the study reach. Bankfull shear stress is, on average, five times greater than the shear stress required to initiate motion. At the effective discharge it is more than twice the threshold value. The effective discharge probably has more relevance than the bankfull discharge to the overall picture of sediment movement in the lower reaches of the Waipaoa River but, because width is constrained by the stability and resistance of the bank material to erosion during high flows that also scour the bed, the overall channel geometry is likely determined by discharges at or near bankfull. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The first part of the research reported here consists of an experimental campaign to study the scouring of a granular bed(glass beads, sand) induced by a dam break in an open channel. Two configurations are considered: with and without cylinders. In the second part of this study, the volume of fluid method coupled with the shear stress transport turbulent model and the lagrangian particle tracking method is used to simulate the local scour processes. The four-way coupling is realized by consider...  相似文献   

14.
In this study, the characteristic of multiple glacial lake outburst floods (GLOFs) in the Pho Chu River basin in Bhutanese Himalayas is evaluated to help assess the potential impact. Thorthormi Cho (TC) and Lugge Cho (LC) in the east branch and two unnamed lakes labelled A and B in the west branch of Pho Chu are chosen for the study. Numerical models were employed to simulate different involved processes. The results show that the peak sediment discharge in the east branch of the Pho Chu River by the TC dam breach reached about 5000 m3/s (during the first GLOF) at 4 km whereas by the LC dam breach is about 600 m3/s (second GLOF) at 6 km. However, the highest peak hydrographs (sediment and water mixture) calculated during the first and second GLOF are about 10 000 m3/s at the 18‐km section and about 23 000 m3/s at the 10‐km section, respectively. In the west branch of Pho Chu, erosion and depositions are the frequent intermittent local processes during the first GLOF event from Lake A. Because the first event stabilized the irregular river bed profile, there is not much sediment discharge developed during the second GLOF from Lake B. At the 17‐km section of the west branch, the peak hydrograph reached about 9000 m3/s during the first event against the peak of about 800 m3/s during the second event. The results suggest that even if multiple dam breaches occur simultaneously, GLOF surges pass through the main river channel at different times with very different flood characteristics. The differences in travel time and flood characteristics mostly depend on the distributions of bed slope and potential erosion depth along the reach. Further, the amount of sediment accumulated in and transported by each surge is reliant on the temporal geomorphologic setting of the river and therefore on the impact of the previous GLOF on riverbed profile and potential erosion depth. The robustness in peak GLOF hydrographs is associated with sediment flow dynamics. As a consequence, serious inundation of Punakha, Lobeysa and major portion of Wangdue Phodrang is anticipated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
We describe additions made to a multi‐size sediment routing model enabling it to simulate width adjustment simultaneously alongside bed aggradation/incision and fining/coarsening. The model is intended for use in single thread gravel‐bed rivers over annual to decadal timescales and for reach lengths of 1–10 km. It uses a split‐channel approach with separate calculations of flow and sediment transport in the left and right sides of the channel. Bank erosion is treated as a function of excess shear stress with bank accretion occurring when shear stress falls below a second, low, threshold. A curvature function redistributes shear stress to either side of the channel. We illustrate the model through applications to a 5·6‐km reach of the upper River Wharfe in northern England. The sediment routing component with default parameter values gives excellent agreement with field data on downstream fining and down‐reach reduction in bedload flux, and the width‐adjustment components with approximate calibration to match maximum observed rates of bank shifting give plausible patterns of local change. The approach may be useful for exploring interactions between sediment delivery, river management and channel change in upland settings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
A new analytical method was evaluated for predicting scour profile downstream of a submerged sluice gate with an apron. The differential equations between bed Shear stress and Scour profile Curvature(SSC model) were utilized to predict the scour profile in both temporal and equilibrium stages. A jet momentum flux was considered as an external source of erosion on a hypothetical particle ring as the boundary between the flow and sediment bed. The scour length and sediment resistance factor were t...  相似文献   

17.
Semi‐alluvial stream channels eroded into till and other glacial sediments are common in areas of extensive glacial deposition such as the Great Lakes region and northern interior plains of North America. The mechanics of erosion and erosional weakness of till results in the dominance of fluvial scour and mass erosion due to spontaneous fracture at planes of weakness under shearing flow. There have been few controlled tests looking at erosional mechanisms and resistance of till in river channels. We subjected small blocks of till to unidirectional flows in a laboratory flume to measure the threshold shear stress for erosion and observed the erosion mechanics. Critical shear stress for erosion varied from 7 to 8 Pa for samples with initial saturated moisture content in which a combination of fluvial scour and mass cracking/block erosion dominated. When dried, micro‐fissures occurred in the sample and erosional resistance of the till was extremely low at <1 Pa with erosion appearing to be by fluvial scour. When mobile gravel was added to the test conditions, the gravel reduced the erosion threshold slightly because of the enhanced scour around and below the gravel particles and the tendency for the gravel to aid in crack enlargement. Thus a partial or thin gravel cover over the till may provide no protection from erosion. The erosion processes and effects reflect the complex and contingent mechanics and properties of till, and suggest that the erosion characteristics of till bed semi‐alluvial channels differ from abrasion or plucking dominated processes in more resistant bedrock. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
The 3D numerical model, ECOMSED (open source code), was used to simulate flow and sediment transport in rivers. The model has a long history of successful applications to oceanic, coastal and estuarine waters. Improvements in the advection scheme, treatment of river roughness parameterization and shear stress partitioning were necessary to reproduce realistic and comparable results in a river application. To account for the dynamics of the mobile bed boundary, a model for the bed load transport was included in the code. The model reproduced observed secondary currents, bed shear stress distribution and erosion-deposition patterns on a curved channel. The model also successfully predicted the general flow patterns and sediment transport characteristics of a 1-km long reach of the River Klar?lven, located in the north of the county of V?rmland, Sweden.  相似文献   

19.
I.INTRODUCTIONhiverchannelsaresubjecttocontinuouschangeingeometryduetoillteraCtionbetWeentheflowanderodibleboundaries.Ofconcerntothedesignersofoilpipelinesacrossariver,bridgesandhydraulicworksistheproblemofscourwhichcanunderminetheStructures.Scouratsiteofbridgesandhydraulicworksoccursduetoconstrictedflowandexistenceofbridgepiers.SuchatabOfscouroccursonlyinashortsection,usuallyillthesameorderofthelengthofthehydraulicworksorbridges.Therefore,thispatternofscouriscalledlocalscour.Man}rresea…  相似文献   

20.
The Pitt River is a meandering river channel linking the Fraser River estuary and Pitt Lake. The lake acts as a temporary reservoir for tidally diverted Fraser River flow. Stage level can fluctuate 2 m in Pitt River and as much as 1.2 m in Pitt Lake on a tidal cycle. Stage data from three locations in the system, used in conjunction with velocity measurements (profiles and tethered meter), revealed large tidal and seasonal variations in discharge. Calculations indicate that during the flood, basal shear stress peaks earlier in the cycle and reaches higher values than during the ebb. Thus, sediment moves farther forward on a flood flow than it moves back on the succeeding ebb. An upstream movement of sediment in Pitt River from the Fraser River is indicated by: (1) the identical mineralogy of the two rivers, (2) a decrease in median grain size from the Fraser to Pitt Lake, and (3) a predominance of flood-oriented bedforms in the river channel. A delta, 12 km2 area, has accumulated at the lower (draining) end of the lake. Studies of the river channel using hydrographic charts revealed regular meanders (λM = 6100 m) and evenly spaced riffles and pools which appear to be scaled to the strongest flow, winter flood current (2400 m3/s). The winter flood is thus considered to be the effective discharge. Meander point bars are accreting on the ‘upstream’ side indicating deposition by the flood-oriented flow. The three dimensional geometry of the large-scale bedforms which cover the sandy thalweg of both river and delta channel was determined by echo sounding and side-scan sonar. Three distinct sizes (height/spacing = 0.8 m/10–15 m; 1.5 m/25–30m; 3m/50–60 m) of large-scale bedforms (sand waves) were found; their linear relationship of height vs. spacing on a log-log plot suggests a common genesis. Their occurrence by size does not appear to be related to depth of flow but rather to their position in the channel with respect to large scale features which alter flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号