共查询到20条相似文献,搜索用时 13 毫秒
1.
Sean F. Gallen Karl W. Wegmann Kurt L. Frankel Stephen Hughes Robert Q. Lewis Nathan Lyons Paul Paris Kristen Ross Jennifer B. Bauer Anne C. Witt 《地球表面变化过程与地形》2011,36(9):1254-1267
The southern Appalachians represent a landscape characterized by locally high topographic relief, steep slopes, and frequent mass movement in the absence of significant tectonic forcing for at least the last 200 Ma. The fundamental processes responsible for landscape evolution in a post‐orogenic landscape remain enigmatic. The non‐glaciated Cullasaja River basin of south‐western North Carolina, with uniform lithology, frequent debris flows, and the availability of high‐resolution airborne lidar DEMs, is an ideal natural setting to study landscape evolution in a post‐orogenic landscape through the lens of hillslope–channel coupling. This investigation is limited to channels with upslope contributing areas >2.7 km2, a conservative estimate of the transition from fluvial to debris‐flow dominated channel processes. Values of normalized hypsometry, hypsometric integral, and mean slope vs elevation are used for 14 tributary basins and the Cullasaja basin as a whole to characterize landscape evolution following upstream knickpoint migration. Results highlight the existence of a transient spatial relationship between knickpoints present along the fluvial network of the Cullasaja basin and adjacent hillslopes. Metrics of topography (relief, slope gradient) and hillslope activity (landslide frequency) exhibit significant downstream increases below the current position of major knickpoints. The transient effect of knickpoint‐driven channel incision on basin hillslopes is captured by measuring the relief, mean slope steepness, and mass movement frequency of tributary basins and comparing these results with the distance from major knickpoints along the Cullasaja River. A conceptual model of area–elevation and slope distributions is presented that may be representative of post‐orogenic landscape evolution in analogous geologic settings. Importantly, the model explains how knickpoint migration and channel–hillslope coupling is an important factor in tectonically‐inactive (i.e. post‐orogenic) orogens for the maintenance of significant relief, steep slopes, and weathering‐limited hillslopes. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
2.
Gregory E. Tucker 《地球表面变化过程与地形》2004,29(2):185-205
Long‐term average rates of channel erosion and sediment transport depend on the frequency–magnitude characteristics of ?ood ?ows that exceed an erosion threshold. Using a Poisson model for rainfall and runoff, analytical solutions are developed for average rates of stream incision and sediment transport in the presence of such a threshold. Solutions are derived and numerically tested for three erosion/transport formulas: the Howard–Kerby shear‐stress incision model, the Bridge–Dominic sediment transport model, and a generic shear‐stress sediment transport model. Results imply that non‐linearity resulting from threshold effects can have a ?rst‐order impact on topography and patterns of dynamic response to tectonic and climate forcing. This non‐linearity becomes signi?cant when fewer than about half of ?ood events are capable of detaching rock or sediment. Predicted morphology and uplift‐gradient scaling is more closely consistent with observations and laboratory experiments than conventional slope‐linear or shear‐linear erosion laws. These results imply that particle detachment thresholds are not details that can be conveniently ignored in long‐term landscape evolution models. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
3.
What controls the architecture of drainage networks is a fundamental question in geomorphology. Recent work has elucidated the mechanisms of drainage network development in steadily uplifting landscapes, but the controls on drainage‐network morphology in transient landscapes are relatively unknown. In this paper we exploit natural experiments in drainage network development in incised Plio‐Quaternary alluvial fan surfaces in order to understand and quantify drainage network development in highly transient landscapes, i.e. initially unincised low‐relief surfaces that experience a pulse of rapid base‐level drop followed by relative base‐level stasis. Parallel drainage networks formed on incised alluvial‐fan surfaces tend to have a drainage spacing that is approximately proportional to the magnitude of the base‐level drop. Numerical experiments suggest that this observed relationship between the magnitude of base‐level drop and mean drainage spacing is the result of feedbacks among the depth of valley incision, mass wasting and nonlinear increases in the rate of colluvial sediment transport with slope gradient on steep valley side slopes that lead to increasingly wide valleys in cases of larger base‐level drop. We identify a threshold magnitude of base‐level drop above which side slopes lengthen sufficiently to promote increases in contributing area and fluvial incision rates that lead to branching and encourage drainage networks to transition from systems of first‐order valleys to systems of higher‐order, branching valleys. The headward growth of these branching tributaries prevents the development of adjacent, ephemeral drainages and promotes a higher mean valley spacing relative to cases in which tributaries do not form. Model results offer additional insights into the response of initially unincised landscapes to rapid base‐level drop and provide a preliminary basis for understanding how varying amounts of base‐level change influence valley network morphology. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
4.
叙述门限自回归模型建模的基本原理及步骤,利用东北地区年最大震级序列数据建立门限自同归模型SETAR(2,4,3),并依此对东北地区未来可能发生的最大地震进行预测.结果表明,该模型预测精度较高,其研究结论对东北地区未来地震活动趋势预测具有参考意义. 相似文献
5.
Landscape response to tectonic and climatic forcing in the foredeep of the southern Apennines,Italy: insights from Quaternary stratigraphy,quantitative geomorphic analysis,and denudation rate proxies 下载免费PDF全文
Dario Gioia Salvatore Gallicchio Massimo Moretti Marcello Schiattarella 《地球表面变化过程与地形》2014,39(6):814-835
We present new data about the morphological and stratigraphic evolution and the rates of fluvial denudation of the Tavoliere di Puglia plain, a low‐relief landscape representing the northernmost sector of the Pliocene‐Pleistocene foredeep of the southern Apennines. The study area is located between the easternmost part of the southern Apennine chain and the Gargano promontory and it is characterized by several orders of terraced fluvial deposits, disconformably overlying lower Pleistocene marine clay and organized in a staircase geometry, which recorded the emersion and the long‐term incision history of this sector since mid‐Pleistocene times. We used the spatial and altimetric distribution of several orders of middle to late Pleistocene fluvial terraces in order to perform paleotopographic reconstruction and GIS‐aided eroded volumes estimates. Then, we estimated denudation rates on the basis of the terraces chronostratigraphy, supported by published OSL and AAR dating. Middle to upper Pleistocene denudation rates estimated by means of such an approach are slightly lower than 0.1 mm yr‐1, in good agreement with short‐term data from direct and indirect evaluation of suspended sediment yield. The analysis of longitudinal river profiles using the stream power erosion model provided additional information on the incision rates of the studied area. Middle to late Quaternary uplift rates (about 0.15 mm yr‐1), calculated on the basis of the elevation above sea level of marine deposits outcropping in the easternmost sector of the study area, are quite similar to the erosion rates average value, thus suggesting a steady‐state fluvial incision. The approach adopted in this work has demonstrated that erosion rates traditionally obtained by quantitative geomorphic analysis and ksn estimations can be successfully integrated to quantify rates of tectonic or geomorphological processes of a landscape approaching steady‐state equilibrium. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
6.
《Limnologica》2021
Lake temperature responses to climate forcing are of interest on account of the important linkages between water temperature and ecosystem processes. This paper describes a new 1-dimensional (1D) numerical model code and its application to investigations of multi-scale linkages between the vertical temperature structure and meteorological forcing. UCLAKE is implemented as highly portable open-source software, based on computationally efficient algorithms, and able to resolve sub-daily (e.g., hourly) dynamics while retaining the efficiency to simulate multi-decadal time scales.A UCLAKE model is calibrated and validated against thermistor profile time series for a small upland lake in North Wales, UK. Some of the challenges in 1D model calibration are explored and a sensitivity analysis reveals a dependence of optimal parameter set values on water column depth and time. An exploratory 52-year hindcast simulation demonstrates the computational efficiency of UCLAKE for multi-decadal studies of trends in lake temperature that vary with depth. A supplementary application of UCLAKE to Windermere, in the English Lake District, demonstrates its performance for larger and deeper lakes. 相似文献
7.
Fine sediment delivery and transfer in lowland catchments: modelling suspended sediment concentrations in response to hydrological forcing 总被引:1,自引:0,他引:1
Fine sediment delivery to and storage in stream channel reaches can disrupt aquatic habitats, impact river hydromorphology, and transfer adsorbed nutrients and pollutants from catchment slopes to the fluvial system. This paper presents a modelling tool for simulating the time‐dependent response of the fine sediment system in catchments, using an integrated approach that incorporates both land phase and in‐stream processes of sediment generation, storage and transfer. The performance of the model is demonstrated by applying it to simulate in‐stream suspended sediment concentrations in two lowland catchments in southern England, the Enborne and the Lambourn, which exhibit contrasting hydrological and sediment responses due to differences in substrate permeability. The sediment model performs well in the Enborne catchment, where direct runoff events are frequent and peak suspended sediment concentrations can exceed 600 mg l?1. The general trends in the in‐stream concentrations in the Lambourn catchment are also reproduced by the model, although the observed concentrations are low (rarely exceeding 50 mg l?1) and the background variability in the concentrations is not fully characterized by the model. Direct runoff events are rare in this highly permeable catchment, resulting in a weak coupling between the sediment delivery system and the catchment hydrology. The generic performance of the model is also assessed using a generalized sensitivity analysis based on the parameter bounds identified in the catchment applications. Results indicate that the hydrological parameters contributing to the sediment response include those controlling (1) the partitioning of runoff between surface and soil zone flows and (2) the fractional loss of direct runoff volume prior to channel delivery. The principal sediment processes controlling model behaviour in the simulations are the transport capacity of direct runoff and the in‐stream generation, storage and release of the fine sediment fraction. The in‐stream processes appear to be important in maintaining the suspended sediment concentrations during low flows in the River Enborne and throughout much of the year in the River Lambourn. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
8.
Total mercury (Hg) was measured in coastal fishes from Southern New England (RI, USA), and Hg exposure was estimated for anglers and family members that consumed these resources. Fish Hg was positively related to total length (n = 2028 across 7 fish species), and interspecies differences were evident among legally harvestable fish. Many recreational anglers and their families experienced excessively high Hg exposure rates, which was attributed to the enriched Hg content of frequently consumed fishes. Specifically, 51.5% of participants in this study had Hg exposures exceeding the US EPA reference dose, including 50.0% of women of childbearing years. These results are noteworthy given that Hg neurotoxicity occurs in adults and children from direct and prenatal low-dose exposure. Moreover, this study underscores the need for geographic-specific research that accounts for small-scale spatial variations in fish Hg and dietary habits of at-risk human populations. 相似文献
9.
佳木斯地震台DSQ水管倾斜仪对日本及日本海域地震的前兆反映 总被引:1,自引:0,他引:1
大地震在主破裂前往往行成地壳变形,高应力作用下进入峰值后的变形阶段,常有大量介质破裂及裂隙间的粘滑产生,反映到地倾斜记录仪上,表现为固体潮形变异常。近年来不少研究者发现,远场前兆往往出现在对应力、应变变化反应灵敏的特殊构造部位。佳木斯地震台可能处于这种特殊的构造部位,其前兆异常对1000km以外的日本及日本海域的地震有明显短临前兆反映。 相似文献
10.
南海位于太平洋板块、印澳板块和欧亚板块交汇处,自晚中生代以来历经张裂作用、海底扩张以及印藏碰撞、菲律宾海板块西向运动等构造事件的叠加改造,不仅形成了复杂多样的构造格局,而且堆积了厚薄不均的沉积层.为了考察沉积层密度改正对利用重力资料分析南海不同尺度构造特征的影响,本文利用南海各区域不同深度沉积层的地震波速度及钻孔密度等数据,建立了沉积层与沉积基底密度差随深度变化的二次函数关系式,并基于该关系式,计算了南海沉积层相对基底密度低而产生的重力异常值.结果显示,南海沉积层的重力异常值在海盆区介于-40~-60 mGal,而在堆积巨厚沉积物的莺歌海盆地可达到-135 mGal;相对于空间重力异常、布格重力异常,经沉积层重力异常改正后的地壳布格重力异常更能突出深部不同尺度的密度结构和莫霍面的起伏特征,其总水平导数模更突显了南海西北部红河断裂带的海上延伸;利用谱分析技术估算岩石圈强度时,经沉积层重力异常改正的地壳布格重力异常数据获得的岩石圈有效弹性厚度值更为符合地质实际,特别是在长条形的巨厚沉积区如莺歌海盆地和马来盆地.分析表明,重力异常的沉积层密度改正对揭示南海构造特征具有重要的意义.
相似文献11.
Piping is a widespread phenomenon in the world and can significantly contribute to the downward movement of water, sediments, and nutrients. This study examines the hydrological functioning of soil pipes in a loess‐derived soil under pasture using hydrometric and hydrochemical analyses. It aims to investigate the relation between pipeflow, rainfall, and groundwater table fluctuations and to determine the dominant source of the water flowing through the soil pipes using both hydrometric and hydrochemical approaches. A rapid pipeflow response is observed when a threshold rainfall depth is exceeded. This threshold depth is larger in the summer (9 mm) compared with that in the winter (4 mm) which is related to the prestorm wetness of the soil. Hydrochemical analyses indicate that both groundwater and rainfall contribute to the pipeflow with a dominance of groundwater. This study shows that pipeflow can be an important hydrological pathway in loess‐derived soils with a clear seasonal pattern in pipeflow responses to rainfall events. 相似文献
12.
In this study, we document glacial deposits and reconstruct the glacial history in the Karagöl valley system in the eastern Uludağ in northwestern Turkey based on 42 cosmogenic 10Be exposure ages from boulders and bedrock. Our results suggest the Last Glacial Maximum (LGM) advance prior to 20.4 ± 1.2 ka and at least three re-advances until 18.6 ± 1.2 ka during the global LGM within Marine Isotope Stage-2. In addition, two older advances of unknown age are geomorphologically well constrained, but not dated due to the absence of suitable boulders. Glaciers advanced again two times during the Lateglacial. The older is exposure dated to not later than 15.9 ± 1.1 ka and the younger is attributed to the Younger Dryas (YD) based on field evidence. The timing of the glaciations in the Karagöl valley correlates well with documented archives in the Anatolian and Mediterranean mountains and the Alps. These glacier fluctuations may be explained by the change in the atmospheric circulation pattern during the different phases of North Atlantic Oscillation (NAO) winter indices. 相似文献
13.
Nitrate subsurface transport and losses in response to its initial distributions in sloped soils: An experimental and modelling study 总被引:1,自引:0,他引:1
Meixiang Xie Jirka imnek Zhanyu Zhang Pingcang Zhang Jinxin Xu Qingming Lin 《水文研究》2019,33(26):3282-3296
Transport and losses of nitrate from sloped soils are closely linked to nitrogen fertilizer management. Previous studies have always focused on different types of fertilizer applications and rarely analysed various initial nitrate distributions as a result of nitrogen fertilizer applications. Under certain conditions, both subsurface lateral saturated flow and vertical leaching dominate nitrate losses. Soil tank experiments and HYDRUS‐2D modelling were used to better understand the subsurface nitrate transport and losses through lateral saturated flow and vertical leaching under various initial nitrate distributions. Low (L: 180 mg L?1), normal (N: 350 mg L?1), and high (H: 500 mg L?1) nitrate concentrations were used in five different distributions (NNNN, NLLN, LHHL, LNLN, and HNHN) along the slope of the tank. The first two treatments (NNNN and NLLN) were analysed both experimentally and numerically. Experiments were conducted under 12 rainfall events at intervals of 3 days. The HYDRUS‐2D model was calibrated and validated against the experimental data and demonstrated good model performance. The other three treatments (LHHL, LNLN, and HNHN) were investigated using the calibrated model. Nitrate concentrations in purple sloped soils declined exponentially with time under intermittent rainfalls, predominantly in the upper soil layers. Non‐uniform initial nitrate distributions contributed to larger differences between four locations along the slope in deeper soil layers. The non‐uniform nitrate distribution either enhanced or reduced decreases in nitrate concentrations in areas with higher or lower initial nitrate concentrations, respectively. Higher nitrate concentrations at the slope foot and along the slope were reduced mainly by lateral flow and vertical leaching, respectively. Increasing nitrogen application rates increased subsurface nitrate losses. Mean subsurface lateral nitrate fluxes were twice as large as mean vertical leaching nitrate fluxes. However, due to longer leaching durations, total nitrate losses due to vertical leaching were comparable with those due to lateral flow, which indicated comparable environmental risks to surface waters and groundwater. 相似文献
14.
Asymmetrical river valleys in response to tectonic tilting and strike‐slip faulting,northeast margin of Tibetan Plateau 下载免费PDF全文
The northeast margin of the Tibetan Plateau, a particularly important area to understand the mechanism of plateau formation, is characterized by large transpressional arcuate faults. There is debate on the amount of Quaternary sinistral displacement on the major Haiyuan Fault. Previously unrecognized systemic asymmetrical valleys have developed between the Haiyuan and Xiangshan faults. Southeast tilting and sinistral displacement on the northeast side of the Haiyuan Fault resulted in southeast migration of large rivers and asymmetrical widening of their valleys, leaving a systematic distribution of tilted strath terraces along their northwest sides. Where asymmetrical widening created by tilting kept pace with sinistral displacement, rivers have not been deflected, and the increase in valley width downstream from the fault should equate to total lateral displacement since river formation (e.g. Yuan River, a 7 km asymmetrical valley with a c. 2.2 Ma paleomagnetic age). Where river deflection and asymmetrical valley growth are coeval, valley width is less than total horizontal displacement (e.g. Hebao River, a c. 2.1 km asymmetrical valley with c. 2 km deflection). All rivers north of the Haiyuan Fault converge to cut across the Xiangshan Mountains as a gorge. Northeast thrusting of the upthrown side of the Xiangshan Fault has resulted in degradation and related strath terrace formation as the valleys asymmetrically widened. A probable earthquake‐induced landslide caused by movement on the Xiangshan Fault in latest Pleistocene blocked the gorge causing aggradation along all rivers and their tributaries. Deposition terraces were formed after the landslide dam was breached. Together with previous research on the Xiangshan Fault, it is concluded that there has been c. 7 km of Quaternary sinistral displacement on the Haiyuan and Xiangshan faults along the northeast margin of the Tibetan Plateau since the formation of rivers that intersect them. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
15.
Stéphane Cordier Tobias Lauer Dominique Harmand Manfred Frechen Gaël Brkojewitch 《地球表面变化过程与地形》2012,37(11):1167-1175
The aim of this paper is to study a low energy fluvial system response to natural and anthropogenic forcing during the last two millennia. In contrast with longer timescales (Holocene to Quaternary), historical sedimentary archives are sparse in such systems which are typically characterized by the predominance of erosion compared with aggradation. We studied three main sections in the Moselle valley (northeastern France) by a multi‐proxy approach combining morphology, sedimentology, archaeological evidence, historical archives, and dating. The geochronological framework was based on Optically Stimulated Luminescence (OSL) and validated by independent age control. The exposed sediments were allocated to different historical periods from Roman period to present. The first results show that, in contrast with many other fluvial systems, the Moselle and its tributaries did not experience major changes during historical periods. Climatic changes such as the Little Ice Age had a minor influence on floodplain aggradation (e.g. in grain size or sedimentation rates) in the Moselle valley and were only able to affect the fluvial style. This provides evidence that the reworking of sediments is the main fluvial process at short timescales in the valley floors of the Moselle catchment. In contrast, anthropogenic forcing seems important not only during recent centuries but also since Roman times. This is suggested by the case‐study of the Metz‐Mazelle section where significant headward erosion and sedimentation were recognized, and may be related to human occupation. The results therefore point to a need for increasing geoarchaeological and geochronological research in the Moselle catchment and similar low energy fluvial systems. Such research is actually essential to improve the knowledge of the fluvial response to environmental changes during the historical periods and to recognize the respective influence of natural variability and human forcing. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
16.
针对洱海富营养化加剧以及蓝藻水华问题,应用Aquatox模型对洱海水环境进行模拟,确立了一套适用于洱海生态系统的特征参数,并将模拟结果与实测数据进行验证.验证结果表明模型较好地模拟了常规水质和藻类演替变化,与实际水环境状况大体吻合.以此为基础选取TN、TP和Chl.a指标对洱海营养物与富营养化状态的投入响应关系进行模拟研究.结果表明,洱海对于外界营养物输入比较敏感,对氮磷输入增减反应明显;外界氮磷的削减都对Chl.a含量有降低作用,TN的作用更加明显;氮磷的增加对于Chl.a含量都略有提升;同时调控氮磷具有协同作用,对Chl.a含量影响效果最明显;当水体TN浓度在0.34 mg/L的阈值以下水平,即洱海外源TN输入量削减比例达到43.3%以上时,藻类优势种由蓝藻变为硅藻,水体Chl.a含量大幅降低,有效抑制富营养化进程. 相似文献
17.
Depositional architecture of the tertiary tectonic sequences and their response to foreland tectonism in the Kuqa depression, the Tarim Basin 总被引:6,自引:0,他引:6
The Tertiary Kuqa depression is a foreland basin generated by flexural subsidence resulting from the southward thrusting of
the southern Tianshan Mountains. Tertiary basin fills of the depression can be classified into four tectonic sequences bounded
by gentle angular unconformities. The sequences are composed of two parts, the lower transgressive and the upper progradational
successions, which are separated by a regional maximum transgressive surface. The development of these sequences is attributed
to the foreland tectonic process from flexural subsidence caused by thrust loading to rebounded uplift due to the erosion
and stress release. The generation of the angular unconformities defining the tectonic sequences has been interpreted as the
result of the rebounded uplift and the following thrusting. It has been found that there is a significant difference in depositional
pattern between the northeastern and the northwestern margins. The relatively strong thrusting and mountain building occurring
along the northwestern margin resulted in the development of thick-bedded alluvial fan and angular unconformities. The northeastern
margin, in contract, lacks thick alluvial fan accumulation due to weak thrusting. This difference is likely related to the
pre-existing east-west partition of the basin basement. 相似文献
18.
Forest harvesting often increases catchment quickflow (QF, water delivered rapidly to the stream channel), a metric of high‐flow events controlling a catchment's solute and sediment export. Nevertheless, our understanding of QF responses to various silvicultural strategies (e.g., clearcutting, selection harvest, and shelterwood harvest) is incomplete. We present a 31‐year examination of QF delivery from treatment (clearcut, selection harvest, and shelterwood harvest) and control catchments in a deciduous forest landscape in central Ontario, Canada. Growing season root‐zone storage capacity was estimated using a water balance approach to evaluate temporal changes in QF response to precipitation (P) for pretreatment and posttreatment periods. Threshold relationships between QF and P were assessed for control and treatment catchments for pretreatment and posttreatment periods using piecewise regression. Root‐zone storage capacity demarcated shifts in the hydrologic regime arising from forest harvesting and subsequent regeneration. This was particularly pronounced for clearcutting where postharvest decline in root‐zone storage capacity was followed by a rise to preharvest values. Similar pretreatment threshold relationships between QF and P, and near‐identical P thresholds for producing significant QF, reflected similar soil and overburden depths in the catchments. Harvesting effects were indicated by increases in QF/P ratios for relative small P and the number of P events that generated QF, thus changing treatment QF vs. P threshold relationships. Prior to harvesting there was no significant increase in QF with P below a threshold P of 35–45 mm; however, there was a significant QF vs. P relationship below this threshold for all treatments postharvest. Clearcutting increased the number of QF events for the entire postharvest period and the first 9‐year postharvest compared to the other treatments; nevertheless, evidence for intertreatment differences in total QF depth delivered from the catchments during the growing season was inconclusive. Our work suggests that changes in threshold relationships between QF and P, coupled with knowledge of the physical processes underlying them, are useful when evaluating hydrologic responses to forest harvesting. 相似文献
19.
Ecological response to the climate change on the northern slope of the Tianshan Mountains in Xinjiang 总被引:5,自引:2,他引:5
CHEN Xi LUO Geping XIA Jun ZHOU Kefa LOU Shaoping & YE Minquan . Xinjiang Institute of Ecology Geography Chinese Academy of Sciences Urumqi China . Institute of Geographical Resources Sciences Chinese Academy of Sciences Beijing China . Urumqi Meteorological-satellite Land Station Urumqi China . Seismological Bureau of Xinjiang Uygur Autonomous Region Urümqi China Correspondence should be addressed to Chen Xi 《中国科学D辑(英文版)》2005,48(6):765-777
The relationship between the terrestrial ecosys-tems and the climate change is one of the importantfields in the study on global change,and the rela-tionship between vegetation and climate change is oneof the main research focuses[1―3].On the one hand,the high-amplitude global warming results in the increase of evaporation from the oceans and the waters on land and of precipitation in most parts of the oceans and theterrestrial regions,thus,the modern glaciers are seri-ously melted,the runoff … 相似文献
20.
Riparian vegetation influences hydraulic and morphodynamic river processes and may contribute to sediment stabilization. In turn, vegetation recruitment and growth on non‐cohesive fluvial deposits strongly depends on river hydrology and the ability of roots to develop and to anchor efficiently to resist flow erosion. In this paper, we examine the above‐ground and the below‐ground seasonal growth dynamics of Salix cuttings in relation to local river hydrodynamics and morphodynamics, on the basis of a detailed and unique data set. During the two season‐long campaigns in 2009 and 2010, 1188 and 1152 cuttings, respectively, were organized in square plots and planted on a gravel island of the restored reach of the River Thur (Neunforn, Thurgau, Switzerland). Each year, all cuttings were monitored almost regularly from the beginning until the end of the growing season (April–September). Root development statistics were also obtained from high‐resolution scanner analysis of carefully uprooted samples from selected plots. Our results show how cutting survival and the nature and strength of correlations between island topography and cutting growth statistics depend on river hydrology. An empirical functional form that links root development based on the measured main stem length is then proposed for predictive purposes. Cutting mortality following flood events is shown to depend nonlinearly on both erosion and deposition processes, whereas it appears more linearly related to the magnitude of the bed shear stress distribution generated by the maximum seasonal flood. This analysis allows an identification of an important threshold for plant survival within different erosion and deposition regimes, which explains the spatial and temporal distribution of the surviving cuttings within the plots. These results have practical implications, for instance, for evaluating, planning and managing the use of riparian trees in restoration projects. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献