首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
In the present study, chemical oxygen demand (COD) removal by packed‐columns of activated carbon (AC) derived from two different materials (coal activated carbon, CAC and wood activated carbon, WAC) is reported as part of an on‐site wastewater treatment system for handling small volumes of wastewater generated at wood‐floor industries for which there are no proper on‐site treatment options available in the market. The performance of the sorbents, the effect of bed depth (0.19 and 0.57 m) and volumetric load (0.10 and 0.24 m h?1) on the breakthrough curve of sorption systems were studied. The results indicated the feasibility of using both ACs to treat these wastewaters. At the bed depth (0.57 m), volumetric load (0.24 m h?1), and 30% breakthrough, CAC and WAC showed treatment capacity of 40.5 L kg?1 in 250 h and 23.8 L kg?1 in 63 h, respectively. This indicated that CAC requires longer retention times to reach a performance similar to WAC. The experimental data was fit into the bed depth‐service time model showing that under the same conditions, CAC had higher maximum sorption capacity (N0) than WAC. Moreover, thermal regeneration at 500°C temperature could be a cost‐effective procedure since the reuse of spent AC through such regeneration process for further treatment could still achieve 90% of the initial sorption capacity, reducing then costs for the use of new sorbents and also the need for waste disposal.  相似文献   

2.
In this study, untreated and treated wood fly ash (WA) was used as a low‐cost sorbent in batch sorption tests to investigate the removal of organic pollutants from a real wastewater generated by cleaning/washing of machinery in a wood‐laminate floor industry in Sweden. The experiments focused on the effect of the WA dosage and particle size on the removal efficiency for organic compounds. With a WA dosage of 160 g L?1 and a particle size less than 1 mm, the reductions of chemical oxygen demand (COD), biologic oxygen demand, and total organic carbon were 37 ± 0.4, 24 ± 0.4, and 30 ± 0.3%, respectively. Pre‐treatment of WA with hot water improved the COD removal efficiency by absorption from 37 ± 0.4 to 42 ± 1.6% when the same dosage (160 g L?1) was applied. Sorption isotherm and sorption kinetics for COD using untreated WA can be explained by Freundlich isotherm and pseudo‐second‐order kinetic models. Intra‐particle diffusion model indicates that pore diffusion is not the rate‐limiting step for COD removal. Based on the experimental data, WA could be used as an alternative low‐cost sorption media/filter for removal of organic compounds from real industrial wastewater.  相似文献   

3.
4.
Due to the unique chemical properties and therefore wide range of applications, significant amounts of reactive dyes often end up in waste waters and this issue raises the need for more efficient treatment technologies. This work investigates the ability of magnetite nanoparticles functionalized with imidazolium based ionic liquid (IL) as an efficient sorbent for the removal of the Reactive black 5 from wastewater. Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, thermo‐gravimetric analysis, and zeta potential measurement were used to characterize the synthesized nanosorbent. The results showed that under optimal conditions, the dye removal efficiency of the grafted IL is 98.5% after a single run. Regeneration of the used sorbent could be possible and the modified magnetic nanoparticles exhibited good reusability. The isothermal data of RB5 sorption conformed well to the Langmuir model and the maximum sorption capacity of IL@Fe3O4 for RB5 was 161.29 mg g?1. Thermodynamic study indicated that the adsorption is endothermic and spontaneous. The use of such a system can provide fast and efficient removal of the reactive dyes from wastewater by using an external magnetic field.  相似文献   

5.
6.
Soil organic carbon (SOC) is an important component of the global carbon cycle yet is rarely quantified adequately in terms of its spatial variability resulting from losses of SOC due to erosion by water. Furthermore, in drylands, little is known about the effect of widespread vegetation change on changes in SOC stores and the potential for water erosion to redistribute SOC around the landscape especially during high‐magnitude run‐off events (flash floods). This study assesses the change in SOC stores across a shrub‐encroachment gradient in the Chihuahuan Desert of the south‐west USA. A robust estimate of SOC storage in surface soils is presented, indicating that more SOC is stored beneath vegetation than in bare soil areas. In addition, the change in SOC storage over a shrub‐encroachment gradient is shown to be nonlinear and highly variable within each vegetation type. Over the gradient of vegetation change, the heterogeneity of SOC increases, and newer carbon from C3 plants becomes dominant. This increase in the heterogeneity of SOC is related to an increase in water erosion and SOC loss from inter‐shrub areas, which is self‐reinforcing. Shrub‐dominated drylands lose more than three times as much SOC as their grass counterparts. The implications of this study are twofold: (1) quantifying the effects of vegetation change on carbon loss via water erosion and the highly variable effects of land degradation on soil carbon stocks is critical. (2) If landscape‐scale understanding of carbon loss by water erosion in drylands is required, studies must characterize the heterogeneity of ecosystem structure and its effects on ecosystem function across ecotones subject to vegetation change. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This experimental research deals with using steel scrap as a heterogeneous catalyst. This catalyzes the oxidation reaction of real textile dye wastewater based on a modified solar photo‐Fenton oxidation process. Morphologic analysis and mapping of the elementary composition of the steel scrap have been carried out by scanning electron microscopy. The effects of concentration of H2O2, the pH of the solution and the catalyst loading on the degradation of textile dye wastewater are elucidated. Kinetic studies have been performed for the decolorization of wastewater under optimum conditions. It could be concluded that the steel scrap is a potential substitute for ferrous salts as a catalyst for the solar photo‐Fenton reaction.  相似文献   

8.
9.
Coconut coir pith, a lignocellulosic polymer, is an unwanted by‐product of the coir fiber industry. The pith was used as a biosorbent for the removal of Molybdenum(VI) after modification with a cationic surfactant, hexadecyltrimethylammonium bromide. The optimum pH for maximum adsorption of Mo(VI) was found to be 3.0. Langmuir, Freundlich and Dubinin Radushkevich isotherms were used to model the adsorption equilibrium data and the system was seen to follow all three isotherms. The Langmuir adsorption capacity of the biosorbent was found to be 57.5 mg g–1. Kinetic studies showed that the adsorption generally obeyed a second‐order kinetic model. Desorption studies showed that the recovery of Mo(VI) from the spent adsorbent was feasible. The effect of foreign anions on the adsorption of Mo(VI) was also examined.  相似文献   

10.
In the present study, a novel adsorbent, poly (2‐hydroxyethylmethacrylate‐hydroxyapatite) [P(HEMA‐Hap)], was prepared and characterized. The synthesis was achieved by means of free‐radical polymerization and a number of structural characterization methods, including FT‐IR, XRD, TGA, SEM, BET‐porosity, and swelling tests. Pb2+ adsorption was performed using a series of pH, time, and temperature ranges. The reusability of the composite was also tested. The results obtained indicated that the novel adsorbent is able to bind Pb2+ ions with strong chemical affinity. The adsorption results were fitted to the classic Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) sorption models. Thermodynamic parameters obtained demonstrated that the sorption process was spontaneous (ΔG < 0), endothermic (ΔH > 0), as expected. The process was also consistent with the pseudo‐second‐order model, and chemical adsorption was determined to be the rate‐controlling step. It was also shown that the composite could be used for five consecutive adsorption processes.  相似文献   

11.
Quantifying the relative proportions of soil losses due to interrill and rill erosion processes during erosion events is an important factor in predicting total soil losses and sediment transport and deposition. Beryllium‐7 (7Be) can provide a convenient way to trace sediment movement over short timescales providing information that can potentially be applied to longer‐term, larger‐scale erosion processes. We used simulated rainstorms to generate soil erosion from two experimental plots (5 m × 4 m; 25° slope) containing a bare, hand‐cultivated loessal soil, and measured 7Be activities to identify the erosion processes contributing to eroded material movement and/or deposition in a flat area at the foot of the slope. Based on the mass balance of 7Be detected in the eroded soil source and in the sediments, the proportions of material from interrill and rill erosion processes were estimated in the total soil losses, the deposited sediments in the flat area, and in the suspended sediments discharged from the plots. The proportion of interrill eroded material in the discharged sediment decreased over time as that of rill eroded material increased. The amount of deposited material was greatly affected by overland flow rates. The estimated amounts of rill eroded material calculated using 7Be activities were in good agreement with those based on physical measurements of total plot rill volumes. Although time lags of 45 and 11 minutes existed between detection of sediment being removed by rill erosion, based on 7Be activities, and observed rill initiation times, our results suggest that the use of 7Be tracer has the potential to accurately quantify the processes of erosion from bare, loessal cultivated slopes and of deposition in flatter, downslope areas that occur in single rainfall events. Such measurements could be applied to estimate longer‐term erosion occurring over larger areas possessing similar landforms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号