首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current knowledge of the basic principles underlying the design of Fe0 beds is weak. The volumetric expansive nature of iron corrosion was identified as the major factor determining the sustainability of Fe0 beds. This work attempts to systematically verify developed concepts. Pumice and sand were admixed to 200 g of Fe0 in column studies (50:50 volumetric proportion). Reference systems containing 100% of each material have been also investigated. The mean grain size of the used materials (in mm) were 0.28 (sand), 0.30 (pumice), and 0.50 (Fe0). The five studied systems were characterized (i) by the time dependent evolution of their hydraulic conductivity (permeability) and (ii) for their efficiency for aqueous removal of CuII, NiII, and ZnII (about 0.3 mM of each). Results showed unequivocally that (i) quantitative contaminant removal was coupled to the presence of Fe0, (ii) additive admixture lengthened the service life of Fe0 beds, and (iii) pumice was the best admixing agent for sustaining permeability while the Fe0/sand column was the most efficient for contaminant removal. The evolution of the permeability was well‐fitted by the approach that the inflowing solution contained dissolved O2. The achieved results are regarded as starting point for a systematic research to optimize/support Fe0 filter design.  相似文献   

2.
Over the past 30 years the literature has burgeoned with in situ approaches for groundwater remediation. Of the methods currently available, the use of metallic iron (Fe0) in permeable reactive barrier (PRB) systems is one of the most commonly applied. Despite such interest, an increasing amount of experimental and field observations have reported inconsistent Fe0 barrier operation compared to contemporary theory. In the current work, a critical review of the physical chemistry of aqueous Fe0 corrosion in porous media is presented. Subsequent implications for the design of Fe0 filtration systems are modeled. The results suggest that: (i) for the pH range of natural waters (>4.5), the high volumetric expansion of Fe0 during oxidation and precipitation dictates that Fe0 should be mixed with a non‐expansive material; (ii) naturally occurring solute precipitates have a negligible impact on permeability loss compared to Fe0 expansive corrosion; and (iii) the proliferation of H2 metabolizing bacteria may contribute to alleviate permeability loss. As a consequence, it is suggested that more emphasis must be placed on future work with regard to considering the Fe0 PRB system as a physical (size‐exclusion) water filter device.  相似文献   

3.
The use of metallic iron filters (Fe0 filters) has been discussed as a promising low‐cost option for safe drinking water production at household level. Filter clogging due to the volumetric expansive nature of iron corrosion has been identified as the major problem of Fe0 filters. Mixing Fe0 and sand (yielding Fe0/sand filters) has been proposed as a tool to extent filter service life. However, no systematic discussion rationalizing Fe0/sand mixtures is yet available. This communication theoretically discussed suitable Fe0/sand proportions for efficient filters. Results suggested that Fe0/sand filters should not contain more that 50 vol% Fe0 (25 wt% when Fe0 is mixed with quartz). The actual Fe0 percentage in a filter will depend on its intrinsic reactivity.  相似文献   

4.
Epidote and/or chlorite are common minerals in the roots of the fossil geothermal system of Saint Martin (Lesser Antilles). They appear in four distinct assemblages: (1) epidote+actinolite+quartz±magnetite near the contact between the tuffaceous host rocks (andesitic modal composition) and the quartz-diorite intrusion of Philipsburg; (2) epidote+chlorite+quartz in host rocks as far as a lateral distance of about 3 km from the intrusion; (3) epidote+chlorite+haematite+quartz locally in iron and manganese rich host rocks; (4) chlorite±phengite±magnetite appearing as late sealing of porosity in fracture-controlled quartz veins with strongly phengitized wall rocks. All these assemblages constitute a large alteration grading from propylitic alteration to thermal metamorphism (actinolite-bearing assemblage).Detailed microprobe studies of epidotes replacing plagioclases and of chlorites replacing glass and mafic minerals reveal notable compositional variations which have been studied with respect to temperature paleogradients (estimated from fluid inclusions study), distance from the thermal source and fo2 conditions. The mean Ps+Pm [100 × (Fe3+ + Mn3+)/(Al3+ + Fe3+ + Mn3+)] of epidotes vary from 21 in the presence of magnetite near the intrusion to 32 in haematite-bearing iron and/or manganese volcanic and sedimentary formations. The intra-grain chemical scattering of epidotes increases with increasing distance of the pluton and decreasing temperature of crystallization. All the chlorites coexisting with epidote are Mg-rich (XFe<0.50). Their main compositional variation consists in a significant enrichment in magnesium (toward the chlinochlore end member) in presence of haematite. The intra-grain chemical scattering of chlorite (expressed by the aluminium content in the structural formula) increases with increasing distance of the pluton and decreasing temperature of crystallization. Chlorites associated with phengite and magnetite in vein alteration are Fe- and Al-rich. The Mössbauer spectra indicate that the Fe3+ content of chlorite varies between 25 and 32% of total Fe in the presence of epidote; the higher content being attained in the presence of haematite. The Fe3+ content of chlorite associated with magnetite and phengite is 16% of total Fe. The compositional variations of epidote and/or chlorite of the four distinct assemblages observed at Saint Martin result from the combined effects of fO2, temperature, and time of heating. The effect of fO2 is particularly perceptible in the control of the epidote Ps content, of the chlorite XFe ratio of Fe3+ distribution between coexisting epidotes and chlorites. Despite the fact that it may be partially canceled out by the effect of fO2, the variation of compositional ranges of both epidotes and chlorites, which increases toward the outer part of the geothermal system in response to the combination of decreasing temperatures and decreasing time of heating of the rocks, suggests that chemical equilibrium has not been attained in the assemblages bearing epidotes and chlorites.  相似文献   

5.
The formation of hematite and goethite concretions in different sedimentary rocks including sandstones is an important diagenetic process in the geologic history of the Earth. Its interpretation can also contribute to understanding the diagenetic history of Martian iron hydroxide concretions. A case study of iron-rich concretions from Estonian Middle Devonian sandstones exposed in ancient river valleys in southeastern Estonia was carried out based on the results of mineralogical, petrographical, geochemical, petrophysical and magnetic analyses. It was found that the high Fe2O3(total) content (25.0–39.5%), high magnetic susceptibility, bulk and grain density, very low porosity, corrosion and fracturing of the quartz grains of the platy iron concretions are in contrast with properties of the Devonian host sandstones. However the ferrous iron content (measured as FeO) of iron-rich concretions was as low as in the other Devonian rocks, suggesting an oxidizing environment and arid climate during the cementation by iron-hydroxides. The fracturing of quartz grains cemented by iron hydroxides could take place at near-surface conditions including vadose and phreatic zones in arid climate with high evaporation rates. Such climatic conditions have been reported for the Baltic region during Devonian, Upper Permian and Triassic times. We have found that goethite is prevalent in the cement, replacing clay and carbonate minerals. We assume that this iron-rich cement is originated from the mobilization of iron in host sandstones by groundwater, associated with tectonic activity at the end of the Middle Devonian, evidenced by fracturing in Devonian outcrops and caves. Although this mobilization could occur under reducing conditions, precipitation of goethite and hematite for the cementation could take place in oxidizing environment along bedding planes close to the surface during short sedimentation breaks. Another possible time for the formation of iron concretions could be Permian, under the condition of both arid climate and tectonic activity.  相似文献   

6.
Permeability, storage capacity and volumetric strain were measured in situ during deformation of hot-pressed calcite aggregates containing 10, 20, and 30 wt% quartz. Both isostatic and conventional triaxial loading conditions were used. The tests were performed at confining pressure of 300 MPa, pore pressures between 50 to 290 MPa, temperatures from 673 to 873 K and strain rates of 3 × 10−5 s−1. Argon gas was used as the pore fluid. The initial porosities of the starting samples varied from 5% to 9%, with higher porosity correlated to higher quartz content. Microstructural observations after the experiment indicate two kinds of pores are present: 1) Angular, crack-like pores along boundaries between quartz grains or between quartz and calcite grains and 2) equant and tubular voids within the calcite matrix. Under isostatic loading conditions, the compaction rate covaries with porosity and increases with increasing effective pressure. Most of the permeability reduction induced during compaction is irreversible and probably owes to plastic processes. As has been found in previous studies on hot-pressed calcite aggregates, permeability, k, is nonlinearly related to porosity, ϕ. Over small changes in porosity, the two parameters are approximately related as kϕn. The exponent n strongly increases as porosity decreases to a finite value (from about 4 to 6% depending on quartz content), suggesting a porosity percolation threshold. When subjected to triaxial deformation, the calcite-quartz aggregates exhibit shear-enhanced compaction, but permeability does not decrease as rapidly as it does under isostatic conditions. During triaxial compaction the exponent n only varies between 2 and 3. Non-isostatic deformation seems to reduce the percolation threshold, and, in fact, enhances the permeability relative to that at the same porosity during isostatic compaction. Our data provide constraints on the governing parameters of the compaction theory which describes fluid flow through a viscous matrix, and may have important implications for expulsion of sedimentary fluids, for fluid flow during deformation and metamorphism, and melt extraction from partially molten rocks.  相似文献   

7.
Metallic iron (Fe0) is often reported as a reducing agent for environmental remediation. There is still controversy as to whether Fe0 plays any significant direct role in the process of contaminant reductive transformation. The view that Fe0 is mostly a generator of reducing agents (e.g. H, H2 and FeII) and Fe oxyhydroxides has been either severely refuted or just tolerated. The tolerance is based on the simplification that, without Fe0, no secondary reducing agents could be available. Accordingly, Fe0 serves as the original source of electron donors (including H, H2 and FeII). The objective of this communication is to refute the named simplification and establish that quantitative reduction results from secondary reducing agents. For this purpose, reports on aqueous contaminant removal by Al0, Fe0 and Zn0 are comparatively discussed. Results indicated that reduction may be quantitative in aqueous systems containing Fe0 and Zn0 while no significant reduction is observed in Al0/H2O systems. Given that Al0 is a stronger reducing agent than Fe0 and Zn0, it is concluded that contaminant reduction in Fe0/H2O systems results from synergic interactions between H/H2 and FeII within porous Fe oxyhydroxides. This conclusion corroborates the operating mode of Fe0 bimetallics as H/H2 producing systems for indirect contaminant reduction.  相似文献   

8.
A three-dimensional two-phase flow model is coupled to a non-linear reactive transport model to study the efficacy of potassium permanganate treatment on dense, non-aqueous phase liquid (DNAPL) source removal in porous media. A linear relationship between the soil permeability (k) and concentration of manganese dioxide precipitate ([MnO2(s)]), k = ko + Srind [MnO2(s)], is utilized to simulate nodal permeability reductions due to precipitate formation. Using published experimental column studies, an Srind = −5.5 × 10−16 m2 L/mg was determined for trichloroethylene (TCE) DNAPL. This Srind was then applied to treatment simulations on three-dimensional TCE DNAPL source zones comprising either DNAPL at residual saturations, or DNAPL at pooled saturations.  相似文献   

9.
High-temperature experiments on ferromagnesian compositions have been hampered by the rapid absorption of up to 95% of the original iron by platinum and 40% by silver-palladium capsules. Molybdenum or iron capsule materials can decrease or alleviate iron loss, but restrict oxygen fugacities to values near the iron-wustite buffer. Because Co2+ is stable at fO2 =HM and because the solubility of Co in platinum in this range of fO2 is ~0.05% at temperatures to 1350°C, its use as an analogue for Fe2+ is possible. In addition, experiments simulating various Fe2+ ratios can be easily performed by choosing appropriate Co2+/Fe3+ ratios. The cobalt phases produced possess brilliant and distinctive colors which are valuable aids in optical identification of minute phases. The cobalt analogue hypothesis was tested with atmospheric pressure experiments in air on the cobalt analogue of the 1921 Kilauea basalt at three simulated Fe2+/Fe3+ ratios. The results were compared with those of R.E.T. Hill (1969) for the natural 1921 basalt. The phase relations were the same, with the cobalt system stability fields systematically shifted by about +50°C. Microprobe analysis of olivines and the coexisting glasses indicate that the distribution of Co2+ between olivine and melt is independent of temperature and liquid composition. Although the analogue liquid composition differs from the equilibrium composition of the natural system, it may be corrected be employing distribution coefficients (KD = 0.61 for the Co system; KD = 0.33 for the Fe system) to closely approximate what the natural system would yield if iron loss did not occur.  相似文献   

10.
Distinguishing Iron-Reducing from Sulfate-Reducing Conditions   总被引:2,自引:0,他引:2  
Ground water systems dominated by iron‐ or sulfate‐reducing conditions may be distinguished by observing concentrations of dissolved iron (Fe2+) and sulfide (sum of H2S, HS?, and S= species and denoted here as “H2S”). This approach is based on the observation that concentrations of Fe2+ and H2S in ground water systems tend to be inversely related according to a hyperbolic function. That is, when Fe2+ concentrations are high, H2S concentrations tend to be low and vice versa. This relation partly reflects the rapid reaction kinetics of Fe2+ with H2S to produce relatively insoluble ferrous sulfides (FeS). This relation also reflects competition for organic substrates between the iron‐ and the sulfate‐reducing microorganisms that catalyze the production of Fe2+ and H2S. These solubility and microbial constraints operate in tandem, resulting in the observed hyperbolic relation between Fe2+ and H2S concentrations. Concentrations of redox indicators, including dissolved hydrogen (H2) measured in a shallow aquifer in Hanahan, South Carolina, suggest that if the Fe2+/H2S mass ratio (units of mg/L) exceeded 10, the screened interval being tapped was consistently iron reducing (H2~0.2 to 0.8 nM). Conversely, if the Fe2+/H2S ratio was less than 0.30, consistent sulfate‐reducing (H2~1 to 5 nM) conditions were observed over time. Concomitantly high Fe2+ and H2S concentrations were associated with H2 concentrations that varied between 0.2 and 5.0 nM over time, suggesting mixing of water from adjacent iron‐ and sulfate‐reducing zones or concomitant iron and sulfate reduction under nonelectron donor–limited conditions. These observations suggest that Fe2+/H2S mass ratios may provide useful information concerning the occurrence and distribution of iron and sulfate reduction in ground water systems.  相似文献   

11.
A new approach to define surface/sub-surface transition in gravel beds   总被引:1,自引:1,他引:0  
The vertical structure of river beds varies temporally and spatially in response to hydraulic regime, sediment mobility, grain size distribution and faunal interaction. Implicit are changes to the active layer depth and bed porosity, both critical in describing processes such as armour layer development, surface-subsurface exchange processes and siltation/ sealing. Whilst measurements of the bed surface are increasingly informed by quantitative and spatial measurement techniques (e.g., laser displacement scanning), material opacity has precluded the full 3D bed structure analysis required to accurately define the surface-subsurface transition. To overcome this problem, this paper provides magnetic resonance imaging (MRI) data of vertical bed porosity profiles. Uniform and bimodal (?? g = 2.1) sand-gravel beds are considered following restructuring under sub-threshold flow durations of 60 and 960 minutes. MRI data are compared to traditional 2.5D laser displacement scans and six robust definitions of the surface-subsurface transition are provided; these form the focus of discussion.  相似文献   

12.
Sulfate in groundwater has been previously shown to change the reactivity of Fe0 in permeable reactive barriers for reducing chlorinated organics. To better understand the effect and mechanism of SO, the degradation of 1,1,1‐trichloroethane (TCA) by Fe0 in unbuffered aqueous solutions with and without SO was investigated. In a Fe0‐TCA‐H2O system with initial pH of 2.0 to 10.0, the maximum removal rate of TCA was achieved at the initial pH 6.0 with pseudo‐first‐order constant Kobs 9.0 × 10?3/min. But in a Fe0‐TCA‐Na2SO4‐H2O system, the removal rate of TCA decreased remarkably with a reduction in Kobs to 1.0 × 10?3/min, and the pH varied from 6.0 to 9.6, indicating an inhibition of TCA dehydrochlorination by SO. Sulfate remarkably inhibited TCA degradation via changing the route of Fe0 dissolution. It accelerated the dissolution of Fe0 and transformed the intermediate form Fe(OH)ads to Fe2(SO4)ads, which weakened the affinity between Fe and TCA, and thus depressed the degradation of TCA by Fe0.  相似文献   

13.
Limited field and flume data suggests that both uniform and graded beds appear to progressively stabilize when subjected to inter-flood flows as characterized by the absence of active bedload transport. Previous work has shown that the degree of bed stabilization scales with duration of inter-flood flow, however, the sensitivity of this response to bed surface grain size distribution has not been explored. This article presents the first detailed comparison of the dependence of graded bed stability on inter-flood flow duration. Sixty discrete experiments, including repetitions, were undertaken using three grain size distributions of identical D50 (4.8 mm); near-uniform (σg = 1.13), unimodal (σg = 1.63) and bimodal (σg = 2.08). Each bed was conditioned for between 0 (benchmark) and 960 minutes by an antecedent shear stress below the entrainment threshold of the bed (τ*c50). The degree of bed stabilization was determined by measuring changes to critical entrainment thresholds and bedload flux characteristics. Results show that (i) increasing inter-flood duration from 0 to 960 minutes increases the average threshold shear stress of the D50 by up to 18%; (ii) bedload transport rates were reduced by up to 90% as inter-flood duration increased from 0 to 960 minutes; (iii) the rate of response to changes in inter-flood duration in both critical shear stress and bedload transport rate is non-linear and is inversely proportional to antecedent duration; (iv) there is a grade dependent response to changes in critical shear stress where the magnitude of response in uniform beds is up to twice that of the graded beds; and (v) there is a grade dependent response to changes in bedload transport rate where the bimodal bed is most responsive in terms of the magnitude of change. These advances underpin the development of more accurate predictions of both entrainment thresholds and bedload flux timing and magnitude, as well as having implications for the management of environmental flow design. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

14.
The oxidation state of iron can significantly influence the physical and chemical properties of lower mantle minerals. To improve methods for estimation of Fe3+/∑Fe, synthetic assemblages of (Mg,Fe)(Si,Al)O3 perovskite and (Mg,Fe)O ferropericlase were synthesised from oxide starting mixtures in Re or Fe capsules at 26 GPa and 1650-1850 °C using a multianvil press. (Mg,Fe)(Si,Al)O3 majorite was also present in some of the run products. Both electron energy loss spectra (EELS) and Mössbauer spectra were measured for each run product, and a robust fitting method was developed for Mössbauer spectra using EELS results as a standard that enabled Fe3+/∑Fe of (Mg,Fe)(Si,Al)O3 perovskite to be determined from Mössbauer spectra of multiphase assemblages. There is a close to linear variation between Fe3+/∑Fe and Al concentration in (Mg,Fe)(Si,Al)O3 perovskite, independent of oxygen fugacity. The concentration of Fe3+ in (Mg,Fe)O increases with increasing iron concentration along curves of constant oxygen fugacity, where higher oxygen fugacity stabilises greater Fe3+ concentrations. Fe2+/Mg partition coefficients calculated from chemical composition data corrected for measured Fe3+/∑Fe showed values nearly identical within experimental error for all samples, and independent of Al concentration and oxygen fugacity. Simple empirical relations were derived to calculate Fe3+/∑Fe in (Mg,Fe)(Si,Al)O3 perovskite and (Mg,Fe)O ferropericlase samples for which no Mössbauer or EELS data were available, and tested by applying them to calculation of Fe2+/Mg partition coefficients from literature data for (Mg,Fe)(Si,Al)O3 perovskite-(Mg,Fe)O assemblages where only total iron concentrations had been measured. Results showed Fe2+/Mg partition coefficients that were equal to existing values within experimental error, hence confirming the validity of the empirical relations.  相似文献   

15.
First-principles calculations have been used to determine the equation of state of Fe3C in both its low-pressure magnetically ordered and high-pressure non-magnetically ordered states; at 0 K the ferromagnetic transition was found to occur at about 60 GPa. In the high pressure, non-magnetically ordered regime at 0 K the material may be described by a Birch-Murnaghan third-order equation of state with V0=8.968(7) Å3 per atom, K0=316.62(2) GPa and K′=4.30(2). At atmospheric pressure the ferromagnetic phase transition in Fe3C occurs at ∼483 K; preliminary measurements of the thermal expansion by powder neutron diffraction show that this transition produces a large effect on thermoelastic properties. The volumetric thermal expansion coefficient in the paramagnetic phase was found to be 4.34×10−5 K−1 at T∼550 K. By applying a thermal expansion correction to the calculated equation of state at 0 K, predicted values for the density and adiabatic incompressibility of this material at core pressures and temperatures were obtained. These results appear to be sufficiently different from seismological data so as to preclude Fe3C as the major inner core-forming phase.  相似文献   

16.
The removal of chemical oxygen demand (COD) and phenol from olive oil mill wastewaters (OOMW) was investigated experimentally by using conventional Fenton (CFP) and Fenton type processes (FTP) with zero valent iron (ZVI). Different operational parameters such as initial pH, Fe2+, Fe0, and H2O2 concentrations were examined. Kinetic studies in terms of COD and phenol removals for both CFP and FTP were performed. The original pH value (4.6) of OOMW for CFP was found as the optimum pH. The determined optimum conditions are [Fe2+] = 1500 mg L?1, [H2O2] = 1750 mg L?1, and pH = 4.6 for CFP; [Fe0] = 2000 mg L?1, [H2O2] = 2000 mg L?1, and pH = 3 for FTP. 82.4% COD and 62% phenol removals were performed under the optimum conditions by CFP, while 82% COD and 63.4% phenol were removed by FTP. According to the results of kinetic studies, it was observed that COD and phenol were removed by FTP more rapidly, compared to CFP. Consequently, it was determined that both CFP and FTP were effective processes for the pretreatment of OOMW.  相似文献   

17.
In the literature it has been suggested that on permeable, granular beds, both the threshold and rate of aerodynamic entrainment may be affected significantly by seepage flows into and out of the bed induced by fluctuating pressures in the overlying turbulent boundary layer. Using a range of grain sizes and flow conditions, the series of laboratory experiments reported here compares directly the aerodynamic entrainment of loose grains overlying fixed permeable sediment beds with that occuring over fixed impervious beds. For a given granular material, no significant differences in entrainment dynamics on the two types of bed were observed and in the range of flow conditions examined both the threshold shear velocity (U *T) and the aerodynamic entrainment coefficient (k) were found to be independent of bed permeability.  相似文献   

18.
The oxygen fugacity and therefore the iron redox state of a melt is known to have a strong influence on the liquid line of descent of magmas and thus on the composition of the coexisting melts and crystals. We present a new method to estimate this critical parameter from electron probe microanalyses of two of the most common minerals of basaltic series, plagioclase and clinopyroxene. This method is not based on stoichiometric calculations, but on the different partitioning behaviour of Fe3+ and Fe2+ between both minerals and a melt phase: plagioclase can incorporate more Fe3+ than Fe2+, while clinopyroxene can incorporate more Fe2+ than Fe3+. For example, the effect of oxidizing a partly molten basaltic system (Fe3+ is stabilized with respect to Fe2+) results in an increase of FeOtotal in plagioclase, but a decrease in the associated clinopyroxene. We propose an equation, based on published partition coefficients, that allows estimating the redox state of a melt from these considerations. An application to a set of experimental and natural data attests the validity of the proposed model. The associated error can be calculated and is on average < 1 log unit of the prevailing oxygen fugacity.In order to reduce the number of different variables influencing the Fe2+/Fe3+ mineral/melt equilibrium, our model is restricted to basaltic series with SiO2 < 60% that have crystallized at intermediate to low pressure (< 0.5 GPa) and under relatively oxidizing conditions (?FMQ > 0; where FMQ is the fayalite–magnetite–quartz oxygen buffer equilibrium), but it may be parameterized for other conditions. A spreadsheet is provided to assist the use of equations, and to perform the error propagation analysis.  相似文献   

19.
There are ongoing efforts to render conventional biosand filters (BSF) more efficient for safe drinking water provision. One promising option is to amend BSF with a reactive layer containing metallic iron (Fe0). The present communication presents some conceptual options for efficient Fe0‐amended BSF in its fourth generation. It is shown that a second fine‐sand layer should be placed downwards from the Fe0‐reactive layer to capture dissolved iron. This second fine‐sand layer could advantageously contain adsorbing materials (e.g. activated carbons, wooden charcoals). An approach for sizing the Fe0‐reactive layer is suggested based on 3 kg Fe0 per filter. Working with the same Fe0 load will ease comparison of results with different materials and the scaling up of household BSF to large scale community slow sand filters (SSF).  相似文献   

20.
The most abundant mineral on Earth has a perovskite crystal structure and a chemistry that is dominated by MgSiO3 with the next most abundant cations probably being aluminum and ferric iron. The dearth of experimental elasticity data for this chemically complex mineral limits our ability to calculate model seismic velocities for the lower mantle. We have calculated the single crystal elastic moduli (cij) for (Mg, Fe3 +)(Si, Al)O3 perovskite using density functional theory in order to investigate the effect of chemical variations and spin state transitions of the Fe3+ ions. Considering the favored coupled substitution of Mg2+-Si4 + by Fe3+-Al3+, we find that the effect of ferric iron on seismic properties is comparable with the same amount of ferrous iron. Ferric iron lowers the elastic moduli relative to the Al charge-coupled substitution. Substitution of Fe3+ for Al3+, giving rise to an Fe/Mg ratio of 6%, causes 1.8% lower longitudinal velocity and 2.5% lower shear velocity at ambient pressure and 1.1% lower longitudinal velocity and 1.8% lower shear velocity at 142 GPa. The spin state of the iron for this composition has a relatively small effect (< 0.5% variation) on both bulk modulus and shear modulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号