首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
ABSTRACT

Sourcing subsurface evaporation (Ess) into groundwater (Eg) and unsaturated zone (Eu) components has received little scientific attention so far, despite its importance in water management and agriculture. We propose a novel sourcing framework, with its implementation in dedicated post-processing software called SOURCE (used along with the HYDRUS1D model), to study evaporation sourcing dynamics, define quantitatively “shallow” and “deep” water table conditions and test the applicability of water table fluctuation (WTF) and “bucket” methods for estimation of Eg and Eu separately.

For the “shallow” and “deep” water table we propose Eg?>?0.95Ess and Eg = 0 criteria, respectively. Assessment of the WTF method allowed sourcing of very small fluxes otherwise neglected by standard hydrological methods. Sourcing with SOURCE software was more accurate than the standard “bucket” method mainly because of greater flexibility in spatio-temporal discretization. This study emphasized the dry condition relevance of groundwater evaporation which should be analysed by applying coupled flow of heat, vapour and liquid water.
Editor D. Koutsoyiannis; Associate editor S. Kanae  相似文献   

3.
Gullies have been a common phenomenon in semi‐arid northern Ethiopia for the last centuries. However, soil and water conservation (SWC) structures have been implemented for a long time to curb soil erosion. Though, like most of the affected areas worldwide, density and distribution of gullies and SWC structures, their causes and interrelations are poorly understood. The aims of this study were to develop a technique for mapping these densities of gullies and SWC structures, to explain their spatial distribution and to analyze changes over the period 1935–2014. Aerial photographs from 1935 to 1936 and Google Earth images from 2014 of the 5142 km2 Geba catchment were used. Transect lines were established to count gullies and SWC structures in order to calculate densities. On average, a gully density of 1.14 km km?2 was measured in 1935–1936 of which the larger portion (75%) were vegetated, indicating they were not very active. Over 80 years, gully density has significantly increased to 1.59 km km?2 with less vegetation growing in their channel, but 66% of these gullies were treated with check dams. There was c. 3 km km?2 of indigenous SWC structures (daget or lynchets) in 1935–1936 whereas a high density (20 km km?2) of introduced SWC structures (mainly stone bunds and terraces) were observed in 2014. The density of gullies is positively correlated with slope gradient and shrubland cover and negatively with cropland cover, whereas the density of SWC structures significantly increased with increasing cropland cover. Density maps of gullies and SWC structures indicate sensitive areas to gully formation and priority areas for the implementation of SWC structures in Geba catchment. The obtained results illustrate the feasibility of the methods applied to map the density of gullies and SWC structures in mountainous areas. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

4.
Abstract

Plant root systems can utilize soil water to depths of 10 m or more. Spatial pattern data of deep soil water content (SWC) at the regional scale are scarce due to the labour and time constraints of field measurements. We measured gravimetric deep SWC (DSWC) at depths of 200, 300, 400, 500, 600, 800 and 1000 cm at 382 sites across the Loess Plateau, China. The coefficient of variation was high for soil water content (SWC) in the horizontal direction (48%), but was relatively small for SWC in the vertical direction (9%). Semivariogram ranges for DSWC at different depths were between 198 and 609 km. Kriged distribution maps indicated that deep soil layers became moister along northwest to southeast transects. Multiple statistical analyses related DSWC to plant characteristics (e.g. plant age explained >21% of the variability), geographical location and altitude (8–13%), soil texture and infiltrability, evaporation zone and eco-hydrological processes (P < 0.05). Regional land management decisions can be based on our DSWC distribution data to determine land uses and plant species appropriate for the soil type and location that would maintain a stable soil water balance. Maintaining infiltrability is of great importance in this and other water-scarce regions of the world.

Editor D. Koutsoyiannis; Associate editor J. Simunek

Citation Wang, Y.Q., Shao, M.A., Liu, Z.P. and Warrington, D.N., 2012. Regional spatial pattern of deep soil water content and its influencing factors. Hydrological Sciences Journal, 57 (2), 265–281.  相似文献   

5.
Water use efficiency (WUE) links carbon and water exchanges between farmlands and the atmosphere. Understanding the variation and attribution of WUE is essential to reveal the physiological and ecological adaptation mechanisms of crops to the changing environment, and to better allocate, regulate and conserve water resources. However, few studies on the variation and attribution of WUE have been conducted in irrigated arid or semi-arid farmlands. Therefore, in this study, water and carbon fluxes were measured using eddy covariance systems in two farmlands (one sunflower field and one maize field) in a semi-arid irrigation district in China. It was found that the average WUE of sunflower during its full growth period was 1.72 g C kg−1 H2O, much lower than that of maize (4.07 g C kg−1 H2O). At each growth stage, the WUE of both crops were negatively correlated with vapour pressure deficit (VPD), net radiation (Rn) and soil water content (SWC). The negative correlations could be attributed to the arid meteorological condition and the relatively abundant soil moisture due to irrigation and shallow groundwater levels. VPD was the main factor affecting WUE, followed by Rn and SWC. It was also found that the response of WUE to crop leaf area index (LAI) and to canopy conductance (gc) depended on the VPD ranges: when VPD increased, the response of WUE to LAI and to gc decreased. Our findings could improve the understanding of the coupling effect of water and carbon fluxes over farmland ecosystems in arid and semi-arid irrigation areas and help improve agricultural production and save water resources in such areas.  相似文献   

6.
Total dissolved gas pressure (PTDG) measurements are useful to measure accurate in situ dissolved gas concentrations in groundwater, but challenged by in-well degassing. Although in-well degassing has been widely observed, its cause(s) are not clear. We investigated the mechanism(s) by which gas-charged groundwater in a recently pumped well becomes degassed. Vertical PTDG and dissolved gas concentration profiles were monitored in the standing water column (SWC) of a groundwater well screened in a gas-charged aquifer for 7 days before and 15 days after pumping. Prior to pumping, PTDG values remained relatively constant and below calculated bubbling pressure (PBUB) at all depths. In contrast, significant increases in PTDG were observed at all depths after pumping was initiated, as fresh groundwater with elevated in situ PTDG values was pumped through the well screen. After pumping ceased, PTDG values decreased to below PBUB at all depths over the 15-day post-pumping period, indicating well degassing was active over this time frame. Vertical profiles of estimated dissolved gas concentrations before and after pumping provided insight into the mechanism(s) by which in-well degassing occurred in the SWC. During both monitoring periods, downward mixing of dominant atmospheric and/or tracer gases, and upwards mixing of dominant groundwater gases were observed in the SWC. The key mechanisms responsible for in-well degassing were (i) bubble exsolution when PTDG exceeded PBUB as gas-charged well water moves upwards in the SWC during recovery (i.e., hydraulic gradient driven convection), (ii) microadvection caused by the upward migration of bubbles under buoyancy, and (iii) long-term, thermally driven vertical convection.  相似文献   

7.
Shallow groundwater plays a key role in agro‐hydrological processes of arid areas. Groundwater often supplies a necessary part of the water requirement of crops and surrounding native vegetation, such as groundwater‐dependent ecosystems. However, the impact of water‐saving irrigation on cropland water balance, such as the contribution of shallow groundwater to field evapotranspiration, requires further investigation. Increased understanding of quantitative evaluation of field‐scale water productivity under different irrigation methods aids policy and decision‐making. In this study, high‐resolution water table depth and soil water content in field maize were monitored under conditions of flood irrigation (FI) and drip irrigation (DI), respectively. Groundwater evapotranspiration (ETg) was estimated by the combination of the water table fluctuation method and an empirical groundwater–soil–atmosphere continuum model. The results indicate that daily ETg at different growth stages varies under the two irrigation methods. Between two consecutive irrigation events of the FI site, daily ETg rate increases from zero to greater than that of the DI site. Maize under DI steadily consumes more groundwater than FI, accounting for 16.4% and 14.5% of ETa, respectively. Overall, FI recharges groundwater, whereas DI extracts water from shallow groundwater. The yield under DI increases compared with that under FI, with less ETa (526 mm) compared with FI (578 mm), and irrigation water productivity improves from 3.51 kg m?3 (FI) to 4.58 kg m?3 (DI) through reducing deep drainage and soil evaporation by DI. These results highlight the critical role of irrigation method and groundwater on crop water consumption and productivity. This study provides important information to aid the development of agricultural irrigation schemes in arid areas with shallow groundwater.  相似文献   

8.
This study presents an extension of the concept of “quasi-saturation” to a quasi-saturated layer, defined as the uppermost dynamic portion of the saturated zone subject to water table fluctuations. Entrapped air here may cause substantial reductions in the hydraulic conductivity (K) and fillable pore water. Air entrapment is caused by a rising water table, usually as a result of groundwater recharge. The most significant effects of entrapped air are recharge overestimation based on methods that use specific yield (Sy), such as the water table fluctuation method (WTF), and reductions in K values. These effects impact estimation of fluid flow velocities and contaminant migration rates in groundwater. In order to quantify actual groundwater recharge rates and the effects of entrapped air, numerical simulations with the FEFLOW (Version 7.0) groundwater flow model were carried out using a quasi-saturated layer for a pilot area in Rio Claro, Brazil. The calculated recharge rate represented 16% of the average precipitation over an 8-year period, approximately half of estimates using the WTF method. Air entrapment amounted to a fillable porosity of 0.07, significant lower that the value of 0.17 obtained experimentally for Sy. Numerical results showed that the entrapped air volume in the quasi-saturated layer can be very significant (0.58 of the air fraction) and hence can significantly affect estimates of groundwater recharge and groundwater flow rates near the water table.  相似文献   

9.
Previous “fraction of young water” (Fyw) estimates based on relative annual isotopic amplitudes in precipitation (Ap) and streamflow (As) produced low Fyw values in mountain catchments, which is contrary to extensive research that reports rapid water transmission in mountains. This study investigated this discrepancy by testing the effect of snow accumulation on the model that underpins the Fyw method. A Monte-Carlo analysis of simulations for 20,000 randomly-generated catchment model configurations used 10 years of precipitation inputs for the Upper Elbow River catchment in the Rocky Mountains (Alberta, Canada) to model discharge with and without snowpack storage of winter precipitation. Neither direct nor modified precipitation input produced a 1:1 relationship between As/Ap and Fyw, undermining the applicability of the original Fyw method in mountain watersheds with large seasonal snow accumulation. With snowpack-modified input a given As/Ap ratio corresponds to a range of Fyw values, which can still provide semi-quantitative information. In the small (435 km2) Elbow River catchment a Fyw range of 7–23% supports previous findings of rapid transmission in mountain catchments. Further analysis showed that the improved discharge prediction (Nash–Sutcliffe efficiency > 0.9) correlates with higher Fyw values and demonstrated that the interannual shifts in δ18O can be used to estimate of new water (<1 year) fraction in winter streamflow, and the estimate of 20% for the Elbow River further supports rapid transmission in mountain catchments.  相似文献   

10.
Scale‐ and location‐dependent relationships between soil water content (SWC) and individual environmental factors have been widely explored. SWC is controlled by multiple factors concurrently; however, the multivariate relationship is rarely explored at different scales and locations. Multivariate controls of SWC at different scales and locations in two seasons within a hummocky landscape of North America were identified using bivariate wavelet coherency and multiple wavelet coherence. Results showed that depth to CaCO3 layer, which was correlated with elevation over all locations at scales of 36–144 m and cos(aspect), provided the best individual factor for explaining SWC variations in spring (May 2) and summer (August 23), respectively. Although spatial patterns of SWC were temporally stable, different topographic indices affected spatial distribution of SWC in different seasons (elevation in spring and aspect in summer) due to different dominating hydrological processes. These varying hydrological processes also resulted in the distinct role of soil organic carbon (SOC) content in different seasons: a positive correlation in spring and a negative correlation in summer. Multiple wavelet coherence identified a combination of depth to CaCO3 layer and SOC in spring and a combination of cos(aspect) and SOC in summer that controlled SWC at different scales and locations, respectively. This indicated a combined effect of soil and topographic properties on SWC distribution and a clear need for these two factors in developing scale‐dependent prediction of SWC in the hummocky landscape of North America.  相似文献   

11.
Sustainable water management in semi-arid agriculture practices requires quantitative knowledge of water fluxes within the soil-vegetation-atmosphere system. Therefore, we used stable-isotope approaches to evaluate evaporation (Ea), transpiration (Ta), and groundwater recharge (R) at sites in Senegal's Groundnut basin and Ferlo Valley pasture region during the pre-monsoon, monsoon, and post-monsoon seasons of 2021. The approaches were based upon (i) the isothermal evaporation model (for quantifying Ea); (ii) water and isotope mass balances (to partition Ea and Ta for groundnut and pasture); and (iii) the piston displacement method (for estimating R). Ea losses derived from the isothermal evaporation model corresponded primarily to Stage II evaporation, and ranged from 0.02 to 0.09 mm d−1 in the Groundnut basin, versus 0.02–0.11 mm d−1 in Ferlo. At the groundnut site, Ea rates ranged from 0.01 to 0.69 mm d−1; Ta was in the range 0.55–2.29 mm d−1; and the Ta/ETa ratio was 74%–90%. At the pasture site, the ranges were 0.02–0.39 mm d−1 for Ea; 0.9–1.69 mm d−1 for Ta; and 62–90% for Ta/ETa. The ETa value derived for the groundnut site via the isotope approach was similar to those from eddy covariance measurements, and also to the results from the previous validated HYDRUS-1D model. However, the HYDRUS-1D model gave a lower Ta/ETa ratio (23.2%). The computed groundwater recharge for the groundnut site amounted to less than 2% of the local annual precipitation. Recommendations are made regarding protocols for preventing changes to isotopic compositions of water in samples that are collected in remote arid regions, but must be analysed days later. The article ends with suggestions for studies to follow up on evidence that local aquifers are being recharged via preferential pathways.  相似文献   

12.

Based on field investigation of wave, sediment suspension and the changes in nutrient concentration of the water column in Lake Taihu, China, we proposed two release models to quantify nutrient release under static and dynamic conditions, respectively. Under static conditions, nutrient release from sediments to the overlying water mainly depends on chemical diffusion induced by concentration gradient, in which the nutrient release is controlled by the temperature, dissolved oxygen concentration in the sediment-water interface, oxidation-reduction potential and the concentration difference between porewater and overlying water. Under dynamic condition (or disturbed condition), both dissolved and particulate nutrients in sediments are released into the water column because of wind-induced sediment suspension. The amount of nutrient release under dynamic conditions is larger than that under the static condition. The release of dissolved nutrients, however, does not increase because the wind induced turbulence made oxidation of metallic elements such as Fe (ferric iron), Mn which are capable of precipitating soluble reactive phosphate (SRP). Under dynamic conditions, therefore, the release of total phosphorus (TP) increases dramatically but the release of SRP is close to those under static conditions. In sediments of Lake Taihu, high Fe content leads to a high ratio of Fe to P contents in sediments (Fe:P ratio). Under dynamic conditions, therefore, nutrient release is controlled by the intensity of disturbance, sediment consolidation and nutrient content in sediments. As for dissolved nutrients, especially SRP, the release is also controlled by the intensity of dynamic re-oxidation, Fe content in sediments and nutrient concentration gradient between porewater and overlying water. Based on these two release modes, the release flux in Lake Taihu has been estimated. In the static condition (i.e. laboratory experimental condition), total release of NH4 +-N for whole lake is ca. 10,000 ton/a, and PO4 3−-P is ca. 900 ton/a. In the dynamic condition, nutrient release following sediment suspension was estimated according to three different intensities of wind forcing which were defined as “calm” (wind speed is less than 2 m/s), “gentle” (wind speed is greater than 2 m/s and less than 6 m/s) and “gust” (wind speed is greater than 6 m/s). The release rate in the condition of “calm” was estimated in terms of the nutrient release in the laboratory experimental static condition; whereas the release rate in conditions of “gentle” and “gust” was estimated in terms of measurement during sediment resuspension conducted in flume experiments. With the observation of wind velocity and frequency in 2001, each type of wind forcing took the frequency of 12%, 82% and 6% for “calm”, “gentle” and “gust”, respectively. The yearly release of nitrogen was 81,000 ton and phosphorus was 21,000 ton, which is about 2–6 folds of annual external loading, respectively.

  相似文献   

13.
Biological soil crusts (BSCs) are ubiquitous living covers that have been allowed to grow on abandoned farmlands over the Loess Plateau because the “Grain for Green” project was implemented in 1999 to control serious soil erosion. However, few studies have been conducted to quantify the effects of BSC coverage on soil hydraulic properties. This study was performed to assess the effects of BSC coverage on soil hydraulic properties, which are reflected by the soil sorptivity under an applied pressure of 0 (S 0 ) and ?3 (S 3 ) cm, saturated hydraulic conductivity (K s ), wetting front depth (WFD ), and mean pore radius (λ m ), for the Loess Plateau of China. Five classes of BSC coverage (i.e., 1–20%, 20–40%, 40–60%, 60–80%, and 80–100%) and a bare control were selected at both cyanobacteria‐ and moss‐covered sites to measure soil hydraulic properties using a disc infiltrometer under 2 consecutive pressure heads of 0 and ?3 cm, allowing the direct calculation of S 0 , S 3 , K s , and λ m . The WFD was measured onsite using a ruler immediately after the experiments of infiltration. The results indicated that both cyanobacteria and moss crusts were effective in changing the soil properties and impeding soil infiltration. The effects of moss were greater than those of cyanobacteria. Compared to those of the control, the S 0 , S 3 , K s , WFD , and λ m values of cyanobacteria‐covered soils were reduced by 13.7%, 11.0%, 13.3%, 10.6%, and 12.6% on average, and those of moss‐covered soils were reduced by 27.6%, 22.1%, 29.5%, 22.2%, and 25.9%, respectively. The relative soil sorptivity under pressures of 0 (RS 0 ) and ?3 (RS 3 ) cm, the relative saturated hydraulic conductivity (RK s ), the relative wetting front depth (RWFD ), and the relative mean pore radius (m ) decreased exponentially with coverage for both cyanobacteria‐ and moss‐covered soils. The rates of decrease in RS 0 , RS 3 , RK s , RWFD , and m of cyanobacteria were significantly slower than those of moss, especially for the coverage of 0–40%, with smaller ranges. The variations of soil hydraulic properties with BSC coverage were closely related to the change in soil clay content driven by the BSC coverage on the Loess Plateau. The results are useful for simulating the hydraulic parameters of BSC‐covered soils in arid and semiarid areas.  相似文献   

14.
15.
Baseflows have declined for decades in the Lesser Himalaya but the causes are still debated. This paper compares variations in streamflow response over three years for two similar headwater catchments in northwest India with largely undisturbed (Arnigad) and highly degraded (Bansigad) oak forest. Hydrograph analysis suggested no catchment leakage, thereby allowing meaningful comparisons. The mean annual runoff coefficient for Arnigad was 54% (range 44–61%) against 62% (53–69%) at Bansigad. Despite greater total runoff Qt (by 250 mm year1), baseflow at Bansigad ceased by March, but was perennial at Arnigad (making up 90% of Qt vs. 51% at Bansigad). Arnigad storm flows, Qs, were modest (8–11% of Qt) and occurred mostly during monsoons (78–98%), while Qs at Bansigad was 49% of Qt and occurred also during post-monsoon seasons. Our results underscore the importance of maintaining soil water retention capacity after forest removal to maintain baseflow levels.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR D. Gerten  相似文献   

16.
To study the hyporheic exchange driven by a single peak flood-induced water level fluctuation (i.e., flood wave), a method combining numerical simulation with theoretical derivation was proposed based on the Inbuk Stream, Korea, where flooding occurs frequently. The hyporheic exchanges induced by different flood waves were investigated by varying amplitude (A), duration (T), wave type parameter (r), and rising duration (tp), which were adopted from the real-time stream stage fluctuations. Additionally, the idea of constant upstream flood volume (CUFV) condition for flood waves was put forward, and the effects of “Botan” (T/A) and peak number (N) on hyporheic exchange were studied. The results showed that the hyporheic exchange flux (q) was controlled by the water level h (sine-type) and its change rate v (cosine-type), and was proportional to the polynomial of them q ∝ (ωh + v), where ω is the angular frequency of the flood wave. Based on this mechanism, the influence principles on hyporheic exchanges of the typical flood wave parameters (A, T, r and tp) as well as T/A and N under CUFV condition were clarified. The main characteristic variables of hyporheic exchange, which were maximum aquifer storage and residence time, were positively correlated. They also had positive relations to the integral of the flood wave over time, which increased when the wave became higher, wider, rounder and less skewed. However, when CUFV condition was imposed, the residence time was positively correlated with T/A, whereas the maximum aquifer storage was negatively correlated with T/A. With the increase in N, water exchanged more frequently and some water returned to the stream early, leading to the slight decrease in maximum aquifer storage and residence time. These findings enriched the theory of hyporheic exchange driven by surface water fluctuation and be of great significance to enhance pollutant degradation in the hyporheic zone downstream of reservoirs.  相似文献   

17.
Forward filters to transform the apparent resistivity function over a layered half-space into the resistivity transform have been derived for a number of sample intervals. The filters have no apparent Gibbs' oscillations and hence require no phase shift. In addition, the end points of the filter were modified to compensate for truncation. The filters were tested on simulated ascending and descending two-layer cases. As expected, “dense” filters with sample spacing of In (10)/6 or smaller performed very well. However, even “sparse” filters with spacing of In (10)/2 and a total of nine coefficients have peak errors of less than 5% for p1:p2 ratios of 10–6 to 106. If a peak error of 5.5% is acceptable, then an even sparser filter with only seven coefficients at a spacing of 3 In (10)/5 may be used.  相似文献   

18.
Following large‐scale surface oil sands mining, large tracts of the boreal forest in the Athabasca Oil Sands Region of Western Canada are legally required to be reclaimed. A greater understanding of how these novel ecosystems function and develop with regard to water use is crucial to aid in the development of regulatory practices and protocols based on information from ecosystem recovery. In this paper, a 12‐year (2003–2014) eddy covariance measurement record of latent and sensible heat fluxes and gross ecosystem productivity of carbon dioxide is analysed to evaluate how a reclaimed boreal forest has developed during its initial growth period. The study site is a reclaimed oil sands saline‐sodic clay shale overburden deposit that was topped with 100 cm of glacial till and 20 cm of peat mineral mix. The site was seeded with barley (Hordeum spp.) in 2001 to reduce erosion of the soil cover whereas aspen (Populus tremuloides Michx.) and spruce (Picea glauca [Moench] Voss) boreal tree species were planted in 2004. Changes in structure and function corresponded to the transition of dominant vegetation cover from early successional species to forest. Leaf area index increased from a growing season peak of 0.9 in 2003 to 4.0 in 2014 and was associated with an increased growing season gross ecosystem productivity (4.9 to 8.9 g C m?2 day?1), an increased evapotranspiration (1.6 to 3.4 mm day?1), and a decreased partitioning of energy to sensible heat (Bowen's ratio decreased from 1.1 to 0.4). Although canopy conductance increased throughout the 12 years, the shift from early successional species to trees with more conservative water use resulted in a decrease in conductance normalized by leaf area. Water use efficiency has increased slightly since 2008 with an average of 10.0 g CO2 kg?1 H2O for the last 6 years. No prolonged dry periods were observed during the study period. The functioning of this novel ecosystem is evolving as expected on the basis of the trends observed for other natural and disturbed boreal forests.  相似文献   

19.
The persistence effect contribution of legacy nutrients is often cited as a reason for little or no improvement in water quality following extensive implementation of watershed nutrient mitigation actions, yet there is limited knowledge concerning factors influencing this response, often called the “persistence effect.” Here, we adopted detrended fluctuation analysis and Spearman analysis methods to assess the influence of land use on the watershed phosphorus (P) persistence effect, using monthly water quality records during 2010–2016 in 13 catchments within a drinking water reservoir watershed in eastern China. Detrended fluctuation analysis was used to calculate the Hurst exponent α to assess watershed legacy P characteristics (α  ≈ 0.5, α  > 0.5, and α  < 0.5 indicate white noise, persistence, and anti‐persistence, respectively). Results showed weak to strong P persistence (0.60–0.81) in the time series of riverine P in the 13 catchments. The Hurst exponent α had negative relationships with agricultural land (R = ?.47, p = .11) and developed land (R = ?.67, p = .01) and a positive relationship with forest land cover (R = .48, p = .10). The persistence effect of riverine P was mainly determined by retention ability (biogeochemical legacy) and migration efficiency (hydrological legacy). A catchment with strong retention capacity (e.g., biomass uptake/storage and soil PO4 sorption) and low migration efficiency results in a stronger persistence effect for riverine P. In practice, source control is more effective in catchments with weak persistence, whereas sink control (e.g., riparian buffers and wetlands) is preferred in catchments with strong persistence effects.  相似文献   

20.
Runoff and sediment lost due to water erosion were recorded for 36 (1 m2) plots with varying types of vegetative cover located on sloping gypsiferous fields in the South of Madrid. 75% of the events had maximum 30‐minute intensity (I30) less than 10 mm h?1 in the period studied (1994–2005). As for the vegetative cover, maximum correlation between runoff and soil loss was found in the least protected plots (0–40% cover) during the most intense rainfall events; however, a significant positive correlation was also observed in plots with greater coverage (40–60%). If coverage exceeded 60%, rainfall erosivity declined. The average amount of sediment produced in high‐intensity events was significantly greater (approximately 7 g m?2 per I30 event >10 mm h?1) than that produced in the rest of the moderate‐intensity events (approximately 3 g m?2 per I30 event <10 mm h?1), but due to the high rate of occurrence of the latter throughout the year sediment loss during the period studied totaled 128 g m?2. By comparison, only 40 g m?2 was produced by the I30 events greater than 10 mm h?1. Even though the amount of soil lost is relatively insignificant from a quantitative standpoint, the organic matter content lost in the sediment (six times more than in the soil) is a permanent loss that threatens the development of the surface of the soil in this area when the vegetative cover is less than 40%. The soil here experiences a chronic loss of 0·02 mm annually as a consequence of frequent, moderate events, in addition to any loss produced by extraordinary events, which, though less frequent, are much more erosive. If moderate events are ignored, an important part of soil loss will be lost in the long run. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号