首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
2.
In this study, the biosorption of Cd(II), Ni(II) and Pb(II) on Aspergillus niger in a batch system was investigated, and optimal condition determined by means of central composite design (CCD) under response surface methodology (RSM). Biomass inactivated by heat and pretreated by alkali solution was used in the determination of optimal conditions. The effect of initial solution pH, biomass dose and initial ion concentration on the removal efficiency of metal ions by A. niger was optimized using a design of experiment (DOE) method. Experimental results indicated that the optimal conditions for biosorption were 5.22 g/L, 89.93 mg/L and 6.01 for biomass dose, initial ion concentration and solution pH, respectively. Enhancement of metal biosorption capacity of the dried biomass by pretreatment with sodium hydroxide was observed. Maximal removal efficiencies for Cd(II), Ni(III) and Pb(II) ions of 98, 80 and 99% were achieved, respectively. The biosorption capacity of A. niger biomass obtained for Cd(II), Ni(II) and Pb(II) ions was 2.2, 1.6 and 4.7 mg/g, respectively. According to these observations the fungal biomass of A. niger is a suitable biosorbent for the removal of heavy metals from aqueous solutions. Multiple response optimization was applied to the experimental data to discover the optimal conditions for a set of responses, simultaneously, by using a desirability function.  相似文献   

3.
The present investigation evaluates the adsorption effectiveness of Cd(II) ions on Ficus religiosa leaf powder (FRL). The experimental parameters chosen included time, pH, particle size, temperature, adsorbate, anion, and Pb(II) concentrations. The time data followed pseudo‐second‐order kinetics. Cd(II) adsorption increased from 1.38 to 75.17% with the increase in pH from 2 to 4 and further increase in pH to 5.5 resulted in its marginal increase to 77.52%. Based on regression coefficient values, the isothermic data fitted the various models in the order Langmuir > Redlich–Peterson > Temkin > Freundlich model. The maximum loading capacity of FRL was estimated to be 27.14 mg g?1. The presence of Cl?, , or Pb2+ exhibited adverse effect on Cd(II) uptake. The thermodynamic parameters of enthalpy (ΔH0) and entropy (ΔS0) were estimated to be 8.31 kJ mol?1 and 38.22 J mol?1 K?1, respectively. SEM‐EPMA of the loaded FRL showed Cd(II) distribution at specific sites. The XRD patterns of Cd(II) loaded FRL sample showed disappearance of some peaks corresponding to β‐Ca(PO3)2; shifting of peaks and decrease in %RI corresponding to γ‐CaSO4 phase. Positive shift of IR bands for the Cd(II) loaded sample was observed.  相似文献   

4.
Response surface methodology (RSM) employing the three‐level Box–Behnken factorial design was used to optimize the biosorption of Ag(I) by the macrofungus Pleurotus platypus. The initial Ag(I) concentration (100–300 mg/L), pH (3.0–9.0), and biomass dosage (1.0–5.0 g/L) were chosen as the process variables for the optimization. A coefficient of determination (R2) value (0.99), model F value (234.18), and its low p‐value (F < 0.0001) along with the lower value of coefficient of variation (2.44%) indicated the fitness of response surface quadratic model during the present study. At the optimum pH (6.0), initial metal concentration (220 mg/L), and biomass dosage (3.0 g/L), the model predicted 46.7 mg/g Ag(I) uptake and an experimental 46.77 mg/g Ag(I) uptake by P. platypus was obtained. This is the first report on Ag(I) sorption by P. platypus using statistical experimental design employing RSM which may be helpful towards the treatment of industrial effluent containing silver.  相似文献   

5.
6.
Response surface methodology (RSM) and artificial neural networks (ANNs) based on a multivariate central composite design (CCD) were applied to model and optimize the photocatalytic degradation of N,N‐diethyl‐m‐toluamide (DEET). The individual and interaction effects of three main operating factors (mass of TiO2, initial DEET concentration, and irradiation intensity) on process efficiency were estimated, proving their important effect on % DEET removal. Among the independent variables, TiO2 concentration displayed the highest effect on DEET degradation followed by initial DEET concentration and UV intensity. The optimization and prediction capabilities of ANNs and RSM were compared on the basis of root mean squared error, mean absolute error, absolute average deviation, and correlation coefficient values. Results proved the usefulness and capability of the experimental design strategy for successful investigation and modeling of the photocatalytic process. Moreover, the selected ANN gave better estimation capabilities throughout the range of variables than RSM. Based on the models and the related experimental conditions, the optimal values of each parameter were determined. Under optimum conditions, DEET and total organic carbon (TOC) followed pseudo‐first order kinetics. Nearly complete degradation of DEET took place within 15 min whereas high TOC removal percentages (>85%) was achieved after 90 min irradiation time.  相似文献   

7.
8.
Response surface methodology (RSM) was employed to investigate the effects of different operational parameters on the biological decolorization of a dye solution containing malachite green (MG) in the presence of macroalgae Chara sp. The investigated variables were the initial pH, initial dye concentration, algae amount, and reaction time. Central composite design (CCD) was used for the optimization of biological decolorization process. Predicted values were found to be in good agreement with experimental values (R2 = 0.982 and Adj‐R2 = 0.966), which indicated suitability of the employed model and the success of RSM. The results of optimization predicted by the model showed that maximum decolorization efficiency was achieved at the optimum condition of the initial pH 6.8, initial dye concentration 9.7 mg/L, algae amount 3.9 g, and reaction time 75 min. UV–VIS spectra and FT‐IR analysis showed degradation of MG.  相似文献   

9.
The mixtures of dried sewage sludge (DSS) and sewage sludge ash were studied for removal of acid red 119 (AR119) dye as a new, more environmental friendly, and low cost adsorbent. For this purpose, response surface methodology was applied to optimize the dye removal efficiency and turbidity of treated dye solutions as two individual responses. Results revealed that an optimum condition under specified constraints (dye removal efficiency >95% and turbidity <50 NTU) was obtained at a contact time of 60 min, 40 wt% DSS in the mixture, an initial pH of 6, and an initial dye concentration of 200 mg dye/L in distilled water. Under the optimal condition, dye removal efficiency of 94.98% and effluent turbidity of 24.9 NTU was observed. In further studies, at optimum condition, the effect of some additives on adsorption process and desorption/reusability of adsorbent was investigated. It was observed that removal efficiency was significantly decreased to 83.76% when a simulated dye wastewater (containing the selected dye, acetic acid, and Glauber's salt dissolved in tap water) was used. Desorption studies revealed that AR119 dye could be well removed from dye‐loaded adsorbent by 0.3 M NaOH solution.  相似文献   

10.
The Cercis siliquastrum tree leaves are introduced as a low cost biosorbent for removal of Ag(I) from aqueous solution in a batch system. FT‐IR, XRD analysis, and potentiometric titration illustrate that the adsorption took place and the acidic functional group (carboxyl) of the sorbent was involved in the biosorption process. In addition, it was observed that the pH beyond pHpzc 4.4 is favorable for the removal procedure. The effect of operating variables such as initial pH, temperature, initial metal ion concentration, and sorbent mass on the Ag(I) biosorption was analyzed using response surface methodology (RSM). The proposed quadratic model resulting from the central composite design approach (CCD) fitted very well to the experimental data. The optimum condition obtained with RSM was an initial concentration of Ag(I) of 85 mg L?1, pH = 6.3 and sorbent mass 0.19 g. The applicability of different kinetic and isotherm models for current biosorption process was evaluated. The isotherm, kinetic, and thermodynamic studies showed the details of sorbate‐sorbent behavior. The competitive effect of alkaline and alkaline earth metal ions during the loading of Ag(I) was also considered.  相似文献   

11.
The pollution of underground and surface water streams is a tremendous environmental problem. Adsorption, in which activated carbon (AC) is used as an adsorbent, is one of efficient procedures to remove organic and inorganic pollutants from industrial wastewaters. Activated carbon fiber (ACF), a newly developed form of AC, has high adsorption rate and surface area and can be used for the treatment of industrial wastewaters. In this work, ACF was prepared by physicochemical activation method from kenaf and we studied its ability in the treatment of indigo‐containing wastewater produced from a dying factory. The filtered wastewater was treated via adsorption by ACF, and response surface experimental design method was used to study the effect of ACF dosage, contact time, temperature, and pH of the wastewater on the removal process. ACF dosage of 0.256 g, temperature of 12.5°C, pH 8.5, and contact time of 125 min were optimum treatment conditions. The adsorption process obeys pseudo‐second‐order kinetic and Freundlich isotherm models.  相似文献   

12.
13.
14.
Slaughterhouse wastewater is one of the main sources of environmental pollutants, containing a high amount of organic matter (chemical oxygen demand (COD), biochemical oxygen demand (BOD)), total nitrogen (TN), total suspended solids (TSS), total phosphorus (TP), grease, and oil. The main aim of the present research is optimizing the coagulation–flocculation process and examining the effects of experimental factors with each other, for example, pH, the concentration of two different coagulants (FeCl3 and alum), rapid mixing rate, and settling time. Therefore, it is aimed to treat slaughterhouse wastewater using the coagulation–flocculation process with the optimization of the response surface methodology (RSM). COD, turbidity, and suspended solids (SS) of the treated wastewater are chosen as the response variables. Furthermore, the optimal conditions for three responses are acquired by employing the desirability function approach. When the experimental results of two coagulants are compared, it is observed that the alum coagulant gave better results for the three responses. The alum coagulant utilized in the present research is able to increase COD, SS, and turbidity removal efficiency by 75.25%, 90.16%, and 91.18%, respectively. It is possible to optimize coagulation–flocculation by utilizing the RSM analysis, which proves that coagulation can pre‐treat slaughterhouse wastewater.  相似文献   

15.
This study presents the degradation of phenanthrene by Mycoplana sp. MVMB2 isolated from petroleum contaminated soil and the media optimization by factorial design experiments. The Plackett–Burman design was used to evaluate the effects of eight variables (potassium dihydrogen phosphate, disodium hydrogen phosphate, magnesium sulfate, calcium chloride, ferrous sulfate, glucose, inoculum concentration, and phenanthrene concentration) on phenanthrene degradation. Based on the results, the critical medium components having significant influence on the degradation were found to be disodium hydrogen phosphate, magnesium sulfate, ferrous sulfate, and phenanthrene. Furthermore, these four variables were used as central composite design parameters. The optimum minimal salt medium composition obtained by conventional and factorial design experiments for the degradation of phenanthrene by Mycoplana sp. MVMB2 at pH 6.5 and 30°C were found to be, potassium 2.5 g/L dihydrogen phosphate, 0.3505 g/L disodium hydrogen phosphate, 0.5501 g/L magnesium sulfate, 0.02 g/L calcium chloride, 0.0261 g/L ferrous sulfate, 0.6756 g/L phenanthrene, 0.5 g/L glucose, 0.5 g/L ammonium sulfate, and inoculum 5% v/v. The phenanthrene degradation was confirmed by analyzing the metabolites formed.  相似文献   

16.
In the present study, activated carbons were prepared from sisal fiber (Agave sisalana sp.) and pomegranate peel (Punica granatum sp.) using phosphoric acid as the activating agent. Both sisal fiber activated carbon (SFAC) and pomegranate peel activated carbon (PPAC) were characterized using methylene blue number, iodine number, BET surface area, SEM, and FTIR. The BET surface area of the SFAC and PPAC were 885 and 686 m2/g, respectively. The adsorption studies using C.I. Reactive Orange 4 dye on the SFAC and PPAC were carried out. The effects of time, initial adsorbate concentration, pH, and temperature on the adsorption were studied. The isotherm studies were carried and it was found that the Langmuir and Freundlich isotherms fit well for the adsorption of RO 4 on SFAC, while adsorption of RO 4 on PPAC is better represented by the Langmuir and Temkin isotherms. Adsorption kinetics of adsorption was determined using pseudo first order, pseudo second order, Elovich and intraparticle diffusion models and it was found that the adsorption process follows pseudo second order model. Thermodynamics parameters such as changes in free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) were determined by using van't Hoff equation. The positive ΔH value indicates that RO 4 dye adsorption on SFAC and PPAC is endothermic in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号