首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Here we present new observations of two different interactions between aeolian ridges and boulder fields on Mars that provide insight into past wind conditions. First, an analysis of ridge and boulder interactions at two test sites in Proctor Crater and an additional site ~430 km to the northeast shows that ridge geometry can be affected by changes in surface roughness elements generated by boulder fields. Second, a detailed examination of some of the boulder fields found that individual boulders can generate multi-armed ‘wakes’ that have no clear proxy on Earth. The ridge/boulder dynamics suggest that transverse aeolian ridges acted as roughness during their development, indicating that they formed at a length scale greater than wind ripples. The boulder wakes seem to represent an unusual interaction between flow separation and pre-exiting ridges; why this pattern is not observed on Earth remains uncertain.  相似文献   

2.
This article presents a simple physical concept of aeolian dust accumulation, based on the behaviour of the subprocesses of dust deposition and dust erosion. The concept is tested in an aeolian dust wind tunnel. The agreement between the accumulation curve predicted by the model and the accumulation curve obtained in the experiments is close to perfect and shows that it is necessary to discriminate between the processes of aeolian dust deposition and aeolian dust accumulation. Two important thresholds determine the accumulation process. For wind speeds below the deflation threshold, the aeolian accumulation of dust increases linearly with the wind speed. For wind velocities between the deflation threshold and the accumulation limit, the sedimentation balance is above unity and there is still accumulation, though it rapidly drops once the deflation threshold has been exceeded. At wind speeds beyond the accumulation limit, the sedimentation balance is below unity and there will no longer be an accumulation of dust. The thresholds have been determined in a wind tunnel test at friction velocity u* = 0·34 m s?1 (deflation threshold) and u* = 0·43 m s?1 (accumulation limit), but these values are only indicative since they depend heavily on the characteristics of the accumulation surface and of the airborne grains. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
Aeolian processes – the erosion, transport, and deposition of sediment by wind – play important geomorphological and ecological roles in drylands. These processes are known to impact the spatial patterns of soil, nutrients, plant-available water, and vegetation in many dryland ecosystems. Tracers, such as rare earth elements and stable isotopes have been successfully used to quantify the transport and redistribution of sediment by aeolian processes in these ecosystems. However, many of the existing tracer techniques are labor-intensive and cost-prohibitive, and hence simpler alternative approaches are needed to track aeolian redistribution of sediments. To address this methodological gap, we test the applicability of a novel metal tracer-based methodology for estimating post-fire aeolian sediment redistribution, using spatio-temporal measurements of low-field magnetic susceptibility (MS). We applied magnetic metal tracers on soil microsites beneath shrub vegetation in recently burned and in control treatments in a heterogeneous landscape in the Chihuahuan desert (New Mexico, USA). Our results indicate a spatially homogeneous distribution of the magnetic tracers on the landscape after post-burn wind erosion events. MS decreased after wind erosion events on the burned shrub microsites, indicating that these areas functioned as sediment sources following the wildfire, whereas they are known to be sediment sinks in the undisturbed (e.g. not recently burned) ecosystem. This experiment represents the first step toward the development of a cost-effective and non-destructive tracer-based approach to estimate the transport and redistribution of sediment by aeolian processes. © 2018 John Wiley & Sons, Ltd.  相似文献   

4.
In aeolian sand sheets the interaction between aeolian and subaqueous processes is considered one of the principal factors that controls this depositional environment. To examine the role played by the subaqueous processes on the construction and accumulation of sand sheets, surface deposits and subsurface sedimentary sections of a currently active aeolian sand sheet, located in the Upper Tulum Valley (Argentina), have been examined. On the sand sheet surface, airflows enable the construction of nabkhas, wind‐rippled mantles (flattened accumulations of sand forming wind ripples), megaripples, and small transverse dunes. Subaqueous deposits consist of sandy current ripples covered by muddy laminae. The latter are generated by annual widespread but low‐energy floods that emanate from the nearby mountains in the aftermath of episodes of heavy precipitations. Deposits of subaqueous origin constitute 5% of the accumulated sand sheet thickness. The construction of the sand sheet is controlled by meteorological seasonal changes: the source area, the San Juan river alluvial fan, receives sediment by thaw‐waters in spring–summer; in fall–winter, when the water table lowers in the alluvial fan, the sediment is available for aeolian transport and construction of the sand sheet area. The flood events play an important role in enabling sand sheet accumulation: the muddy laminae serve to protect the underlying deposits from aeolian winnowing. Incipient cement of gypsum on the sand and vegetation cover acts as an additional stabilizing agent that promotes accumulation. Episodic and alternating events of erosion and sedimentation are considered the main reason for the absence of soils and palaeosols. Results from this study have enabled the development of a generic model with which to account for: (i) the influence of contemporaneous subaqueous processes on the construction and accumulation in recent and ancient sand sheets; and (ii) the absence of developed soils in this unstable topographic surface. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Little is known about the spatial and temporal scales of variation in aeolian processes. Studies that aim to investigate surface erodibility often sample aeolian sediment transport at the nodes of a regular grid of arbitrary size. Few aeolian transport investigations have the resources to obtain sufficient samples to produce reliable models for mapping the spatial variation of transport. This study reports the use of an innovative nested strategy for sampling multiple spatial scales simultaneously using 40 sediment samplers. Reliable models of the spatial variation in aeolian sediment transport were produced and used for ordinary punctual kriging and stochastic simulated annealing to produce maps for several wind erosion events over a 25 km2 playa in western Queensland, Australia. The results support the existence of a highly dynamic wind erosion system that was responding to possibly cyclic variation in the availability of material and fluctuations in wind energy. The spatial scale of transport was considerably larger than the small scale expected of the factors controlling surface erodibility. Thus, it appears that transport cannot be used as a surrogate of erodibility at the scale of this investigation. Simulation maps of transport provided considerably more information than those from kriging about the variability in aeolian sediment transport and its possible controlling factors. The proposed optimal sampling strategy involves a nested approach using ca 50 samplers. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
The aeolian sand transport model SAFE and the air flow model HILL were applied to evaluate cross‐shore changes at two nourished beaches and adjacent dunes and to identify the response of aeolian sand transport and morphology to several nourishment design parameters and fill characteristics. The main input of the model consisted of data on the sediment, tide and meteorological conditions, and of half‐yearly measured characteristics of topography, vegetation and sand fences. The cross‐shore profiles generated by SAFE–HILL were compared to measured cross‐shore profiles. The patterns of erosion and deposition, and the morphological development corresponded. In general, the rates of aeolian sand transport were overestimated. The impact of parameters that are related to beach nourishment (namely grain size, adaptation length and beach topography) on profile development was evaluated. Grain size affected the aeolian sand transport rate to the foredunes, and therefore the morphology. Adaptation length, which is a measure of the distance over which sediment transport adapts to a new equilibrium condition, affected the topography of the beach in particular. The topography of a beach nourishment had limited impact on both aeolian sand transport rate and morphology. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
In arid zones, many active aeolian dunes terminate at ephemeral and perennial desert rivers. The desert rivers show very high rates of sediment transport that cause deleterious downstream effects on the river system and ecology. High sediment loading has been attributed to severe water erosion of sparsely covered watersheds during infrequent but heavy rainfall. Although aeolian erosion is known to lead to high rates of wind‐blown sand transport, direct confirmation of whether the aeolian processes accelerate or inhibit fluvial sediment loss is lacking. Here, we show that an aeolian‐fluvial cycling process is responsible for the high rate of suspended sediment transport in a Sudalaer ephemeral desert channel in the Ordos Plateau of China. Frequent aeolian processes, but low frequency (once every 3 years on average) flooding, occur in this region. Wind‐blown saltating grains appeared to be unable to cross the desert channel because of interruption of channel‐induced recirculating air flow, and therefore tended to settle in the channel during the windy seasons, leading to channel narrowing. During flooding, this narrowed channel was found to yield a threefold increase in suspended sediment loading and a 3.4‐fold increase in the weight percentage of the 0.08–0.2 mm sediment fraction on 18 July 2012. Loss of stored aeolian sand due to channel erosion accounted for about half of the total sediment yield in this watershed. These findings show that aeolian processes play an essential role in accelerating the sediment yield from a watershed characterized by aeolian‐fluvial interplay and also suggest that the drier the region and the greater the aeolian process, the more the aeolian process contributes to fluvial sediment yield. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Photoclinometry was used to analyze selected High Resolution Imaging Science Experiment (HiRISE) images of Transverse Aeolian Ridges (TARs) on Mars. Sixty Mars profiles have been assessed and a summary of their morphologic characteristics compiled. Measurements collected quantified the symmetry of the feature, the curvature of the crest, flank slopes, width, height and several comparative ratios. Results show that small TARs have physical characteristics generally similar to measurements obtained from lower resolution images of Mars. The HiRISE image data allow for much improved sampling along each feature; the improved resolution reveals relatively few features not seen in earlier studies, but is well suited for topographic sampling. Measured TAR profiles, when scaled by the width of the feature, can be compared to similarly scaled profiles for terrestrial dunes and megaripples. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

9.
With both sides of the Taklimakan Desert highway line as the study area, three typical aeolian sand landforms, i.e. complex dune ridge, barchan dune and flat sand land, were selected as sand beds for the observation, analysis and research of the characteristics of aeolian sand movement such as aeolian sand stream structure, sand transport intensity, etc. in the Taklimakan Desert. The results show that there is a linear relation between the height and the log of sand transport rate over transverse dune chain, longitudinal dune ridge and flat sand land, i.e. the sand transport percentage decreases exponentially with increasing height. Sand transport rate within the 10 cm height above the bed surface accounts for 80%-95% of the total sand transport rate of the observed height (40 cm), while the sand transport rate in 20 cm occupies 98% of the total amount. Sand transport rate (g·cm-1·min-1) differs greatly with respect to different landform types and different topographic positions. Based on the investig  相似文献   

10.
Experimental study of aeolian sand ripples in a wind tunnel   总被引:1,自引:0,他引:1       下载免费PDF全文
The topographic parameters and propagation velocity of aeolian sand ripples reflect complex erosion, transport, and deposition processes of sand on the land surface. In this study, three Nikon cameras located in the windward (0–1 m), middle (4.5–5.5 m), and downwind (9–10 m) zones of a 10 m long sand bed are used to continuously record changes in sand ripples. Based on the data extracted from these images, this study reaches the following conclusions. (1) The initial formation and full development times of sand ripples over a flatbed decrease with wind velocity. (2) The wavelengths of full development sand ripples are approximately twice the wavelengths of initially formed sand ripples. Both wavelengths increase linearly with friction velocity. During the developing stage of sand ripples, the wavelength increases linearly with time. (3) The propagation velocity of full development sand ripples is approximately 0.6 times that of the initially formed sand ripples. The propagation velocity of both initial and full development of sand ripples increase as power functions with respect to friction velocity. During the developing stage of sand ripples, the propagation velocity decreases with time following a power law. These results provide new information for understanding the formation and evolution of aeolian sand ripples and help improve numerical simulations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
A remote sensing technique for assessing beach surface moisture was used to provide insight into beach‐surface evolution during an aeolian event. An experiment was carried out on 21 October 2007 at Greenwich Dunes, Prince Edward Island National Park, Canada, during which cameras were mounted on a mast on the foredune crest at a height of about 14 m above the beach. Maps of beach surface moisture were created based on a calibrated relationship between surface brightness from the photographs and surface moisture content measured in situ at points spaced every 2.5 m along a transect using a Delta‐T moisture probe. A time sequence of maps of surface moisture content captured beach surface evolution through the transport event at a spatial and temporal resolution that would be difficult to achieve with other sampling techniques such as impedance probes. Erosion of the foreshore and berm crest resulted in an increase in surface moisture content in these areas as the wetter underlying sediments were exposed. Flow expansion downwind of the berm crest led to sand deposition and a consequent decrease in surface moisture content. Remote sensing systems such as the one presented here allow observations of the combined evolution of beach surface moisture, shoreline position, and fetch distances during short‐term experiments and hence provide a comprehensive rendering of sediment erosion and transport processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents results from one of the few scientific studies to examine the physical characteristics of aeolian sediment transport in an alpine area, where topographically reinforced foehn winds initiate dust storm events. The major objective of this study is to improve knowledge of aeolian processes in mid-latitude alpine regions experiencing extreme wind speeds. Of particular interest is the role of surface characteristics in contributing to the unusually deep saltation layer which is seen to form over fluvio-glacial deposits in the Southern Alps of New Zealand. Sediment was collected at several heights (0ċ5, 1, 2 and 4 m) and locations over a large alpine braided river delta, and standard laboratory techniques used to examine grain size characteristics. An image processing technique was also used to evaluate grain roundness. Grains filtered from the airstream at 0ċ5 m and 1 m above such surfaces were found to display a mean grain size of approximately 300 to 435 μm, resembling grain size characteristics of saltation clouds previously observed in high latitude, cold climate locations, in contrast to desert and prairie environments. Samples collected at 2 and 4 m above the surface were found to consist of 60 to 65 per cent sand-sized material, with some grains exceeding 1–1ċ5 mm in diameter. Grain shape analysis conducted on silt- and clay-sized grains filtered from the airstream above mixed sand and gravel surfaces showed such grains to display an increase in grain roundness with height. This characteristic is thought to reflect the airstream's shape-sorting ability and has important implications with respect to the often observed increase in grain roundness in aeolian deposits with increasing distance from source areas. Namely, if more rounded grains are preferentially carried higher into the airstream and therefore into regions of higher wind speed, they should theoretically be transported further from the entrainment zone before being deposited. The high wind speeds observed, often exceeding 30 m s−1, are seen to transport significantly larger sediment than reported in the literature for desert and prairie environments. In addition, the mixture of grain sizes, and especially the pebble- and cobble-sized clasts that dominate the fluvio-glacial deposits associated with the braided rivers in this mountain region, also appear to increase significantly the trajectory height of saltating sand grains. As a result of these two factors, the depth of the saltation cloud often exceeds 1 m. Observations made in this study therefore highlight the need for field and laboratory aeolian process studies to be extended to examine grain transport over coarse-grained beds during much higher wind velocities than typically reported in the literature. Such studies would provide a valuable insight into aeolian processes in high latitude/altitude environments, such as loess genesis. © 1997 by John Wiley & Sons, Ltd.  相似文献   

13.
Many stone‐covered surfaces on Earth are subject to aeolian deposition of atmospheric dust. This study investigates how the deposition of dust is affected when rock fragments become gradually more embedded in the ground or, inversely, become more concentrated on the surface. Experiments were executed in an aeolian dust wind tunnel with eight different types of pebbles. The following parameters were measured: dust deposition on the pebbles, dust deposition between and underneath pebbles, total dust deposition (pebbles + inter‐pebble space), and the fraction, of total deposition, of dust caught by the pebbles alone. The absolute amount of dust deposition and the dust deposition density (dust deposition per unit surface) were studied for each parameter. The effects exerted by pebble size, pebble flattening, pebble elongation and wind speed were also investigated. Dust patterns on and around pebbles were also studied via flow visualization. The absolute amount of dust settling on pebbles decreases the more that the pebbles become embedded. Dust deposition density on pebbles, on the other hand, increases with embedding. The more pebbles become embedded in the soil, the more efficient the process of dust deposition on pebbles becomes. Dust deposition between and underneath pebbles increases with pebble embedding. Dust deposition density between and underneath pebbles is maximum at 50 per cent embedding, showing that in this area dust deposition is most efficient when pebbles are halfway embedded. Total deposition slightly decreases the more pebbles become embedded, but total dust deposition density increases with embedding. Aerodynamic flow separation and diverging and converging airflow play an important role in the process of dust deposition on stone‐covered surfaces. The more pebbles protrude above the soil, the more they act as an obstacle and the more they disturb the air and dust flow creating scouring zones, flow separation bubbles and shelter areas for the dust. All these effects diminish as pebbles become more embedded in the soil. However, perturbations in dust patterns remain visible until pebbles have disappeared entirely. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
This short communication describes the development and application of analytical reasoning to quantify instability of an aeolian environment using scale‐dependent information coupled with conceptual knowledge of process and feedback mechanisms. Specifically, a simple Fuzzy Cognitive Map (FCM) for aeolian landscape instability was developed that represents conceptual knowledge of key biophysical processes and feedbacks. Model inputs include satellite‐derived surface biophysical and geomorphometric parameters. FCMs are a knowledge‐based artificial intelligence (AI) technique that merges fuzzy logic and neural computing in which knowledge or concepts are structured as a web of relationships that is similar to both human reasoning and the human decision‐making process. Given simple process–form relationships, the analytical reasoning model is able to map the influence of land management practices and the geomorphology of the inherited surface on aeolian instability within the South Texas Sand Sheet. Results suggest that FCMs can be used to formalize process–form relationships and information integration analogous to human cognition with future iterations accounting for the spatial interactions and temporal lags across the sand sheets. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
王尧鸿    晁磊  杨晓明    李志强  秦颖 《世界地震工程》2022,38(4):113-119
为研究橡胶集料风积沙混凝土柱的抗震性能,制作了4根相同尺寸的混凝土柱试件,其中包括普通混凝土柱、风积沙混凝土柱、橡胶集料混凝土柱和橡胶集料风积沙混凝土柱。通过低周反复荷载试验,分析各试件的破坏现象、滞回曲线、骨架曲线、刚度退化和延性等抗震性能指标。在试验的基础上,根据能量耗散原理建立累积损伤评价模型,并对结构进行了累积损伤分析。研究结果表明:10%橡胶集料的掺入能够改善混凝土柱的变形能力,但混凝土柱的承载力有所降低;30%风积沙的掺入可以改善混凝土柱的抗震性能;橡胶集料风积沙混凝土柱具有较好的滞回性能,且耗能能力和延性性能明显高于其余试件,柱的抗震性能得到提高;通过累积损伤分析表明:适量掺入橡胶集料和风积沙的可以有效减缓试件的损伤,且该累积损伤模型能够较好的反映出各试件的损伤程度。  相似文献   

16.
Aeolian sand landforms in the Yarlung Zangbo River valley can be divided into 4 classes and 21 types. The river valley has favourable environment conditions for the development of aeolian sand landforms. Simulation of MM4 mid-scale climate model showed that the near-surface flow field and wind vector field during the winter half year in the river valley are generally favourable for the aeolian sand deposition and as a whole they also affect the distribution mneu and sites of aeolian sand landforms. Sand dunes and sand dune grouup in the river valley developed mainly in three ways, namely windward retarding deposition, leeward back flow deposition and bend circumfluence deposition. Through alternating positive-reverse processes of sand dune formation under wind actions and sand dune vanishing under water actions, sand dunes developed fmm primary zone thmugh main-body zone then to vanishing zone where climbing dunes and falling dunes are declining and are even disappearing. Project supported by the National Natural Science Foundation of China (Grant No. 49471009) and Xi’an State Key Laboratory of Loess and Quaternary Geology (Grant No. 9401)  相似文献   

17.
Blowouts are the most regionally pervasive active aeolian landform on the northern Great Plains of North America. This study reports a long‐term investigation into the morphological development of two adjacent blowouts in a continental dune field. The blowouts were monitored for a decade in the Bigstick Sand Hills of southwestern Saskatchewan, Canada. Topographic changes were determined from dense arrays of erosion pins in each blowout (1 per 4 m2, n = 171; and 1 per 16 m2, n = 150). Pin measurements were made 16 times between May 1994 and May 2004. Over the decade both blowouts expanded and more than doubled in volume. Differences in form–flow interactions have caused the larger of the two blowouts to deposit more than a metre of sediment within the deflation basin, and the smaller blowout to erode by more than a metre. A negative feedback effect was triggered when the larger blowout reached a critical size around 1994 (60 m × 36 m × 8·1 m, length × width × height) when sediment was no longer eroded from the deflation basin. A positive feedback in the smaller blowout continues to facilitate erosion from the deflation basin. Monthly observations since 2002 indicate that aspect plays an important role in the development of these blowouts by creating a spatial asymmetry in sediment availability. Sediment is more readily available throughout the year on south‐facing slopes, which receive greater insolation than north‐facing slopes and are often drier and more frequently thawed in this cold‐climate environment. Comparisons between climate data from a remote meteorological station 45 km to the southwest and sediment transport indices developed from the erosion pin data produced very few correlations significant at the 95 per cent confidence level. Nevertheless, the signs of the correlation coefficients indicate that sediment erosion and deposition in both blowouts respond similarly to the following climate variables recorded at the remote station: (i) the amount of precipitation, (ii) the transport capacity of the wind and (iii) transporting winds from a directional wedge between 180 and 330°. Taken altogether, the results from this study highlight the importance of climate and feedback effects in blowout development that may be extended to other blowouts in continental and coastal settings. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
A new type of horizontal trap was developed for measuring the aeolian sand transport rate on a flat surface. The trap consists of an adjustable frame that is embedded level with the sand surface, into which a plastic liner is installed and filled with water to capture the blown sand. The water trap has high efficiency and does not disturb the wind field or induce upwind scour. Deployment on Padre Island, Texas, indicated that this portable and adjustable trap catches and retains all the sand blown into it, even under relatively strong wind. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
Total soil erosion is a result of both aeolian and fluvial processes, which is particularly true in semiarid regions. However, although physically interrelated, these two processes have conventionally been studied and modelled independently. Recently, a few researchers highlighted the importance and need of considering both processes in concert as well as their interactions, but they did not give specific modelling approaches or algorithms. The objectives of this study were to (1) formulate an integrated aeolian and fluvial prediction (IAFP) model, (2) parameterize the IAFP model for a semiarid steppe watershed located in northeastern China by using literature and historical data and (3) use the model to predict soil erosion in the watershed and assess the sensitivity of predicted erosion to environmental factors such as soil moisture and vegetation coverage. The results indicated that the IAFP model can capture the dynamic interactions between aeolian and fluvial erosion processes. For the study watershed, the model predicted a higher occurrence frequency of fluvial erosion than that of aeolian erosion and showed that these two processes almost equivalently contributed to the average total erosion of 0.07 mm year?1 across the simulation period. The ‘existing’ vegetation cover can provide an overall good protection of the soils, although the vegetation cover was predicted to play a larger role in a drier than a wetter year as well as in controlling aeolian than fluvial erosion. In addition, soil erosion was predicted to be more sensitive to soil moisture than land coverage. A soil moisture level of 0.23–0.25 was determined to be the probable switch point from aeolian‐to fluvial‐dominant process or vice versa. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The geomorphology, lithology and chronostratigraphy of extensive, late Pleistocene inland and river dune sands, aeolian sand sheets (‘cover sands’) and loess deposits of periglacial origin in northwestern Europe are well known. However, the idea that some of these aeolian sediments result from niveo-aeolian processes is still an open question, as no diagnostic sedimentary features have yet been reported. Moreover, actual niveo-aeolian sediments and related denivation forms, reported from various cold-climate regions, are not suitable analogues. Recent observations in active dune fields in northwestern Alaska indicate that interstratification of wind-driven snow and sand preferentially occurs on slip faces of transverse, barchanoid or parabolic dune ridges. Annual denivation forms develop: e.g. snow ramparts, sinkholes, snow hummocks, snow meltwater fans and tensional cracks. The surface consists of a cracked wet sand layer with a dimpled surface and spongy structure. Although the preservation potential of these features is low in this specific case, similar features may be observed in ancient sediments elsewhere and provide useful palaeoclimatic indicators. The niveo-aeolian concept should therefore not specifically be related to late Pleistocene cover sand deposition in northwestern Europe, as previously assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号