首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characteristics and distributions of humic acid(HA) and soil organic matter(SOM) in a yellow soil profile and a limestone soil profile of the southwest China Karst area were systematically investigated to reveal their evolutions in different soils of the study area. The results showed that characteristics and distribution of SOM along the two soil profiles were notably different. Total organic carbon(TOC) contents of soil samples decreased just slightly along the limestone soil profile but sharply along the yellow soil profile. TOCs of the limestone soils were significantly higher than those of the corresponding yellow soils, and C/N ratios of SOMs showed a similar variation trend to that of TOCs, indicating that SOM can be better conserved in the limestone soil than in the yellow soil. The soil humic acids were exhaustively extracted and further fractionated according to their apparent molecular weights using ultrafiltration techniques to explore underlying conservation mechanisms. The result showed that C/N ratios of HAs from different limestone soil layers were relatively stable and that large molecular HA fractions predominated the bulk HA of the top soil, indicating that HA in the limestone profile was protected while bio and chemical degradations were retarded. Combined with organic elements contents and mineral contents of two soils, weconcluded that high calcium contents in limestone soils may play a key role in SOM conservation by forming complexation compounds with HAs or/and enclosing SOMs with hypergene CaCO_3 precipitation.  相似文献   

2.
The soil aggregate stability is a key property of soil quality and reflects soil quality and anti‐erosion ability. The transition matrix between initial and final aggregates condition was established by modifying Niewczas and Witkowska‐Walczak's method by not considering the artificial weights and each size of aggregates fraction on the basis of three reasonable assumptions, and soil aggregate stability index (ASI) was formed through preserving each size of aggregates probability. This ASI is identical to the result by reference, and the transition matrix can be showed to evaluate the soil aggregates stability. Using the transition matrix was furthermore to analyze anti‐breaking ability of different size aggregate by reference material. We found there were different effects for each size aggregate by four methods, simulation rainfall, one cycle of wetting–drying, ten cycles of wetting–drying, and Yoder wetting–sieving. The Yoder wetting–sieving is a severe method that destructed soil aggregates. The ASI by modifying transition matrix method was used to evaluate the aggregates stability under different land utilization in Karst region in Chongqing, China. The ASI of agricultural utilization was lower than abounded cultivated land, shrub‐grass land, secondary forest land, and primeval forest land. For some selected soil properties, when SOM content was <60 g/kg, ASI increased along with the SOM increase. Once the SOM content was >60 g/kg, the ASI was almost unchanged. The sorption moisture content of air‐drying acutely affected ASI too, and the ASI increased along the sorption moisture increasing. SOM content and sorption markedly affected the preserving probability of larger aggregates such as 10–5, 5–3, 3–2, 2–1, and 1–0.5 mm size class. Although CaCO3 and clay content did not influence preserving probability of each size class of aggregates fiercely, but the influence on small aggregates was higher than that of larger aggregates. The modified transition matrix method could not only calculate soil aggregates stability index, but also analyze more parameters of aggregate experiment, and bring out the each size aggregates characteristics. Thus, the modified transition matrix method could be a better tool to understand soil quality.  相似文献   

3.
Aggregate disintegration is a critical process in soil splash erosion. However, the effect of soil organic carbon (SOC) and its fractions on soil aggregates disintegration is still not clear. In this study, five soils with similar clay contents and different contents of SOC have been used. The effects of slaking and mechanical striking on splash erosion were distinguished by using deionized water and 95% ethanol as raindrops. The simulated rainfall experiments were carried out in four heights (0.5, 1.0, 1.5 and 2.0 m). The result indicated that the soil aggregate stability increased with the increases of SOC and light fraction organic carbon (LFOC). The relative slaking and the mechanical striking index increased with the decreases of SOC and LFOC. The reduction of macroaggregates in eroded soil gradually decreased with the increase of SOC and LFOC, especially in alcohol test. The amount of macroaggregates (>0.25 mm) in deionized water tests were significantly less than that in alcohol tests under the same rainfall heights. The contribution of slaking to splash erosion increased with the decrease of heavy fractions organic carbon. The contribution of mechanical striking was dominant when the rainfall kinetic energy increased to a range of threshold between 9 J m−2 mm−1 and 12 m−2 mm−1. This study could provide the scientific basis for deeply understanding the mechanism of soil aggregates disintegration and splash erosion.  相似文献   

4.
The effect of erosional detachment, transport, and deposition of topsoil on the stock of soil organic matter (SOM) and its association with soil minerals has been a focus of a growing number of studies. A particularly lively debate is currently centered on the questions of whether terrestrial sedimentation of previously eroded SOM may constitute a relevant sink for atmospheric carbon dioxide (CO2), and how ‘stable’ such carbon (C) might be on multidecadal timescales. In this commentary, we illustrate how redistribution of eroded SOM within a landscape can create situations that are not adequately described by the jargon commonly used to characterize C turnover dynamics. We argue that more quantitative and scientifically rigorous categories are needed to describe soil C turnover and to promote the development of innovative, numerical models of C dynamics in landscapes characterized by significant mass movement. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Organic carbon (OC) is easily enriched in sediment particles of different sizes due to aggregate breakdown and selective transport for sheet erosion. However, the transport of aggregate-associated OC has not been thoroughly investigated. To address this issue, 27 simulated rainfall experiments were conducted in a 1 m × 0.35 m box on slope gradients of 15°, 10°, and 15°and under three rainfall intensities of 45 mm h−1, 90 mm h−1 and 120 mm h−1. The results showed that OC was obviously enriched in sediment particles of different sizes under sheet erosion. The soil organic carbon (SOC) concentrations of each aggregate size class in sediments were different from those in the original soil, especially when the rainfall intensity or slope was sufficiently low, such as 45 mm h–1 or 5°, respectively. Under a slope of 5°, the SOC enrichment ratios (ERocs) of small macroaggregates and microaggregates were high but decreased over time. As rainfall intensity increased, OC became enriched in increasingly fine sediment particles. Under a rainfall intensity of 45 mm h–1, the ERocs of the different aggregate size classes were always high throughout the entire erosion process. Under a rainfall intensity of > 45 mm h–1 and slope of > 5°, the ERocs of the different aggregate size classes were close to 1.0, especially those of clay and silt. Therefore, the high ERocs in sediments resulted from the first transport of effective clay. Among total SOC loss, the proportion of OC loss caused by the transport of microaggregates and silt plus clay-sized particles was greater than 50%. We also found that low stream power and low water depth were two requirements for the high ERocs in aggregates. Stream power was closely related to sediment particle distribution. Flow velocity was significantly and positively related to the percentage of OC-enriched macroaggregates in the sediments (P > 0.01). Our study will provide important information for understanding the fate of SOC and building physical-based SOC transport models. © 2019 John Wiley & Sons, Ltd.  相似文献   

6.
Soil erosion induces soil redistribution within the landscape and thus contributes to the spatial variability of soil quality. This study complements a previous experimentation initiated by the authors focusing on soil redistribution as a result of soil erosion, as indicated by caesium‐137 (137Cs) measurements, in a small agricultural field in Canada. The spatial variability of soil organic matter (SOM) was characterized using geostatistics, which consider the randomized and structured nature of spatial variables and the spatial distribution of the samples. The spatial correlation of SOM (in percentages) patterns in the topsoil was established taking into account the spatial structure present in the data. A significant autocorrelation and reliable variograms were found with a R2 ≥ 0·9, thus demonstrating a strong spatial dependence. Ordinary Kriging (OK) interpolation provided the best cross validation (r2 = 0·35). OK and inverse distance weighting power two (IDW2) interpolation approaches produced similar estimates of the total SOM content of the topsoil (0–20 cm) of the experimental field, i.e. 211 and 213 tonnes, respectively. However, the two approaches produced differences in the spatial distribution patterns and the relative magnitude of some SOM content classes. The spatialization of SOM and soil redistribution variability – as evidenced by 137Cs measurements – is a first step towards the assessment of the impact of soil erosion on SOM losses to recommend conservation measures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A characterization method for AOX in surface water samples was developed and tested. The method involves fractionation using a hydrophobic C18 resin and a weak anionic exchange resin and allows the fractionation of the AOX pool of surface water samples into four fractions: (1) hydrophilic acidic, (2) hydrophilic non‐acidic, (3) hydrophobic acidic, and (4) hydrophobic non‐acidic. The adsorption analysis was verified with AOX‐relevant model compounds and was applied to characterize the AOX pool of a stream sample from the Moskva river (Russia). In addition to the fractionation analysis, size‐exclusion chromatography was used to characterize the AOX pool of the sample studied. Hydrophilic acids made up the major fraction of the AOX pool (55 %). Among this fraction chlorinated high‐molecular acids (humic substances) made up the main fraction (35 %).  相似文献   

8.
In this study our main objective was to quantify water interrill erosion in the sloping lands of Southeast Asia, one of the most bio‐geochemically active regions of the world. Investigations were performed on a typical hillslope of Northern Laos subjected to slash and burn agriculture practiced as shifting cultivation. Situations with different periods of the shifting cultivation cycle (secondary forest, upland rice cultivation following a four‐year fallow period and three‐year continuous upland rice cultivation) and soil orders (Ultisols, Alfisols, Inceptisols) were selected. One metre square micro‐plots were installed to quantify the soil material removed by either detachment of entire soil aggregate or aggregate destruction, and the detached material transported by thin sheet flow, the main mechanisms of interrill erosion. In addition, laboratory tests were carried out to quantify the aggregate destruction in the process of water erosion by slaking, dispersion and mechanical breakdown. The average runoff coefficient (R) evaluated throughout the 2002 rainy season was 30·1 per cent and the interrill erosion was 1413 g m?2 yr?1 for sediments and 68 g C m?2 yr?1 for soil organic carbon, which was relatively high. Among the mechanisms of interrill water erosion, aggregate destruction was low and mostly caused by mechanical breakdown due to raindrops, thus leading to the conclusion that detachment and further transport by the shallow runoff of macro‐aggregates predominates. R ranged from 23·1 to 35·8 per cent. It decreased with the proportion of mosses on the soil surface and soil surface coverage, and increased with increasing proportion of structural crust, thus confirming previous results. Water erosion varied from 621 to 2433 g m?2 yr?1 for sediments and from 31 to 146 g C m?2 yr?1 for soil organic carbon, and significantly increased with increasing clay content of the surface horizon, probably due to the formation of easily detachable and transportable sand‐size aggregates, and proportion of macro‐aggregates not embedded in the soil matrix and prone to transport. In addition, water erosion decreased with increasing proportion of structural crusts, probably due to their higher hardness, and when cultivation follows a fallow period rather than after a long period of cultivation due to the greater occurrence of algae on the soil surface, which affords physical protection and greater aggregate stability through binding and gluing. This study based on simultaneous field and laboratory investigations allowed successful identification and quantification of the main erosion mechanisms and controlling factors of interrill erosion, which will give arguments to further set up optimal strategies for sustainable use of the sloping lands of Southeast Asia. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Isotopic and biochemical features of suspended particulate organic matter (POM) in the water column and of sedimentary organic matter (SOM) were investigated seasonally in the Bay of Marseilles. Biochemical compounds (carbohydrates, lipids and proteins) were consistently more concentrated in POM than in SOM, with SOM mainly composed of insoluble carbohydrates. POM displayed lower δ(13)C and higher δ(15)N values than SOM. Phytoplanktonic production represented the major contributor of POM year-round with spatial and seasonal variations. Climatic parameters and wind-induced currents created differences in POM contributions, with more important inputs of terrestrial OM at one sampling site. Spatial and seasonal variations were lower for SOM. The composition of this pool appeared to be linked with the permanent inputs of phytoplankton and Posidonia oceanica detritus. The combined use of biochemical and isotopic analyses was a useful tool to characterize OM pools and would help understanding the trophic functioning of this coastal environment.  相似文献   

10.
The relationship between stream water DOC concentrations and soil organic C pools was investigated at a range of spatial scales in subcatchments of the River Dee system in north‐east Scotland. Catchment percentage peat cover and soil C pools, calculated using local, national and international soils databases, were related to mean DOC concentrations in streams draining small‐ (<5 km2), medium‐ (12–38 km2) and large‐scale (56–150 km2) catchments. The results show that, whilst soil C pool is a good predictor of stream water DOC concentration at all three scales, the strongest relationships were found in the small‐scale catchments. In addition, in both the small‐ and large‐scale catchments, percentage peat cover was as a good predictor of stream water DOC concentration as catchment soil C pool. The data also showed that, for a given soil C pool, streams draining lowland (<700 m) catchments had higher DOC concentrations than those draining upland (>700 m) catchments, suggesting that disturbance and land use may have a small effect on DOC concentration. Our results therefore suggest that the relationship between stream water DOC concentration and catchment soil C pools exists at a range of spatial scales and this relationship appears to be sufficiently robust to be used to predict the effects of changes in catchment soil C storage on stream water DOC concentration. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
Previous field and laboratory studies showed that organically bound nutrients can contribute largely to the export of N, P, and S from soil into aquatic systems. One possible determinant for the losses of dissolved organic nutrients leaving the soil environment could be their distribution between dissolved organic matter (DOM) fractions of different mobility in soil. To elucidate the potential influence of DOM fractions under varying flow conditions on the vertical translocation of organically bound nutrients, we determined the concentrations and fluxes of dissolved organic C (DOC) and nutrients (DON, DOP, DOS) in soil water under a Scots pine (Pinus sylvestris L.) and a European beech (Fagus sylvatica L.) forest. We sampled seepage water from the organic forest floor layer and the mineral subsoil using zero‐tension lysimeters and soil pore water using tension lysimeters and suction cups. DOM in soil water was fractionated into hydrophilic and hydrophobic compounds by XAD‐8 at pH 2. We found that the organic forest floor layers were large sources for DOC, DON, DOP, and DOS. The dissolved organic nutrients were mainly concentrated in the hydrophilic DOM fraction which proved to be more mobile in mineral soil pore water than the hydrophobic one. Consequently, the concentrations and fluxes of dissolved organic nutrients decreased less with depth than those of DOC. Concentrations as well as fluxes in subsoil pore water of DOC and dissolved organic nutrients in the studied weakly developed soils were high as compared with literature data on deeply developed forest soils. Under conditions of rapid water flow through the strongly structured mineral soil at the beech site, almost no retention of DOM took place and thus the influence of the distribution of organically bound nutrients between the DOM fractions on the export of DON, DOP, and DOS was negligible.  相似文献   

12.
The enrichment of organic matter in interrill sediment is well documented; however, the respective roles of soil organic matter (SOM) and interrill erosion processes for the enrichment are unclear. In this study, organic matter content of sediment generated on two silts with almost identical textures, but different organic matter contents and aggregations, was tested. Artificial rainfall was applied to the soils in wet, dry and crusted initial conditions to determine the effects of soil moisture and rainfall and drying history on organic matter enrichment in interrill sediment. While erosional response of the soils varied significantly, organic matter enrichment of sediment was not sensitive to initial soil conditions. However, enrichment was higher on the silt with a lower organic matter content and lower interrill erodibility. The results show that enrichment of organic matter in interrill sediment is not directly related to either SOM content or soil interrill erodibility, but is dominated by interrill erosion processes. As a consequence of the complex interaction between soil, organic matter and interrill erosion processes, erodibility of organic matter should be treated as a separate variable in erosion models. Further research on aggregate breakdown, in particular the content and fate of the organic matter in the soil fragments, is required. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
In the northern Loess Plateau that has been severely affected by wind–water erosion, shifts from arable land to forest or grasslands have been promoted since 1998, using both native and introduced vegetation. However, there is little knowledge of the ecological consequences and effectiveness of the vegetation restoration in the region. Therefore, relationships between watershed‐scale soil physical properties and plant recovery processes were analyzed. The results show that soil physical properties such as bulk density, hydraulic conductivity, mean weight diameter, and the stability of >1 mm macro‐aggregates have been significantly ameliorated in the 0–20 cm soil layer under secondary natural grasslands. In contrast, re‐vegetation with introduced species such as Caragana korshinskii or Medicago sativa had adversely affected the soil physical properties, probably due to the deterioration of soil water conditions and lower organic matter inputs resulting from severe erosion. Reductions in bulk density and increases in saturated hydraulic conductivity could be used as indicators of soil structure amelioration since they are closely related to most other measured properties. Practical considerations for future re‐vegetation projects are suggested, particularly that native species with lower water consumption rates than the introduced species should be used to avoid further soil degradation.  相似文献   

14.
白军红  邓伟  张玉霞 《湖泊科学》2002,14(2):145-151
本文以乌兰泡湿地为研究对象,对该区环带状植被区湿地土壤有机质有全氮的空间分布规律进行了初步研究,结果表明不同植被区养发含量分异趋势一致,但水平分异显著,沿土壤水分梯度变化而变化,表现为蓼区>香蒲区>芦苇区,反映出距泡心越远含量越低的规律;各植被区土壤碳氮比都相对较低(在5-12之间),表层土壤碳氮经值也沿土吉水分梯度变化,表现为芦苇区>香莆区>蓼区;泡沼湿地土壤与草原土壤的碳氮比对水分条件及有机质和全氮的含量的响应差异显著;水分和植被是影响其水平分异的关键因子,而湿地土壤pH值并不是影响土壤有机质及全氮分异的主要因子。  相似文献   

15.
Runoff from boreal hillslopes is often affected by distinct soil boundaries, including the frozen boundary and the organic‐mineral boundary (OMB), where highly porous and hydraulically conductive organic material overlies fine‐grained mineral soils. Viewed from the surface, ground cover appears as a patchwork on sub‐meter scales, with thick, moss mats interspersed with lichen‐covered, silty soils with gravel inclusions. We conducted a decameter‐scale subsurface tracer test on a boreal forest hillslope in interior Alaska to quantify locations and mechanisms of transport and storage in these soils, focusing on the OMB. A sodium bromide tracer was added as a slug addition to a pit and sampled at 40 down‐gradient wells, screened primarily at the OMB and within a 7 × 12 m well field. We maintained an elevated head in the injection pit for 8.5 hr to simulate a storm. Tracer breakthrough velocities ranged from <0.12 to 0.93 m hr?1, with the highest velocities in lichen‐covered soils. After 12 hr and cessation of the elevated head, the tracer coalesced and was only detected in thick mosses at a trough in the OMB. By 24 hr, approximately 17% of the tracer mass could be accounted for. The majority of the mass loss occurred between 4 and 12 hr, while the tracer was in contact with lichen‐covered soils, which is consistent with tracer transport into deeper flow paths via preferential flow through discrete gravelly areas. Slow breakthroughs suggest that storage and exchange also occurred in shallow soils, likely related to saturation and drainage in fine‐grained mineral soils caused by the elevated hydraulic head. These findings highlight the complex nature of storage and transmission of water and solutes from boreal hillslopes to streams and are particularly relevant given rapid changes to boreal environments related to climate change, thawing permafrost and increasing fire severity.  相似文献   

16.
Research over the last decade has shown that the suspended sediment loads of many rivers are dominated by composite particles. These particles are also known as aggregates or flocs, and are commonly made up of constituent mineral particles, which evidence a wide range of grain sizes, and organic matter. The resulting in situ or effective particle size characteristics of fluvial suspended sediment exert a major control on all processes of entrainment, transport and deposition. The significance of composite suspended sediment particles in glacial meltwater streams has, however, not been established. Existing data on the particle size characteristics of suspended sediment in glacial meltwaters relate to the dispersed mineral fraction (absolute particle size), which, for certain size fractions, may bear little relationship to the effective or in situ distribution. Existing understanding of composite particle formation within freshwater environments would suggest that in‐stream flocculation processes do not take place in glacial meltwater systems because of the absence of organic binding agents. However, we report preliminary scanning electron microscopy data for one Alpine and two Himalayan glaciers that show composite particles are present in the suspended sediment load of the meltwater system. The genesis and structure of these composite particles and their constituent grain size characteristics are discussed. We present evidence for the existence of both aggregates, or composite particles whose features are largely inherited from source materials, and flocs, which represent composite particles produced by in‐stream flocculation processes. In the absence of organic materials, the latter may result solely from electrochemical flocculation in the meltwater sediment system. This type of floc formation has not been reported previously in the freshwater fluvial environment. Further work is needed to test the wider significance of these data and to investigate the effective particle size characteristics of suspended sediment associated with high concentration outburst events. Such events make a major contribution to suspended sediment fluxes in meltwater streams and may provide conditions that are conducive to composite particle formation by flocculation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
The partially decomposed organic layer (duff: F and H layers) of the forest floor is an important boundary between the soil and atmospheric processes. Here we use both empirical data and a three‐dimensional coupled heat and water budget model to explain the duff hydrological hillslope shift between very brief wet periods when lateral flow in the duff and infiltration into the mineral soil occur and dry periods when evaporative flow dominates and both lateral and mineral soil flow are not important. The duff moisture transitions from wet to dry periods were the result of low lateral flow which moves liquid and water vapour only centimetres to metres, very rapidly and mostly in the H layer immediately after precipitation. During wet periods, the net lateral fluxes were negative on divergent areas and positive on convergent areas of the hillslope, leading to a net moisture loss in divergent areas and a net gain in convergent areas. The response to lateral flow in the H layer was more rapid than in the F layer. The transition from the lateral downwards flow to mineral soil to evaporative control was within approximately 48 h of precipitation. Canopy species and aspect were important with lodgepole pine, southwest aspect and 4‐cm deep duff controlled by evaporative processes while Engelmann spruce, northeast aspect and 30‐cm duff were more controlled by hillslope redistribution processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
This paper describes laboratory testing of 148 samples collected from Southern Alberta for erosion by wash and splash. Rainfall intensity was held constant during these tests. Soil aggregation was the most significant variable explaining soil loss. The significance of other soil properties, such as organic carbon and clay content is variable, depending on the interrelationships among aggregate stability, organic content, and clay content of particular soils. Variations in erodibility of the major soils examined are explained by the resistance of aggregates to compaction and dispersion. Splash detachment and wash transport are the dominant erosion mechanisms in inter-rill areas.  相似文献   

19.
Freezing and thawing processes play an important role for the gravitational transport of surface materials on steep mountain slopes in Japan. The effects of deforestation on frost heave activity were observed through the 2012/2013 winter season in Ikawa University Forest, a southern mountainous area in central Japan (1180–1310 m above sea level). During periods without snow cover, needle ice development prevailed at a clear‐cut site, and the downslope sediment movement of upper soil was 10 to 15 cm through the winter season. At a non‐cut site, rise and fall in the ground surface level prevailed on a weekly scale, with no evident downslope movements at the surface; ice lens formation in the soil layer is assumed. Abrupt changes in the radiation budget, such as the strengthening of nighttime radiative cooling and increases in daytime direct insolation, induced frequent development/deformation of needle ice at the clear‐cut site. In snow‐free periods, the day‐to‐day variability in needle ice growth length and in nighttime averaged net radiation showed significant correlations; cloudy weather with warmer and moist air intrusion associated with synoptic disturbances prevented the occurrence of needle ice. Namely, day‐to‐day weather changes directly affected the mass movement of the upper soil after deforestation. Shallow snow cover occurred discontinuously through the winter and is likely an important factor in keeping the soil moisture sufficiently high in the upper soil layer for initiating needle ice during snow‐free periods. We also discuss contributions of coastal extratropical cyclone activities providing both snow cover and cloudy weather in the southern mountain areas of central Japan to the intra‐seasonal variability in frost heave and its indirect effect on soil creep and landslides on the deforested steep slopes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In oxic oceans, most of the dissolved iron (Fe) exists as complexes with siderophore-like, strongly coordinating organic ligands. Thus, the isotope composition of the little amount of free inorganic Fe that is available for precipitation and preservation in the geological record may largely be controlled by isotope fractionation between the free and complexed iron. We have determined the equilibrium Fe isotope fractionation induced by organic ligand activity in experiments with solutions having co-existing inorganic Fe(III) species and siderophore complexes, Fe-desferrioxamine B (at pH 2). The two differently complexed Fe(III) pools were separated by addition of Na2CO3, which led to immediate precipitation of the inorganic Fe without causing significant dissociation of Fe-desferrioxamine complexes. Experiments using enriched 57Fe tracer showed that isotopic equilibration between the 57Fe-labelled inorganic species and the isotopically “normal” siderophore-bound Fe was rapid during the first few seconds and then became slower. Consequently, the data fitted poorly to first and second order reaction equations. However, with a two-stage reaction, the data fit perfectly with a first order equation for the slower stage, indicating that approximately 40% re-equilibration may take place during the separation of the two pools. To further test if the induced precipitation leads to experimental artefacts, the fractionation during precipitation of inorganic Fe was determined. Assuming a Rayleigh-type fractionation during precipitation, this experiment yielded an isotope fractionation factor of 56Fesolution-solid = 1.00027. Calculations based on these results indicate that isotopic re-equilibration is unlikely to significantly affect our determined equilibrium Fe isotope fractionation between inorganically and organically complexed Fe. To determine the equilibrium Fe isotope fractionation between inorganically and organically bound Fe(III), experiments with variable proportions of inorganic Fe were carried out at 25 °C. Irrespective of the proportion of inorganic Fe, equilibrium fractionation factors were within experimental uncertainty, yielding an average fractionation factor, Δ56FeDFOB-inorg of 0.60 ± 0.15‰. The results indicate that equilibrium Fe isotope fractionation induced by strongly coordinating organic ligands may fractionate Fe isotopes in nature. The fractionation is likely to be important in oxic, Fe(III)-bearing environments, such as soils and rivers, and may, for example, largely control the Fe isotope composition of marine Fe–Mn crusts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号