共查询到18条相似文献,搜索用时 78 毫秒
1.
采用熔融制样,加入钴元素(Co Kα)作为铁的内标元素,建立了熔融制样-波长色散X射线荧光光谱法测定高磷铁矿中主量元素的分析方法.用国家标准物质和人工合成标准参考物质拟合校准曲线,对熔融条件进行了研究,确定样品与复合熔剂(Li2B4O7:LiBO2:LiF=4.5:1:0.4)的熔融稀释比例为1︰25,650℃预氧化,并在1050℃温度下熔融完全,成片均匀,表面光滑,无气孔,符合测定的要求.本方法可以简单、快速、准确地测定高磷铁矿中的主量元素,满足日常生产对高磷铁矿石中的测定要求. 相似文献
2.
熔融制样波长色散X射线荧光光谱法测定白云石中钙镁硅铁铝 总被引:1,自引:3,他引:1
白云石属碳酸盐矿物,应用熔融制样X射线荧光光谱法测定其中主次量组分钙、镁、硅、铁、铝时,由于白云石灼烧减量大,在试料片制备过程中,如果以干基试料制备试料片,除灼烧减量外还有少量其他组分被分解出的大量CO2带走,导致试料损失,测定结果偏低;如果以灼烧基试料制备试料片,由于灼烧后的试料极易吸收空气中的水分和CO2,同样使测定结果偏低。基于质量守恒原理,本文直接以灼烧减量测量后的灼烧基试料质量作为试料量(即灼烧减量测定所称量的干基试料量扣除灼烧减量的量),以四硼酸锂为熔剂,5%碘化铵溶液为脱模剂,试料与熔剂的稀释比为1:10,于1050℃熔融15 min以上制备的试料片透彻、玻璃化程度高。以白云石标准物质和标准样品作为标准试料,制作各组分的标准曲线的相关系数在0.9940~0.9994之间;方法检出限为0.011%~0.48%;标准物质和标准样品的测定值与认定值基本一致,各组分的相对标准偏差(RSD,n=11)在0.5%~1.7%之间,方法具有较好的重现性。本方法以1050℃灼烧后的试样作为试料制备XRF分析样片,最大限度地降低了灼烧减量因素(空气中的水分和CO2)对测定结果的影响,适用于白云石及其煅烧物中钙、镁、硅、铁、铝等组分的同时测定。 相似文献
3.
X射线荧光光谱法(XRF)是地球化学标准物质均匀性检验的重要方法之一,但目前应用XRF法对标准物质进行均匀性检验还存在争议。由于均匀性检验要求称样量为最小取样量,而采用常规粉末压片或熔融制样进行XRF均匀性检验时称样量一般均大于最小取样量,得到的结果在理论上不足以支撑样品在最小取样量条件下是否均匀。本研究称取0.1 g样品,以四硼酸锂、偏硼酸锂和氟化锂(质量比为45∶10∶5)为混合熔剂,碘化氨为脱模剂,熔融制备样片;采用经验系数法建立了SiO2、Al2O3、TFe2O3、MgO、CaO、Na2O、K2O、Ti、P和Mn共10个测量组分的标准曲线,各组分校正曲线的相关系数在0.997 3~1.000 0之间。对制样条件的实验优化结果表明,样品与熔剂比为1∶4,以2滴0.2 g/mL碘化氨为脱模剂,在1 050℃熔融10 min,熔融制得的样片成型效果最好。对方法参数进行了研究,各组分相对标准偏差值在0.2%~5.3%之间,相对误差小于... 相似文献
4.
建立了采用波长色散X射线荧光光谱法测定铁矿石中TFe、SiO2、AI2O3、MgO、CaO、K2O、Na2O、TiO2、MnO、P、S和Cu等12种主次量组分的分析方法。采用LiBO2-Li2B4O7混合熔剂熔融制样,以铁矿石一级国家标准物质为校准样品,通过加入Co2O3内标、使用理论α系数法和经验系数相结合的方法校正基体效应和谱线重叠干扰。方法的准确度、精密度达到了传统化学分析方法的要求,分析时间大大缩短,具有很好的使用价值。 相似文献
5.
准确测定重晶石中硫酸钡及锶等组分的含量,对于评价矿石的质量品级十分重要。文章应用X射线荧光光谱法测定重晶石中BaO、Al2O3、Fe、CaO、MgO、SiO2、Na2O、K2O、Sr等9种主、次量组分。采用熔融片制样,消除了矿物结构效应,降低基体效应的影响,研究了熔样的条件,确定仪器测量的最佳参数。各元素相对标准偏差(RSD,n=10)≤10%,测定结果与化学法测定值相符,同时满足了ISO 9507对各元素分析结果准确度≤0.5%的要求。方法快速、准确,方便快捷,具有良好的精密度和准确度,可用于重晶石矿选矿样品尾矿、中矿、精矿中钡、锶、铁、钙、镁、铝、硅、钾、钠的同时测定,也可代替传统的化学法用于选冶实验分析。 相似文献
6.
X射线荧光光谱法同时测定铁矿石中主次量组分 总被引:3,自引:1,他引:3
采用X射线荧光光谱法测定铁矿粉中的TFe(全铁量)、SiO2、Al2O3、P、S、CaO、MgO、MnO和TiO2等9个组分。以Li2B4O7和LiBO2(质量比67∶33)的混合熔剂熔融制样,将测量全铁量的内标Co2O3制备成均匀的Co玻璃粉,大大提高全铁量的测量准确度和精密度;加入LiNO3为氧化剂,解决了硫元素在制样过程中容易挥发的问题。与化学法相比,该法对铁矿石中主量和次量元素的测量结果满意,方法快速、简便、准确、精密度好。 相似文献
7.
电气石是一类含硼的铝硅酸盐矿物,化学成分复杂、化学稳定性强,不易湿法分解,B_2O_3含量较高,导致其主次量元素的同时测定存在一定困难。本文采用熔融法制样,建立了X射线荧光光谱法测定电气石Na_2O、MgO、Al_2O_3、SiO_2、P_2O_5、K_2O、CaO、TiO_2、V_2O_5、Cr_2O_3、MnO、TFe_2O_3等主次量元素的分析方法。样品与四硼酸锂-偏硼酸锂-氟化锂(质量比为4.5∶1∶0.4)混合熔剂的稀释比例为1∶10,消除了粒度效应和矿物效应;在缺少电气石标准物质的情况下,选择土壤、水系沉积物及多种类型的地质标准物质绘制校准曲线,利用含量与电气石类似的标准物质验证准确度,测定结果的相对标准偏差小于4.2%。采用所建方法测定四种不同类型电气石实际样品,测定值与经典化学法基本吻合。本方法解决了电气石不易湿法分解和硼的干扰问题,测定结果准确可靠,与其他方法相比操作简便,分析周期短。 相似文献
8.
9.
建立了玻璃熔片-X射线荧光光谱测定进出口矾土中主、次量组分的分析方法,用可变α系数校正元素基体效应,同时进行谱线重叠校正。利用高纯化学试剂配制合成标准参考物质,球磨机混匀,熔融玻璃片法制备系列校准样片,用X射线荧光光谱法对样品中的二氧化硅、三氧化二铁、三氧化二铝、氧化钙、氧化镁、氧化钾、五氧化二磷、二氧化钛进行测定。方法回收率为98.1%~111.0%,经国家铝矾土标准物质GBW 07178、GBW 07179验证,结果与标准值基本一致。建立的方法解决了测试过程中标准样品种类和数量不足的难题。 相似文献
10.
11.
珍珠岩矿的化学成分对其膨胀特性有重要影响,是珍珠岩矿的重要质量指标,目前大多采用容量法、重量法、分光光度法、原子吸收光谱法等传统方法对各化学成分进行测定,操作复杂,而且不能满足主量元素同时测定的要求。本文采用熔融法制样,建立了X射线荧光光谱同时测定珍珠岩矿中主量元素(Si、Al、Fe、Ca、Mg、Ti、K、Na)的分析方法。样品制备试验结果表明,试样与四硼酸锂-偏硼酸锂(质量比67∶33)混合熔剂稀释比为1∶10,熔融温度为1050℃时,样品熔融完全,制备的熔片满足分析方法的要求,且克服了珍珠岩矿高温熔矿时由于膨胀不均匀而导致硅元素测量结果偏低的问题。通过仪器测量条件的优化,以国家标准物质和自制校准样品拟合校准曲线,并进行基体效应校正,实际矿区样品测量结果与化学分析法的测定值基本吻合。方法检出限小于0.05%,精密度(RSD,n=12)小于1.5%。本方法与经典分析方法相比,简便高效、绿色环保、精密度高、准确度好,一次熔矿能够同时测定珍珠岩矿中全部主量元素,满足了珍珠岩矿快速分析测试的需要。 相似文献
12.
石墨化学性质稳定,需采用高温碱熔(1000℃)才可使样品分解完全,已有分析方法在样品前处理不同的阶段使用不同材质的坩埚。基于石墨性质和坩埚熔样情况,本文采用预先已均匀铺垫0.50 g碳酸钾的高熔点铂坩埚灼烧石墨样品,样品灼烧后直接在原坩埚中加入0.80 g碳酸钠碱熔,熔融物用稀盐酸提取后用电感耦合等离子光谱法(ICP-OES)实现了石墨中8种常量元素(硅铝钙镁铁钛锰磷)的同时测定。方法检出限为13~228μg/g,方法精密度(RSD,n=12)为0.7%~7.2%;全流程加标回收率为90.5%~105.0%;实际土状和鳞片石墨样品的测定结果与化学分析法无显著差异。本方法避免了铂坩埚的损毁和样品在前处理过程中的损失,分析过程简单、分析速度快。 相似文献
13.
地质样品中氟的测定主要采用氟离子选择电极法,但操作复杂、分析时间长,无法满足大量进口铜矿石检测的需求。熔融制样-X射线荧光光谱法可用于测定铜矿石中的主次量成分,但不能测定氟。本文采用粉末压片制样,波长色散X射线荧光光谱测定进口铜矿石中氟的含量。以15个粒度为0.074 mm的实际进口铜矿石样品建立标准曲线,经验系数法校正基体效应,有效地降低了颗粒度效应、矿物效应和基体效应。方法的精密度为0.30%(RSD,n=11),检出限为2.4μg/g,测定范围为0.030%~0.20%。用标准物质验证,测定结果与标准物质的认定值相符;用实际样品验证,测定结果与氟离子选择电极法的测定值相符,能满足进口铜矿石中氟(限量不大于0.10%)日常分析检验的要求。 相似文献
14.
15.
锑矿石分析通常分别采用酸分解系统和碱熔系统,萃取分离后应用容量法、原子吸收光谱法、原子荧光光谱法等分析手段进行单项测定,样品处理繁琐、操作复杂,分析过程常因熔矿不完全而导致结果偏低或失真,难以满足地质测试的需要。本文建立了玻璃熔融制样,波长色散X射线荧光光谱测定锑矿石中的锑及14种次量元素与伴生元素(Cu、Pb、Zn、As、Co、Ni、W、Ba、S、SiO2、Al2O3、TFe、CaO、MgO)的快速分析方法。用国家标准物质和人工合成标准参考物质拟合校准曲线,对熔融条件进行了研究。确定样品与四硼酸锂-偏硼酸锂-氟化锂复合熔剂的熔融稀释比例为1:20,以硝酸铵为氧化剂,碳酸锂为保护剂,700℃预氧化,在1050℃温度下熔融完全,有效地防止了As、S的挥发损失,解决了化学法测试样品处理复杂、不能同时测定多元素、测试元素偏少的问题。一些元素的检出限为Sb 0.14%,Cu 0.0027%,Pb 0.0025%,Zn 0.0046%,As 0.0028%,S 0.021%;方法精密度(RSD,n=12)小于5%;选用合成标准物质和实际生产锑矿试样进行验证,测定结果与参考值或化学值一致性良好。本法大部分元素检出限都要稍高于粉末压片法,但操作简单,测试范围更宽,适用于实验室对不同锑矿矿种批量样品中多元素快速、准确检测的需要。 相似文献
16.
以XRF分析岩盐,需解决标准物质缺乏和Cl在分析过程中的损失问题,选择合适的前处理方法以保证结果重现性。经实验发现用于粉末压片法的人工标准物质中氯化钠、硫酸钙等组分经X射线照射后呈现向样片表面扩散的趋势,其中氯化钠进一步分解,难以建立稳定的工作曲线;熔融制样则不存在这一问题,具备定量基础。本文选择熔融制样作为前处理方法,将光谱纯盐类、氧化物与土壤、水系沉积物国家标准物质以不同比例混合,配制人工标准物质建立工作曲线。熔融制样条件为:取样量0.6000 g,四硼酸锂+偏硼酸锂(12:22)混合熔剂10.000 g,熔融温度1000℃,预熔时间300 s,熔样时间300 s,静置时间30 s,所得样片平整通透,因样品中所含Cl具有脱模效果无需补充脱模剂。本方法测定主量元素的精密度(RSD)均小于1.5%,与经典方法相比减少了分析时间与试剂消耗,可作为岩盐主量成分分析的备选方法。 相似文献
17.
样品用HCl-HNO3-HClO4-HF分解,电感耦合等离子体发射光谱法同时测定长石矿物中的K、Na、Ca、Mg、Al、Ti、Fe。对元素的分析谱线、溶解用酸的量等工作条件进行了优化,选择了各元素的最佳分析谱线及背景校正模式,探讨HF的用量,试验加内标和不加内标两种测定方法对测定结果的影响。结果表明,对于样品中含量较高的Al,选用次灵敏线396.152 nm,用内标法补偿非光谱干扰,以长石中含量极低的Au作为内标元素(测定谱线为242.795 nm)可以获得满意的结果,方法检出限为0.45~3.56 μg/g。经国家一级标准物质GBW 03134、GBW 3116验证,测定值的相对误差(RE)为-1.32%~10.0%,ICP-AES法与其他测定方法的测定结果无显著性差异,方法精密度(RSD, n=10)为0.55%~7.2%,能够满足长石矿物中相关组分的准确测定。 相似文献
18.
铜矿石类型繁多,矿石赋存状态各异,成分复杂。在现有的铜矿石熔融制样X射线荧光光谱(XRF)分析方法中,选取标准物质个数和矿石类型少、分析范围宽,与实际样品类型相差太大,且制备的熔融片质量不高。本文选用铜含量既有良好浓度变化范围,又符合铜矿石常见含量的包括铜金银铅锌钼铜镍等各类矿石的24个标准物质,以四硼酸锂-偏硼酸锂-氟化锂为混合熔剂,熔剂与样品质量比为30:1,以溴化锂为脱模剂,改进样品预处理方式,将通常采用样品预氧化后或熔融中加入脱模剂的方式,改进为加入脱模剂后再用混合熔剂完全覆盖的方法制备了高质量的熔融片,建立了XRF测定铜矿石中铜锌铅硅铝铁钛锰钙钾镁钼铋锑钴镍16种元素的分析方法。分析铜矿石国家标准物质GBW 07164、GBW 07169,各元素的精密度(RSD)为0.1%~5.4%。分析国家标准物质GBW 07163(多金属矿石)、GBW 07170(铜矿石)的测定值与标准值相符;分析实际铜矿石样品,铜锌铅钼铋锑钴镍的测试结果与电感耦合等离子体发射光谱法和其他方法的测定值相符。本文方法扩大了基体的适应性,提高了实际应用价值。 相似文献