首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用1979—2005年美国大气海洋局(NOAA)的卫星观测资料和IPCC第5次全球气候变化比较试验(CMIP5)的模式资料,对全球对流层和平流层近26 a的气温趋势进行了研究。结果表明,CMIP5模拟的全球平均大气温度趋势与观测结果较一致,能够再现平流层冷却和对流层增温等特点,但是在气温趋势的经纬度分布上,模式资料与观测资料间存在较大差异,同时模式间也存在明显的不一致。与观测资料相比,CMIP5模式资料低估了平流层在热带地区的降温速率,而且明显高估了对流层中部到平流层下层的南极区域的降温趋势。不同CMIP5模式间的最大标准方差出现在平流层的南北极区域,但是在对流层所有纬度上标准方差都保持着较小值。  相似文献   

2.
Total column ozone (TCO) over the Tibetan Plateau (TP) is lower than that over other regions at the same latitude, particularly in summer. This feature is known as the “TP ozone valley”. This study evaluates long-term changes in TCO and the ozone valley over the TP from 1984 to 2100 using Coupled Model Intercomparison Project Phase 6 (CMIP6). The TP ozone valley consists of two low centers, one is located in the upper troposphere and lower stratosphere (UTLS), and the other is in the middle and upper stratosphere. Overall, the CMIP6 models simulate the low ozone center in the UTLS well and capture the spatial characteristics and seasonal cycle of the TP ozone valley, with spatial correlation coefficients between the modeled TCO and the Multi Sensor Reanalysis version 2 (MSR2) TCO observations greater than 0.8 for all CMIP6 models. Further analysis reveals that models which use fully coupled and online stratospheric chemistry schemes simulate the anticorrelation between the 150 hPa geopotential height and zonal anomaly of TCO over the TP better than models without interactive chemistry schemes. This suggests that coupled chemical-radiative-dynamical processes play a key role in the simulation of the TP ozone valley. Most CMIP6 models underestimate the low center in the middle and upper stratosphere when compared with the Microwave Limb Sounder (MLS) observations. However, the bias in the middle and upper stratospheric ozone simulations has a marginal effect on the simulation of the TP ozone valley. Most CMIP6 models predict the TP ozone valley in summer will deepen in the future.  相似文献   

3.
This study examines the time–height variation and structure of a tropical mesoscale convective system (TMCS). Convection experiments using VHF (53 MHz) radar aimed at improving the understanding of the vertical structure of TMCS occurred over Gadanki (13.5°N, 79.2°E), India during 21–22 June 2000 has been selected for the study. The time–height variations of reflectivity and vertical velocity exhibits four distinct patterns and have been used to classify four subjectively identified types of echoes; viz., formative, mature, transition zone and stratiform regions associated with TMCS. Average vertical velocity profiles were distinctive for each region. The mean vertical motion is upward at all levels in the troposphere during the formative phase. The vertical motion in the mature region is downward in the lower troposphere and upward in the middle and upper troposphere. The maximum upward motion is found in the middle troposphere and secondary maxima near the tropopause level. The transition zone is characterized by strong downdraft in the lower troposphere with local pockets of updrafts in the middle and upper troposphere. The magnitude of the mean vertical motion is considerably reduced in the stratiform region and is downward in the lower troposphere and upward in the upper troposphere. Time–height variation of reflectivity has been analyzed separately for each region. The observed diminished echo zone and tropopause break/weakening during the mature phase and two enhanced reflectivity zone in the stratiform region is also observed. A Cloud System Resolving Model (CSRM) simulation of the same event has been carried out. The CSRM simulations were able to capture the structure of the storm and are consistent with the observations. The model output in conjunction with observations has been used to validate the hypothesis.  相似文献   

4.
The effects of deep convection on the potential for forming ozone (ozone production potential) in the free troposphere have been simulated for regions where the trace gas composition is influenced by biomass burning. Cloud dynamical and photochemical simulations based on observations in 1980 and 1985 Brazilian campaigns form the basis of a sensitivity study of the ozone production potential under differing conditions. The photochemical fate of pollutants actually entrained in a cumulus event of August 1985 during NASA/GTE/ABLE 2A (Case 1) is compared to photochemical ozone production that could have occurred if the same storm had been located closer to regions of savanna burning (Case 2) and forest burning (Case 3). In each case studied, the ozone production potential is calculated for a 24-hour period following convective redistribution of ozone precursors and compared to ozone production in the absence of convection. In all cases there is considerably more ozone formed in the middle and upper troposphere when convection has redistributed NOx, hydrocarbons and CO compared to the case of no convection.In the August 1985 ABLE 2A event, entrainment of a layer polluted with biomass burning into a convective squall line changes the free tropospheric cloud outflow column (5–13 km) ozone production potential from net destruction to net production. If it is assumed that the same cloud dynamics occur directly over regions of savanna burning, ozone production rates in the middle and upper troposphere are much greater. Diurnally averaged ozone production following convection may reach 7 ppbv/day averaged over the layer from 5–13 km-compared to typical free tropospheric concentrations of 25–30 ppbv O3 during nonpolluted conditions in ABLE 2A. Convection over a forested region where isoprene as well as hydrocarbons from combustion can be transported into the free troposphere leads to yet higher amounts of ozone production.  相似文献   

5.
张人禾  周顺武 《气象学报》2008,66(6):916-925
利用台站探空观测资料和卫星观测资料,分析了1979—2002年青藏高原上空温度的变化趋势。结果表明:高原地区上空平流层低层和对流层上层的温度与对流层中低层具有反相变化趋势。平流层低层和对流层上层降温,温度出现降低趋势,降温幅度无论是年平均还是季节平均都比全球平均降温幅度更大。高原上空对流层中低层增温,温度显示出增加的趋势,并且比同纬度中国东部非高原地区有更强的增温趋势。对1979—2002年卫星臭氧资料的分析表明,青藏高原上空臭氧总量在每个季节都呈现出明显的下降趋势,并且比同纬度带其他地区下降得更快。由于青藏高原上空臭氧有更大幅度的减少,造成高原平流层对太阳紫外辐射吸收比其他地区更少,使进入对流层的辐射更多,从而导致高原上空平流层低层和对流层上层降温比其他地区更强,而对流层中低层增温更大。因此,高原上空比其他地区更大幅度的臭氧总量减少可能是造成青藏高原上空与同纬度其他地区温度变化趋势差异的一个重要原因。  相似文献   

6.
利用中尺度非静力MM5模式研究不同初始扰动(误差)对2003年7月4—5日发生在江淮流域的一次梅雨锋暴雨数值预报不确定性的影响,并着重分析了提前36h定量降水的可预报性。结果表明,利用常规观测资料和NCEP/NCAR分析资料形成初始场的控制试验能够提前36h做出较好的模拟。扰动温度场的敏感性试验表明,扰动温度的均方差愈大,降水预报不确定性也愈大。误差演变特征和增长机制分析表明,误差增长具有升尺度特征,误差首先在对流层低层和高层增长,然后大值区向对流层中层扩展;湿降水过程是对流层中低层误差增长的主要机制;对流层高层的误差增长是大气干动力与湿过程共同作用的结果,前期以干过程为主,后期以湿过程为主。  相似文献   

7.
Using radiosonde and satellite observations, we investigated the trends of air temperature changes over the Tibetan Plateau (TP) in comparison with those over other regions in the same latitudes from 1979 to 2002. It is shown that Over the TP, the trends of air temperature changes in the upper troposphere to lower stratosphere were out of phase with those in the lower to middle troposphere. Air temperature decreased and a decreasing trend appeared in the upper troposphere to lower stratosphere. The amplitude of the annual or seasonal mean temperature decreases over the TP was larger than that over the whole globe. In the lower to middle troposphere over the TP, temperature increased, and the increasing trend was stronger than that over the non-plateau regions in the same latitudes in the eastern part of China. Meanwhile, an analysis of the satellite observed ozone data in the same period of 1979-2002 shows that over the TP, the total ozone amount declined in all seasons, and the ozone depleted the most compared with the situations in other regions in the same latitudes. It is proposed that the difference between the ozone depletion over the TP and that over other regions in the same latitudes may lead to the difference in air temperature changes. Because of the aggravated depletion of ozone over the TP, less (more) ultraviolet radiation was absorbed in the upper troposphere to lower stratosphere (lower to middle troposphere) over the TP, which favored a stronger cooling in the upper troposphere to lower stratosphere, and an intenser heating in the lower to middle troposphere over the TP. Therefore, the comparatively more depletion of ozone over the TP is possibly a reason for the difference between the air temperature changes over the TP and those over other regions in the same latitudes.  相似文献   

8.
Mesoscale simulations of gravity waves in the upper troposphere and lower stratosphere over North America and North Atlantic Ocean in January 2003 are compared with satellite radiance measurements from the Advanced Microwave Sounding Unit-A (AMSU-A). Four regions of strong gravity wave (GW) activities are found in the model simulations and the AMSU-A observations: the northwestern Atlantic, the U.S. Rockies, the Appalachians, and Greenland. GWs over the northwestern Atlantic Ocean are associated with the midlatitude baroclinic jet-front system, while the other three regions are apparently related to high topography. Model simulations are further used to analyze momentum fluxes in the zonal and meridional directions. It is found that strong westward momentum fluxes are prevalent over these regions over the whole period. Despite qualitative agreement between model simulations and satellite measurements, sensitivity experiments demonstrate that the simulated GWs are sensitive to the model spin-up time.  相似文献   

9.
基于1979—2014年ERA-Interim逐日再分析温度资料,依据温度递减率插值法计算出青藏高原及同纬度其他地区热带对流层顶气压数据,比较了高原和同纬度其他地区热带对流层顶气压季节变化和长期变化趋势,讨论了热带对流层顶气压与高空温度的关系。结果表明:1)在季节变化上,除12月和1月外,青藏高原热带对流层顶气压全年低于同纬度其他地区;青藏高原热带对流层顶气压、对流层中上层以及平流层下部平均温度均表现出比同纬度其他地区更明显的单峰型特征。2)热带对流层顶气压与高空温度变化关系密切,对流层中上层(平流层下部)平均温度升高(降低),有利于热带对流层顶气压降低;相对于同纬度其他地区,青藏高原对流层顶气压与对流层中上层平均温度的关系更密切。3)1979—2014年青藏高原和同纬度其他地区各季节的热带对流层顶气压均呈现出不同程度的下降趋势,冬春季下降趋势更加显著;青藏高原各季节对流层中上层增温和平流层下部降温的幅度均超过同纬度其他地区,导致其热带对流层顶气压的下降趋势比同纬度其他地区更加明显。  相似文献   

10.
The simulated mean January and July climates of four versions of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM) are compared. The models include standard configurations of CCM1 and CCM2, as well as two widely-cited research versions, the Global Environmental and Ecological Simulation of Interactive Systems (GENESIS) model and the Climate Sensitivity and Carbon Dioxide (CSC02) model. Each CCM version was integrated for 10 years with a horizontal spectral resolution of rhomboidal 15 (R15). Additionally, the standard T42 version of CCM2 was integrated for 20 years. Monthly mean, annually repeating climatological sea surface temperatures provided a lower boundary condition for each of the model simulations. The CCM troposphere is generally too cold, especially in the polar upper troposphere in the summer hemisphere. This is least severe in CCM2 and most pronounced in CCM1. CSC02 is an exception with a substantial warm bias, especially in the tropical upper troposphere. Corresponding biases are evident in atmospheric moisture. The overall superior CCM2 thermodynamic behavior is principally compromised by a large warm and moist bias over the Northern Hemisphere middle and high latitudes during summer. Differences between the simulated and observed stationary wave patterns reveal sizeable amplitude errors and phase shifts in all CCM versions. A common problem evident in the upper troposphere is an erroneous cyclone pair that straddles the equatorial central Pacific in January. The overall January stationary wave error pattern in CCM2 and CSCO2 is suggestive of a reverse Pacific-North American teleconnection pattern originating from the tropical central Pacific. During July, common regional biases include simulated North Pacific troughs that are stronger and shifted to the west of observations, and each model overestimates the strength of the anticyclone pair associated with the summer monsoon circulation over India. The simulated major convergence and divergence centers tend to be very localized in all CCM versions, with a tendency in each model for the maximum divergent centers to be unrelistically concentrated in monsoon regions and tied to regions of steep orography. Maxima in CCM-simulated precipitation correspond to the simulated outflow maxima and are generally larger than observational estimates, and the associated atmospheric latent heating appears to contribute to the stationary wave errors. Comparisons of simulated radiative quantities to satellite measurements reveal that the overall CCM2 radiative balance is better than in the other CCM versions. An error common to all models is that too much solar radiation is absorbed in the middle latitudes during summer.The National Center for Atmospheric Research is sponsored by the National Science Foundation  相似文献   

11.
The comparison analyses between two tropical depressions in the South China Sea are completed by numerical ex-periments with a limited area model developed in Guangzhou Institute of Tropical and Oceanic Meteorology. One of thedepressions develops and finally becomes a typhoon within 24 hours of the analyzing period (defined as DVD hereafter),and the other not (defined as UNDVD) The analyses show that their initial structures of temperature, humidity, pres-sure. wind and stability are obviously different from each other. There are a very deep wet layer and a clear warm-coredstructure in the mid-lower troposphere in the depression area in the DVD case, but with the warm core in the upperrather than lower troposphere arid a very shallow wet layer in the lower troposphere in the depression area in theUNDVD case. The developing and non-developing processes are successfully simulated by the model, showing that theCISK mechanism plays the most important role in the development of SCSDs (Tropical Depressions in the South ChinaSea). Several numerical experiments show that the structures of humidity and temperature in the depression area haveimportant effect on the development of SCSDs. It is favourable to the development of SCSDs when a very deep wet layerexists in the mid-lower troposphere or a warm-cored structure exists in the mid-lower troposphere instead of in uppertroposphere, and conversely, it is unfavourable to the development of SCSDs when the wet layer is very shallow in thelower troposphere or the warm-cored structure is in the upper troposphere rather than in mid-lower troposphere. Thestructures of stability for each case are also analysed, which shows evident differences between the two cases, with adeeper instability layer in the DVD case and a shallower one in the UNDVD case. Finally, the sensitivity of the devel-opment of the SCSDs to the vertical structures of humidity and temperature in the depression area is discussed.  相似文献   

12.
A two-layer theory is used to investigate (1) the steering of upper ocean current pathways by topographically constrained abyssal currents that do not impinge on the bottom topography and (2) its application to upper ocean – topographic coupling via flow instabilities where topographically constrained eddy-driven deep mean flows in turn steer the mean pathways of upper ocean currents and associated fronts. In earlier studies the two-layer theory was applied to ocean models with low vertical resolution (2–6 layers). Here we investigate its relevance to complex ocean general circulation models (OGCMs) with high vertical resolution that are designed to simulate a wide range of ocean processes. The theory can be easily applied to models ranging from idealized to complex OGCMs, provided it is valid for the application. It can also be used in understanding some persistent features seen in observed ocean frontal pathways (over deep water) derived from satellite imagery and other data. To facilitate its application, a more thorough explanation of the theory is presented that emphasizes its range of validity. Three regions of the world ocean are used to investigate its application to eddy-resolving ocean models with high vertical resolution, including one where an assumption of the two-layer theory is violated. Results from the OGCMs with high vertical resolution are compared to those from models with low vertical resolution and to observations. In the Kuroshio region upper ocean – topographic coupling via flow instabilities and a modest seamount complex are used to explain the observed northward mean meander east of Japan where the Kuroshio separates from the coast. The Japan/East Sea (JES) is used to demonstrate the impact of upper ocean – topographic coupling in a relatively weak flow regime. East of South Island, New Zealand, the Southland Current is an observed western boundary current that flows in a direction counter to the demands of Sverdrup flow and counter to the direction simulated in nonlinear global flat bottom and reduced gravity models. A model with high vertical resolution (and topography extending through any number of layers) and a model with low vertical resolution (and vertically compressed but otherwise realistic topography confined to the lowest layer) both simulate a Southland Current in the observed direction with dynamics depending on the configuration of the regional seafloor. However, the dynamics of these simulations are very different because the Campbell Plateau and Chatham Rise east and southeast of New Zealand are rare features of the world ocean where the topography intrudes into the stratified water column over a relatively broad area but lies deeper than the nominal 200 m depth of the continental shelf break, violating a limitation of the two-layer theory. Observations confirm the results from the high vertical resolution model. Overall, the model simulations show increasingly widespread upper ocean – topographic coupling via flow instabilities as the horizontal resolution of the ocean models is increased, but fine resolution of mesoscale variability and the associated flow instabilities are required to obtain sufficient coupling. As a result, this type of coupling is critical in distinguishing between eddy-resolving and eddy-permitting ocean models in regions where it occurs.  相似文献   

13.
This study estimated the largely unstudied downward transport and modification of tropospheric ozone associated with tropical moist convection using a coupled meteorology-chemistry model. High-resolution cloud resolving model simulations were conducted for deep moist convection events over West Africa during August 2006 to estimate vertical transport of ozone due to convection. Model simulations realistically reproduced the characteristics of deep convection as revealed by the estimated spatial distribution of temperature, moisture, cloud reflectivity, and vertical profiles of temperature and moisture. Also, results indicated that vertical transport reduced ozone by 50% (50 parts per billion by volume, ppbv) in the upper atmosphere (12–15 km) and enhanced ozone by 39% (10 ppbv) in the lower atmosphere (<2 km). Field observations confirmed model results and indicated that surface ozone levels abruptly increased by 10–30 ppbv in the area impacted by convection due to transport by downdrafts from the upper troposphere. Once in the lower troposphere, the lifetime of ozone decreased due to enhanced dry deposition and chemical sinks. Ozone removal via dry deposition increased by 100% compared to non-convective conditions. The redistribution of tropospheric ozone substantially changed hydroxyl radical formation in the continental tropical boundary layer. Therefore, an important conclusion of this study is that the redistribution of tropospheric ozone, due to deep convection in non-polluted tropical regions, can simultaneously reduce the atmospheric loading of ozone and substantially impact the oxidation capacity of the lower atmosphere via the enhanced formation of hydroxyl radicals.  相似文献   

14.
熊秋芬  张玉婷  姜晓飞  张雅乐 《气象》2018,44(10):1267-1274
利用常规高空、地面观测资料、FY-2E卫星云图和NCEP再分析场,分析了2013年11月25日发生在中国东北东部的暴雪天气过程,并用HYSPLIT模式模拟了暴雪区上空气块的轨迹。结果表明:卫星云图显示暴雪发生在锢囚气旋的钩状云区中,且具有中尺度特征。钩状云区不同代表点、不同层次25日08时120 h气块的后向轨迹计算结果表明,在每个代表点的6条轨迹中,只有1条轨迹来自新疆以西地区的对流层上层,其他5条轨迹均来自蒙古国或我国北方地区的对流层中低层。几乎每条轨迹对应的气块在东移或南移时先以水平运动为主,伴有弱的下沉;中低层气块在72~24 h经过渤海湾和日本海;而中上层气块则主要经过黄海或东海,到达降雪区前几小时气块移速快并有明显的上升运动。对钩状云区不同代表点1500和3000 m上空120 h后向轨迹中气块湿度分析表明,来自东亚大陆的气块水汽含量并不大、相对湿度也小于60%,但在经过渤海湾和日本海时,海气交换使得气块的含水量和相对湿度均呈增加的趋势;特别是气块途径日本海的时间和距离越长,水汽含量越多。因此暴雪区的水汽主要来自日本海,其次是渤海湾。在降雪发生前几小时,气块随偏南风或东南风快速北移,相对湿度接近饱和并伴有上升运动,从而引起降雪。  相似文献   

15.
We summarize the recent progress in regional climate modeling in South America with the Rossby Centre regional atmospheric climate model (RCA3-E), with emphasis on soil moisture processes. A series of climatological integrations using a continental scale domain nested in reanalysis data were carried out for the initial and mature stages of the South American Monsoon System (SAMS) of 1993–92 and were analyzed on seasonal and monthly timescales. The role of including a spatially varying soil depth, which extends to 8 m in tropical forest, was evaluated against the standard constant soil depth of the model of about 2 m, through two five member ensemble simulations. The influence of the soil depth was relatively weak, with both beneficial and detrimental effects on the simulation of the seasonal mean rainfall. Secondly, two ensembles that differ in their initial state of soil moisture were prepared to study the influence of anomalously dry and wet soil moisture initial conditions on the intraseasonal development of the SAMS. In these simulations the austral winter soil moisture initial condition has a strong influence on wet season rainfall over feed back upon the monsoon, not only over the Amazon region but in subtropical South America as well. Finally, we calculated the soil moisture–precipitation coupling strength through comparing a ten member ensemble forced by the same space–time series of soil moisture fields with an ensemble with interactive soil moisture. Coupling strength is defined as the degree to which the prescribed boundary conditions affect some atmospheric quantity in a climate model, in this context a quantification of the fraction of atmospheric variability that can be ascribed to soil moisture anomalies. La Plata Basin appears as a region where the precipitation is partly controlled by soil moisture, especially in November and January. The continental convective monsoon regions and subtropical South America appears as a region with relatively high coupling strength during the mature phase of monsoon development.  相似文献   

16.
1. IntroductionIt is well known that one of the distinguishable differences between the summer monsoonand the winter monsoon is the reversal of lower--layer winds with southwesterly during theNorthern summer and northeasterly during the Northern winter. Previous studies (e.g. Chenet al., 1991 ) show that on the one hand. this seasonal alternation of the lower--layer winds isassociated with thermal contrast between continents and their adjacent oceans due todifferential heating including radia…  相似文献   

17.
利用中国东部的探空站资料以及ERA40和NCAR/NCEP再分析资料,详细地比较了我国北方地区(主要指内蒙古以及华北地区)的高低层位势高度以及温度的特征.结果表明,在20世纪70年代以前,NCEP/NCAR再分析资料对我国北方地区对流层低层无论是位势高度或温度都描述不好,存在着很明显的虚假年代际变化趋势.与实际探空资料相比,相对于NCEP/NCAR再分析资料,ERA-40再分析资料对东亚地区对流层低层位势高度或温度的描述明显好于NCEP/NCAR再分析资料,因此,研究东亚气候的年代际变化应用ERA-40再分析资料要好一些.高层的结果要比低层好.在70年代以后,NCEP/NCAR再分析资料对于内蒙古和华北对流层上层的位势高度和温度的描述要好于ERA-40再分析资料,更接近于实际探空值,这说明这两份再分析资料各有优缺点.    相似文献   

18.
The evolution characteristics of a long-lasting fog event over Beijing during 20-22 February 2007 are investigated using the 5-min automatic visibility data and conventional meteorological observations.Data analysis results reveal that there is a close relationship between the development/evolution of this fog event and the weather conditions such as high humidity,light wind,and low temperature in the lower troposphere. Furthermore,numerical simulations of this event are carried out by using the Advanced...  相似文献   

19.
Ji  Fei  Evans  Jason P.  Di Virgilio  Giovanni  Nishant  Nidhi  Di Luca  Alejandro  Herold  Nicholas  Downes  Stephanie M.  Tam  Eugene  Beyer  Kathleen 《Climate Dynamics》2020,55(9-10):2453-2468

The vertical temperature profile in the atmosphere reflects a balance between radiative and convective processes and interactions with the oceanic and land surfaces. Changes in vertical temperature profiles can affect atmospheric stability, which in turn can impact various aspects of weather systems. In this study, we analyzed recent-past trends of temperature over the Australian region using a homogenized monthly upper-air temperature dataset and four reanalysis datasets (NCEP, ERA-Interim, JRA-55 and MERRA). We also used outputs of 12 historical and future regional climate model (RCM) simulations from the NSW/ACT (New South Wales/Australian Capital Territory) Regional Climate Modelling (NARCliM) project and 6 RCM simulations from the CORDEX (Coordinated Regional Downscaling Experiment) Australasian project to investigate projected changes in vertical temperature profiles. The results show that the currently observed positive trend in the troposphere and negative trend in the lower stratosphere will continue in the future with significant warming over the whole troposphere and largest over the middle to upper troposphere. The increasing temperatures are found to be latitude-dependent with clear seasonal variations, and a strong diurnal variation for the near surface layers and upper levels in tropical regions. Changes in the diurnal variability indicate that near surface layers will be less stable in the afternoon leading to conditions favoring convective systems and more stable in the early morning which is favorable for temperature inversions. The largest differences of future changes in temperature between the simulations are associated with the driving GCMs, suggesting that large-scale circulation plays a dominant role in regional atmospheric temperature change.

  相似文献   

20.
Synoptic atmospheric eddies are affected by lower tropospheric air-temperature gradients and by turbulent heat fluxes from the surface. In this study we examine how ocean fronts affect these quantities and hence the storm tracks. We focus on two midlatitude regions where ocean fronts lie close to the storm tracks: the north-west Atlantic and the Southern Ocean. An atmospheric climate model of reasonably high resolution (~50 km) is applied in a climate-length (60 year) simulation in order to obtain stable statistics. Simulations with frontal structure in the sea surface temperature (SST) in one of the regions are compared against simulations with globally smoothed SST. We show that in both regions the ocean fronts have a strong influence on the transient eddy heat and moisture fluxes, not just in the boundary layer, but also in the free troposphere. Local differences in these quantities between the simulations reach 20–40 % of the maximum values in the simulation with smoothed SST. Averaged over the entire region of the storm track over the ocean the corresponding differences are 10–20 %. The effect on the transient eddy meridional wind variance is strong in the boundary layer but relatively weak above that. The potential mechanisms by which the ocean fronts influence the storm tracks are discussed, and our results are compared against previous studies with regional models, Aquaplanet models, and coarse resolution coupled models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号