共查询到20条相似文献,搜索用时 0 毫秒
1.
Stability analyses for a homogeneous compacted embankment were undertaken considering infiltration of water into the embankment. The analyses include several different practical scenarios: (i) saturated condition, (ii) ponding (or runoff) along with saturated condition, (iii) short term analysis for unsaturated conditions, and (iv) long term analysis for unsaturated conditions. The appropriate shear strength parameters of the compacted soil required for analyzing different practical scenarios were determined using conventional and modified triaxial shear apparatus. The results of the study show that typically shallow circular failures above water front occur due to infiltration rather than the conventional infinite slope type failures. 相似文献
2.
The undrained stability of slopes in anisotropic fine-grained soils is studied in this paper using the finite element method (FEM). A constitutive model is presented, able to account for the observed variation of undrained strength with loading direction. The model is able to encompass the different strength distributions observed in normally, slightly overconsolidated and heavily overconsolidated soils. A series of stability analyses have been performed to explore the effect of the type of undrained strength anisotropy on the stability and failure mechanisms of slopes of different inclinations. In addition, a real case study of the failure of an underwater slope is analysed with the numerical approach presented. It suggests that, by considering undrained strength anisotropy, the failure can be satisfactorily explained. 相似文献
3.
Hong Kong is particularly susceptible to landslide risk due to the steep natural topography and prolonged periods of high intensity rainfall. Compounding the risk of slope failure is the existence of loose fill slopes which were constructed prior to the 1970s by end-tipping. A clear understanding of the underlying triggering mechanisms of fast landslides in fill slopes is required to analyse landslide risk and to optimise slope stabilisation strategies. The work described here had the objective of evaluating two candidate triggering mechanisms—static liquefaction and the transition from slide to flow due to localised transient pore water pressures—against observations of slope behaviour obtained from highly instrumented centrifuge model tests. These results indicate that static liquefaction is unlikely to occur if the model fill is unsaturated and the depth to bedrock large, as the high compressibility and mobility of air in the unsaturated void spaces allows the model fill slope to accommodate wetting collapse without initiating undrained failure. In contrast, high-speed failures with low-angle run-outs are shown to be easily triggered in model fill slopes from initially slow moving slips driven by localised transient pore water pressures arising from constricted seepage and material layering. 相似文献
4.
By integrating hydrological modeling with the infinite slope stability analysis, a rainfall-triggered shallow landslide model was developed by Iverson (Water Resour Res 36:1897-1910, 2000). In Iverson’s model, the infiltration capacity is assumed to be equivalent to the saturated hydraulic conductivity for finding pressure heads analytically. However, for general infiltration process, the infiltration capacity should vary with time during the period of rain, and the infiltration rate is significantly related to the variable infiltration capacity. To avoid the unrealistically high pressure heads, Iverson employed the beta-line correction by specifying that the simulated pressure heads cannot exceed those given by the beta line. In this study, the suitability of constant infiltration capacity together with the beta-line correction for hydrological modeling and landslide modeling of hillslope subjected to a rainfall is examined. By amending the boundary condition at ground surface of hillslope in Iverson’s model, the modified Iverson’s model with considering general infiltration process is developed to conduct this examination. The results show that the unrealistically high pressure heads from Iverson’s model occur due to the overestimation of infiltration rate induced from the assumption that the infiltration capacity is identical to the saturated hydraulic conductivity. Considering with the general infiltration process, the modified Iverson’s model gives acceptable results. In addition, even though the beta-line correction is applied, the Iverson’s model still produces greater simulated pressure heads and overestimates soil failure potential as compared with the modified Iverson’s model. Therefore, for assessing rainfall-triggered shallow landslide, the use of constant infiltration capacity together with the beta-line correction needs to be replaced by the consideration of general infiltration process. 相似文献
5.
降雨及浸水往往引起天然土坡及人工土坡的滑坡,其中,土中基质吸力的消失是一个重要原因。通过试验和计算分析,揭示了基质吸力对边坡稳定所起的重要作用。非饱和土边坡稳定计算中的关键参数 的确定,尚有待于进一步研究。 相似文献
6.
Earthquakes are a major trigger for instability of natural and man-made slopes. Often the instability of slopes due to an earthquake causes more destruction and kills more people than the actual earthquake itself. A comparison is made between different methodologies to analyze the potential stability of slopes during earthquakes. Theoretically, it seems simple to calculate the stability of a slope during an earthquake. In reality, however, the stability is influenced by so many parameters that are either not known or which influence is so poorly known that a decent estimation of stability cannot be made. Offshore the situation is worse because proper data required for stability calculations are even less available than onshore. On- and offshore, erosion and weathering create continuously slopes that may become unstable during a future earthquake, offshore also sedimentation creates continuously new slopes. Another fundamental problem in stability analysis is the complicated and largely unknown behavior of seismic waves in three-dimensions in natural materials. The lack of accurate data and the unknown behavior of seismic waves in three-dimensions make estimations of slope stability during an earthquake unreliable. 相似文献
7.
This paper presents a numerical approach to analyse the stability of slopes in soils with strain-softening behaviour. In these materials, a progressive failure can occur owing to a reduction of strength with increasing strain. Such a phenomenon can be analysed using methods that are able to simulate the formation and development of the shear zones in which strain localises. From a computational point of view, this presents many difficulties because the numerical procedures currently used are often affected by a lack of convergence, and the solution may depend strongly on the mesh adopted. In order to overcome these numerical drawbacks, in the present study use is made of a non-local elasto-viscoplastic constitutive model within the framework of the finite element method. The Mohr–Coulomb yield function is adopted, and the strain-softening behaviour of the soil is simulated by reducing the strength parameters with the increasing deviatoric plastic strain. To assess the reliability of the proposed approach, some comparisons with the results obtained using other constitutive models for soils with strain-softening behaviour are presented. Finally, a slope subjected to a prescribed process of weathering is considered, and the effects of this process on the slope stability are discussed. 相似文献
8.
The meta-sedimentary rocks along Pos Selim Highway in Perak State, Malaysia showed a gradational weathering profile based on differences particularly in textures, hardness, lateral changes in colour and consistency of material extension. Both large and small scale discontinuities observed in the investigated rocks reduce the physical and mechanical properties of the rocks, and provide slip surfaces for failures. Rock and soil samples were tested using established standards to determine their characteristics and responses under a wide variety of disturbances. Kinematic analyses were also carried out to determine the modes and likely modes of failures. Petrographic analyses revealed associated micro-structures, and the implications of these micro-structures showed shearing components along planes of weakness. From the determined index properties of the tested soil samples, the weathered quartz mica schist is not suitable for structural support. Further study involving unconsolidated undrained direct shear box tests carried out under total stress, revealed a non-uniform response of the rocks to shearing disturbance along discontinuity planes, and the rate and depth of deformation. The shear strength components of the investigated rocks were thereby prescribed in terms of cohesion and friction angle. From the kinematic analyses across this extended cut slope, there are possibilities of wedge and planar failures. 相似文献
9.
Rainfall infiltration poses a disastrous threat to the slope stability in many regions around the world. This paper proposes an extreme gradient boosting (XGBoost)-based stochastic analysis framework to estimate the rainfall-induced slope failure probability. An unsaturated slope under rainfall infiltration in spatially varying soils is selected in this study to investigate the influences of the spatial variability of soil properties (including effective cohesion c′, effective friction angle φ′ and saturated hydraulic conductivity ks), as well as rainfall intensity and rainfall pattern on the slope failure probability. Results show that the proposed framework in this study is capable of computing the failure probability with accuracy and high efficiency. The spatial variability of ks cannot be overlooked in the reliability analysis. Otherwise, the rainfall-induced slope failure probability will be underestimated. It is found that the rainfall intensity and rainfall pattern have significant effect on the probability of failure. Moreover, the failure probabilities under various rainfall intensities and patterns can be easily obtained with the aid of the proposed framework, which can provide timely guidance for the landslide emergency management departments. 相似文献
10.
A cross-correlation analysis is conducted to determine the impacts of the heterogeneity of hydraulic conductivity Ks, soil cohesion c′ and soil friction angle (tan φ′) on the uncertainty of slope stability in time and space during rainfall. We find the relative importance of tan φ′ and c′ depends on the effective stress. While the sensitivity of the stability to the variability of Ks is small, the large coefficient of variation of Ks may exacerbate the variability of pore-water pressure. Therefore, characterizing the heterogeneity of hydraulic properties and pore-water distribution in the field is critical to the stability analysis. 相似文献
11.
在对非饱和土边坡进行稳定分析时,应该全面地考虑基质吸力对边坡稳定的贡献。首先,分别探讨了基于Fredlund非饱和土强度表达式和Bishop非饱和土有效应力强度公式将强度折减有限元法推广到非饱和土边坡稳定分析中的具体方法;然后,开发了可以考虑基质吸力两种处理方法的强度折减有限元计算程序;最后,给出了一个非饱和土边坡稳定分析的对比算例,说明了二者的不同特点。 相似文献
12.
Slope stability analysis is a geotechnical engineering problem characterized by many sources of uncertainty. Some of these sources are connected to the uncertainties of soil properties involved in the analysis. In this paper, a numerical procedure for integrating a commercial finite difference method into a probabilistic analysis of slope stability is presented. Given that the limit state function cannot be expressed in an explicit form, an artificial neural network (ANN)-based response surface is adopted to approximate the limit state function, thereby reducing the number of stability analysis calculations. A trained ANN model is used to calculate the probability of failure through the first- and second-order reliability methods and a Monte Carlo simulation technique. Probabilistic stability assessments for a hypothetical two-layer slope as well as for the Cannon Dam in Missouri, USA are performed to verify the application potential of the proposed method. 相似文献
13.
The behaviour of an instrumented unstable slope in a profile of weathered overconsolidated clay has been analysed. Available
field investigation data and laboratory tests were integrated in a coupled hydromechanical model of the slope. Particular
attention was given to the unsaturated soil conditions above the water table and to the influence of the rainfall record.
Recorded pore-water pressures helped to identify the hydrogeological conditions of the slope. The coupled model was used to
compute slope deformations and the variation of safety with time. Actual rainfall records were also integrated into the analysis.
Comparison of measurements and calculations illustrate the nature of the slope instability and the complex relationships between
mechanical and hydraulic factors.
Electronic Publication 相似文献
14.
This research combines field, laboratory and numerical investigations to estimate the development of a wetting front within
a 1.2 m residual soil mantle on a steep forested slope during rainfall events. The field-monitored variations in matric suction
due to rain-water infiltration during various events revealed that the maximum infiltration rate was much higher when the
wetting front resided in the upper 20 cm of soil compared to the case when the wetting front advanced to depths > 20 cm. Laboratory
investigations on soil hydraulic properties (i.e., soil water characteristic curve, and hydraulic conductivity) were useful
to establish the parameters of a multilayer finite-element model for one-dimensional vertical infiltration. These parameters
were subsequently calibrated by matching the predicted and field measured transient pore water pressure responses during actual
rainstorms with irregular rainfall patterns. The calibrated simulation model was used to assess the migration of the wetting
front under uniform rainfall with different intensities. Based on the numerical results, a hyperbolic equation was developed
to predict the duration of uniform rainfall required for the propagation of wetting front to a certain depth for a given rainfall
intensity. The proposed equation was subsequently tested against field-monitored advancements of the wetting front during
real rainstorms with variable rainfall intensity. 相似文献
15.
This paper describes a simplified numerical approach for analyzing the slope/pile system subjected to lateral soil movements. The lateral one-row pile response above and below the critical surface is computed by using load transfer approach. The response of groups was analyzed by developing interaction factors obtained from a three-dimensional nonlinear finite element study. An uncoupled analysis was performed for stabilizing piles in slope in which the pile response and slope stability are considered separately. The non-linear characteristics of the soil–pile interaction in the stabilizing piles are modeled by hyperbolic load transfer curves. The Bishop's simplified method of slope stability analysis is extended to incorporate the soil-pile interaction and evaluate the safety factor of the reinforced slope. Numerical study is performed to illustrate the major influencing parameters on the pile-slope stability problem. Through comparative studies, it has been found that the factor of safety in slope is much more conservative for an uncoupled analysis than for a coupled analysis based on three-dimensional finite element analysis. 相似文献
16.
在自然界和工程实践中遇到的土大多数是非饱和土,研究吸力对非饱和土抗剪强度的作用,对于工程实践具有重要的意义。通过压力板仪和直剪仪组合试验,探讨了击实土抗剪强度和基质吸力的关系。试验结果表明:凝聚力在饱和度为40%-60%时最大,而内摩擦角则随饱和度增加而有所减少。进一步对比土-水特征曲线与抗剪强度的关系,并整合前人研究成果,指出了非饱和土中吸力对其抗剪强度影响的规律。对于无黏性土,在边界效应区不产生假凝聚力,且内摩擦角不变;在过渡区与非饱和残余区,假凝聚力和基质吸力的关系存在峰值且变化较大,内摩擦角则随吸力增加而增加。对于黏性土,残余体积含水率所对应的最小吸力可能是影响抗剪强度的界限值,小于此吸力值,φb可近似为常数。但在非饱和残余区,凝聚力将随土状态路径的不同而变化。对于重塑土,凝聚力降低;而对于原状土,则凝聚力可能不变或增加。 相似文献
17.
A comprehensive analysis of maintaining stability by model homogeneous and stratified slopes, with possible surcharge loading, is carried out within the article. Calculations are performed by the Swedish method of Fellenius under the assumption of a cylindrical slip surface passing through the slope foot. Proposals for searching for the reach of the break-off wedge of a potential slip surface are put forward. An analysis of the effect of surcharge load location on general slope stability is also made, providing the capability to determine the safe distance of positioning of an excavator on the surcharge of a non-encased excavation. 相似文献
18.
非饱和土的工程性质是20世纪90年代以来国际岩土工程界研究的热点,非饱和土的抗剪强度是非饱和土的重要工程性质之一,在参阅了中、外文相关资料的基础上,总结了非饱和土抗剪强度理论的研究成果,提出了非饱和土抗剪强度有待进一步研究的问题。 相似文献
19.
We investigate the uncertainty in bedrock depth and soil hydraulic parameters on the stability of a variably-saturated slope in Rio de Janeiro, Brazil. We couple Monte Carlo simulation of a three-dimensional flow model with numerical limit analysis to calculate confidence intervals of the safety factor using a 22-day rainfall record. We evaluate the marginal and joint impact of bedrock depth and soil hydraulic uncertainty. The mean safety factor and its 95% confidence interval evolve rapidly in response to the storm events. Explicit recognition of uncertainty in the hydraulic properties and depth to bedrock increases significantly the probability of failure. 相似文献
20.
The aim of the present study is to prepare a landslide susceptibility map of a region of about 120 km 2, between Gökcesu and Pazarköy (around Mengen, NW Turkey) at approximately 10 km north of the North Anatolian Fault Zone, where frequent landslides occur. For this purpose, mechanisms of the landslides were studied by two-dimensional stability analyses together with field observations, and the parameters controlling the development of such slides were identified. Field observations indicated that the failures generally developed within the unconsolidated and/or semiconsolidated soil units in forms of rotational, successive shallow landslides within the weathered zone in Mengen, Cukurca and Sazlar formations. Although consisting of residual soils, Capak and Gökdag formations do not exhibit landslides as the natural slopes formed on these, do not exceed the critical slope angles. Statistical evaluations and distribution of the landslides on the topographical map showed that such parameters as cohesion, angle of internal friction, slope, relative height, orientation of slopes, proximity to drainage pattern, vegetation cover and proximity to major faults were the common features on the landslides. Digital images were obtained to represent all these parameters on gray scale on the SPOT image and on the digital elevation model (DEM) of the area using image processing techniques. Soil mechanics tests were carried out on 36 representative samples collected from different units, and parameters were determined for two-dimensional stability analyses basing on “sensitivity approach” and for the preparation of digital shear strength map. In order to determine the critical slope angle values for the residual soils, a series of sensitivity analyses were realized by using two-dimensional deterministic slope stability analyses techniques for varying values of cohesion, angle of internal friction and slope height along with varying saturation conditions. According to the results of the sensitivity analyses, the Mengen formation was found to be most susceptible unit to landslides, covering about 33.5% of the region studied in terms of surface area. The distribution of the critical slopes were determined by superimposing the critical slope values from sensitivity analyses on slope map of the study area. On the other hand, iso-cohesion and iso-friction maps were produced by locating the values of cohesion and internal friction angles in a geographic coordinate system such that they coincide with sample locations on the DEM and by further interpolation of the values concerned. The pixel values were evaluated in gray scale from 0 to 255, 0 representing the lowest pixel value and 255 representing the highest. Sensitivity analyses on cohesion and angle of internal friction to investigate the effects of these parameters only on stability, revealed that cohesion was effective at a rate of 70% by itself, while angle of internal friction alone controlled the stability by a rate of 30%. The iso-cohesion and iso-friction maps previously obtained were digitally combined in these rates and a “shear strength map” was prepared. The geographic setting of the study area is such that northern slopes usually receive dense precipitation. In relation to this fact, about 42% of the landslides are due north. Thus, a slope orientation map was prepared using the DEM, and slopes facing north were evaluated as being more susceptible to sliding. Proximity to the drainage pattern was another important factor in the evaluation, as streams could adversely affect the stability by either eroding the toe or saturating the slope, or both. When considered together, in conjunction with the field observations, faults and landslides showed a close association. In the area, about 88% of the landslides were detected within an area closer than 250 m to major faults, therefore, a main discontinuity map was produced using the SPOT image of the region, and “proximity to major faults” was evaluated as a parameter as most of the landslides developed in areas where the vegetation was rather sparse. A vegetation cover map was therefore obtained from the SPOT image, and the areas with denser vegetation were considered to be less susceptible to sliding with respect to the areas with less or no vegetation. Having prepared the maps accounting for the distribution of critical slopes, shear strength properties, relative height, slope angle, orientation of the slopes, vegetation cover, proximity to the drainage pattern, geographic corrections were carried on each of these, and a potential failure map was obtained for the residual soils by superimposing all these maps. Next, a classification was performed on the final map and five relative zones of susceptibility were defined. When compared with this map, all of the landslides identified in the field were found to be located in the most susceptible zone. The performance of the method used in processing the images appears to be quite high, the zones determined on the map being the zones of relative susceptibility. 相似文献
|