首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
塔河油田奥陶系一间房组和鹰山组生物扰动型碳酸盐岩储集层非常发育.在岩芯观测的基础上,通过薄片显微镜观测与柱塞孔隙度、渗透率分析,对研究区生物扰动型碳酸盐岩储集层宏、微观特征和成因机制进行了研究,并基于岩芯资料和常规测井数据提出了一种新的孔隙度计算样本检验模型.结果表明:1)研究区奥陶系生物扰动储集层在岩芯上多呈不规则状...  相似文献   

2.
准确预测碳酸盐岩储层孔隙度和渗透率对于碳酸盐岩油气藏储层评价具有重要意义。碳酸盐岩储层裂缝与溶孔广泛发育,基于经验公式从测井曲线预测储层孔隙度和渗透率具有较大误差。以中东某碳酸盐岩油藏为研究对象,选取914块取心井岩心,测定孔隙度与渗透率,利用随机森林(RF)、K-近邻(KNN)、支持向量机(SVM)和长短期记忆网络(LSTM)4种不同机器学习方法,通过测井数据进行孔隙度与渗透率预测,优化机器学习参数,筛选出适用于碳酸盐岩油藏的测井孔隙度与渗透率预测方法。研究结果表明:4种机器学习方法预测储层孔隙度结果差异不大,通过调整输入参数种类,可进一步提高孔隙度与渗透率预测效果,当以补偿中子(NPHI)、岩性密度(RHOB)和声波时差(DT)3种测井参数数据作为输入时,基于LSTM的储层孔隙度预测精度最高,孔隙度预测结果均方根误差(RMSE)为4.536 2;由于碳酸盐岩储层的强非均质性,基于机器学习的测井储层渗透率预测效果较差,相对而言,仅以NPHI作为机器学习输入参数时,基于RF的储层渗透率预测精度最高,渗透率预测结果的RMSE为45.882 3。  相似文献   

3.
针对川东北地区通南巴构造带海相碳酸盐岩储层的双孔特征,基于嘉二段、飞三段取芯及测试资料,利用岩心刻度测井的方法,确定储层下限参数,建立适合川东北地区通南巴构造带及邻近地区海相碳酸盐岩储层参数计算模型与评价标准.结果表明:川东北地区通南巴构造带碳酸盐岩储层下限值标准为孔隙度1.6%,裂缝孔隙度0.05%,含气饱和度50%.该成果为川东北地区通南巴构造带海相碳酸盐岩气藏内部参数分布描述与最终形成气藏三维数据体提供了可靠的资料,在实际生产中取得了良好的应用效果,为油田进一步勘探、开发和增产措施提供可靠的依据.  相似文献   

4.
深入研究了电成像测井的测量方式,提出一种基于电成像低频分量的电阻率刻度公式,结合Archie公式并引入常规测井数据及处理成果,严格推导出一种可将电成像测井数据直接标定为孔隙度的算法。此方法省略了先作电阻率刻度再应用Archie公式等中间步骤,处理过程得以简化,并可消除Archie公式中a、b、nSxoRmf等参数以及浅侧向测井RLLS等因素对处理结果的影响,较大程度地实现了数据的自适应性处理。在此基础上,对孔隙度频谱进行多种统计分析,开展了类似核磁的区间孔隙度分析以及类似油藏描述中渗透率评价的孔隙度径向非均质性分析,将研究成果应用于碳酸盐岩储层产能预测中,引入“孔隙贡献因子”概念,并通过测井资料和试油资料建立了“孔隙度贡献因子”与储层产油强度的定量关系。  相似文献   

5.
为有效识别煤层及其顶底板,针对煤矿定向钻孔施工需求,开发了矿用电磁随钻伽马测井仪。通过自然伽马测井刻度获得仪器刻度系数,采用标准井测试及煤矿井下穿层孔试验,获得矿用电磁随钻伽马测井仪多种测量曲线。通过与标准井伽马曲线对比及穿层孔地质资料分析,验证了矿用电磁随钻伽马测井仪测量结果的准确性。山西伯方煤矿井下应用试验表明,矿用电磁随钻伽马测井仪在定向钻孔施工中不仅能进行钻孔轨迹测量同时可有效识别煤层顶底板界面,对于指导煤矿井下定向钻孔施工、提高目的层钻遇率具有重要意义。   相似文献   

6.
Ras Fanar field is one of the largest oil-bearing carbonate reservoirs in the Gulf of Suez. The field produces from the Middle Miocene Nullipore carbonate reservoir, which consists mainly of algal-rich dolomite and dolomitic limestone rocks, and range in thickness between 400 and 980 ft. All porosity types within the Nullipore rocks have been modified by diagenetic processes such as dolomitization, leaching, and cementation; hence, the difficulty arise in the accurate determination of certain petrophysical parameters, such as porosity and permeability, using logging data only. In this study, artificial neural networks (ANN) are used to estimate and predict the most important petrophysical parameters of Nullipore reservoir based on well logging data and available core plug analyses. The different petrophysical parameters are first calculated from conventional logging and measured core analyses. It is found that pore spaces are uniform all over the reservoirs (17–23%), while hydrocarbon content constitutes more than 55% and represented mainly by oil with little saturations of secondary gasses. A regular regression analysis is carried out over the calculated and measured parameters, especially porosity and permeability. Fair to good correlation (R <65%) is recognized between both types of datasets. A predictive ANN module is applied using a simple forward backpropagation technique using the information gathered from the conventional and measured analyses. The predicted petrophysical parameters are found to be much more accurate if compared with the parameters calculated from conventional logging analyses. The statistics of the predicted parameters relative to the measured data, show lower sum error (<0.17%) and higher correlation coefficient (R >80%) indicating that good matching and correlation is achieved between the measured and predicted parameters. This well-learned artificial neural network can be further applied as a predictive module in other wells in Ras Fanar field where core data are unavailable.  相似文献   

7.
Regionalized classification of electrofacies utilizes the statistical relationships between laboratory determined hydrologic properties and field-measured geophysical properties to estimate spatial distributions of porosity, permeability, and diagenetic characteristics. The method, illustrated with an application to the St. Peter Sandstone in the Michigan basin, combines techniques for multivariate analysis and spatial estimation. Core plug and borehole geophysical data are clustered into electrofacies that reflect the hydrologic properties and diagenetic characteristics of the formation. Electrofacies characteristics then are used to assign a class membership probability at locations where only geophysical data are available. Three-dimensional estimation of electrofacies occurrence is done by kriging datasets containing the probability of electrofacies membership at borehole locations. The discretization and kriging geometry allow three-dimensional estimation of hydrologic parameters for a large region that incorporates meter-scale heterogeneity. Finally, permeability and porosity are estimated at each grid location by probability-weighting. Because the electrofacies carry information about both the hydrologic and lithologic properties, the resulting spatial distributions provide an understanding of both the present-day flow characteristics and the extent of processes that control them.Managed by Martin Marietta Energy Systems. Inc., under contract DE-AC05-84OR21400 with the U.S. Department of Energy); Publication No. 4371, Environmental Sciences Division, ORNL.  相似文献   

8.
Ma  Lei  Liao  Huasheng  Qian  Jiazhong  Zhao  Weidong  Li  Shuguang 《Hydrogeology Journal》2023,31(4):985-1004

The heterogeneity of hydrofacies is represented as spatial variability on different scales, and it has a significant impact on the behavior of groundwater flow and pollutant transport. However, effectively characterizing hydrofacies heterogeneity on different scales remains one of the most challenging problems in hydrogeology. In this study, an upscaling hydrofacies simulation (UHS) framework is proposed by integrating the upscaling borehole generalization (UBG) approach and transition probability geostatistics (TPG). A new UBG approach for generating virtual boreholes with equivalent hydrofacies information based on relatively high-density borehole lithological data is proposed, and the TPG is used to delineate the multiscale facies distribution. The results show that the UBG approach can significantly reduce borehole data volume while retaining the key equivalent hydrofacies information on a coarser scale. The UHS method can well characterize the overall distribution of equivalent hydrofacies on coarser scales, with the minor-component hydrofacies underestimated and the major-component hydrofacies overestimated to a lesser extent, and more equivalent facies appearing in strong heterogeneous areas. These results demonstrate that the UHS method can provide valuable capacity insights and advantages in characterizing hydrofacies heterogeneity on different scales using such high-density borehole lithological data.

  相似文献   

9.
Two different instruments were used over a 17.5 month period to make high-resolution temperature measurements in the VC-2B corehole. The first tool transmits data to the surface and has a 300°C limitation imposed by the logging cable; the second tool has a design capability of 400°C and stores data in an onboard computer. The pressure in the corehole was calculated from an assumed equation of state that accounts for the NaCl dissolved in the borehole fluids. The maximum thermodynamic state achieved in VC-2B (136 bars, 295°C) occurred at a bottom hole depth of 1.76 km. Temperature data and the equation of state were used to calculate the pressure within a closed vessel withdrawn from the corehole. These calculations support experimental observations that fluid sampling devices used in VC-2B leak and return anomalously large amounts of fluid to the surface. The extension of the methods used herein to the investigation of subseafloor systems that approach the critical point of sea water is discussed.  相似文献   

10.
Accurate and reliable characterization of aquifer heterogeneity remains one of the foremost problems in hydrogeology. In this study, ground penetrating radar (GPR) and borehole geophysical logging are used to investigate scales of heterogeneity present locally (<500 m laterally) within an outwash deposit comprised of inter-bedded and cross-bedded sands and gravels of glaciofluvial origin. At a small scale (<15 m laterally), gamma log data in adjacent boreholes show evidence of fining upward sequences, occasional coarsening upward sequences, and abrupt changes in grain sizes, which appear to be laterally continuous at scales of 10 m. At the site scale (<500 m laterally), GPR profiles show a strong reflection interpreted as the water table. Reflectors in the unsaturated zone are more clearly defined than those beneath the water table due to signal attenuation within the saturated sediments. Undulating to discontinuous reflectors at scales of 10–15 m are interpreted to result from interbedded and cross-bedded sands and gravels. A few laterally continuous horizontal to sub-horizontal reflectors, which extend at least up to 360 m, are interpreted as unconformities, based on evidence of gravel bars, truncation of underlying units, as well as scour and fill features in a nearby gravel pit exposure. Overall, the integration of these two geophysical methods provided evidence of unit correlation at the two scales of investigation.  相似文献   

11.
据丰谷地区须家河组的地表剖面、岩心和薄片、测井曲线及常规物性测试资料等的观察、对比分析,认为川西坳陷中段的丰谷地区上三叠统须家河组四段砂岩普遍具有低孔低渗、致密化强、超高压、岩性变化快、非均质性强等特点,但局部仍发育有孔渗性相对较好的层段.根据沉积作用及沉积相、成岩作用类型、构造作用方面来探讨丰谷地区须四段储层的特征及...  相似文献   

12.
13.
A ground model of an active and complex landslide system in instability prone Lias mudrocks of North Yorkshire, UK is developed through an integrated approach, utilising geophysical, geotechnical and remote sensing investigative methods. Surface geomorphology is mapped and interpreted using immersive 3D visualisation software to interpret airborne light detection and ranging data and aerial photographs. Subsurface structure is determined by core logging and 3D electrical resistivity tomography (ERT), which is deployed at two scales of resolution to provide a means of volumetrically characterising the subsurface expression of both site scale (tens of metres) geological structure, and finer (metre to sub-metre) scale earth-flow related structures. Petrophysical analysis of the borehole core samples is used to develop relationships between the electrical and physical formation properties, to aid calibration and interpretation of 3D ERT images. Results of the landslide investigation reveal that an integrated approach centred on volumetric geophysical imaging successfully achieves a detailed understanding of structure and lithology of a complex landslide system, which cannot be achieved through the use of remotely sensed data or discrete intrusive sampling alone.  相似文献   

14.
The paper describes an investigation of pressure barriers (plugs) for an underground gas storage facility which were to be constructed from fibre shotcrete. An extensive measurement program on a test plug was carried out to verify the suitability of fibre shotcrete for this purpose. The results of stress and temperature measurements carried out during the construction of the test plug and during cyclic loading of the plug to a water pressure up to 13 MPa are presented. The measurement program provided information on the stress and temperature development inside the plug body during hydration and hardening and also on the residual tensile stresses at the interface between the plug and the rock mass after the end of hydration. Another important output was information on the quality of the plug-rock mass interface, which was critical for a possible leakage. The results obtained during the cyclic loading of the plug revealed uneven stress distribution at the contact and in the adjacent rock mass. It also provided information on the rate of stress redistribution at the contact and inside the rock mass. The results were used to modify the technology of the shotcrete technique to be applied in the final plugs. The gas storage facility using the modified design has been in trial operation since the end of 1998.  相似文献   

15.
Reservoir porosity is a critical parameter for the process of unconventional oil and gas resources assessment. It is difficult to determine the porosity of a gas shale reservoir, and any large deviation will directly reduce the credibility of any shale gas resources evaluation. However, there is no quantitative explanation for the accuracy of porosity measurement. In this paper, measurement uncertainty, an internationally recognized index, was used to evaluate the results of porosity measurement of gas shale plugs, and its impact on the credibility of shale gas resources assessment was determined. The following conclusions are drawn:(1) the measurement uncertainty of porosity of a shale plug is 1.76%–3.12% using current measurement methods, the upper end of which is too large to be acceptable. It is suggested that the measurement uncertainty should be factored into the standard helium gas injection porosity determination experiment, and the uncertainty should be less than 2.00% when using a high-precision pressure gauge;(2) in order to reduce the risk for exploration and decision-making, attention should be paid to the large uncertainty(30% at least) of shale gas resource assessment results, sometimes with corrections being made based on the practical considerations;(3) a pressure gauge with an accuracy of 0.25% of the full scal cannot meet the requirements of porosity measurement, and a high-precision plug cutting method or high-precision bulk volume measurement method such as one using 3 D scanning, is recommended to effectively reduce porosity uncertainty;(4) the method and process for evaluating the measurement uncertainty of gas shale porosity could also be referred for assessment of experimental quality by other laboratories.  相似文献   

16.
张翔  张伟  靳秀菊  刘红磊  姜贻伟  毕建霞 《地球科学》2016,41(12):2119-2126
普光地区长兴组和飞仙关组碳酸盐岩储层孔隙度与渗透率之间没有严格通用的数学关系,导致储层渗透率计算具有很大困难.通过对该地区测井资料、常规薄片、铸体薄片和岩心物性等资料进行分析,表明碳酸盐岩孔隙类型是影响孔渗关系的主要因素.基于常规测井资料构造出对孔隙结构比较敏感的测井特征:声波时差与密度比值和深浅侧向电阻率比值,可用于对该地区碳酸盐岩孔隙类型进行识别,再针对不同的孔隙类型建立相应的孔渗关系模型,用于计算该地区储层渗透率.实例资料处理结果表明,模型计算渗透率与岩心分析渗透率符合较好,且井间规律具有一致性,基于孔隙结构建立的储层孔隙度与渗透率模型能较好地确定储层渗透率.   相似文献   

17.
为精确划分松辽盆地沙河子组层序地层,限定断陷期沙河子组与营城组地层时代,进而研究断陷期盆地的演化,笔者利用松辽盆地大陆科学钻探松科2井获取的下白垩统地层岩芯资料,从岩芯尺度对沙河子组与营城组界面进行揭示,结合过松科2井地震剖面解释、松科2井及邻井测井响应特征分析和岩芯精细描述,总结出沙河子组顶界面在不同尺度的具体特征:(1)在地震剖面尺度,其表现为明显上超的特征;(2)在测井曲线上,界面附近表现为由下到上自然伽马曲线变化幅度增大,双侧向电阻率曲线由低值变为中高值的特征;(3)岩芯尺度上,表现为细粒沉积的砂泥岩突变为砾岩或火山岩。  相似文献   

18.
19.
Core samples are still today considered as the standard measurement against all other measurements which must be compared. Core analysis usually focuses on the worse portion of the reservoir due to the fact that core recovery has rarely been well in a highly fractured zone; hence, permeability measured from core sample is often not representative. Core analysis is a common method to identify small-scale fractures of the well and permeability and porosity; however, there are some limitations in the core procedure such as it is highly expensive and unidirectional and has a low recovery coefficient in fractured zone. In contrast, there tends to be a mistrust and even a suspicion of those logging instruments that make measurements which threaten to replicate or even replace the “sacred core.” Thus, image logs are more useful to study the subsurface fractures in these such cases and the logs which come closest to achieving this are the high-resolution micro resistivity (OBMI) and acoustic geological imaging (UBI). The core and OBMI-UBI result was matched in order to verify the log measurements. Furthermore, FMI data were integrated with other open-hole logs to derive a permeability curve. As demonstrated in the case studies, it is believed that the permeability in the basement could be reasonably evaluated using this method. As a result, this exercise has proven to be very valuable, not only for demonstrating the value of the log data, but also it has also highlighted some significant limitations of the core in water-based mud and oil-based mud systems.  相似文献   

20.
Seismic measurements may be used in geostatistical techniques for estimation and simulation of petrophysical properties such as porosity. The good correlation between seismic and rock properties provides a basis for these techniques. Seismic data have a wide spatial coverage not available in log or core data. However, each seismic measurement has a characteristic response function determined by the source-receiver geometry and signal bandwidth. The image response of the seismic measurement gives a filtered version of the true velocity image. Therefore the seismic image cannot reflect exactly the true seismic velocity at all scales of spatial heterogeneities present in the Earth. The seismic response function can be approximated conveniently in the spatial spectral domain using the Born approximation. How the seismic image response affects the estimation of variogram. and spatial scales and its impact on geostatistical results is the focus of this paper. Limitations of view angles and signal bandwidth not only smooth the seismic image, increasing the variogram range, but also can introduce anisotropic spatial structures into the image. The seismic data are enhanced by better characterizing and quantifying these attributes. As an exercise, examples of seismically assisted cokriging and cosimulation of porosity between wells are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号