首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of ocean–atmosphere coupling on the simulation and prediction of the boreal summer intraseasonal oscillation (ISO) has been investigated by diagnosing 22-year retrospective forecasts using the Seoul National University coupled general circulation model (CGCM) and its atmospheric GCM (AGCM) forced with SSTs derived from the CGCM. Numerous studies have shown that the ocean–atmosphere coupling has a significant effect on the improvement of ISO simulation and prediction. Contrary to previous studies, this study shows similar results between CGCM and AGCM, not only in regard to the ISO simulation characteristics but also the predictability. The similarities between CGCM and AGCM include (1) the ISO intensity over the entire Asian-monsoon region; (2) the spatiotemporal evolution of the northward propagating ISO (NPISO); and (3) the potential and practical predictability. A notable difference between CGCM and AGCM is the phase relationship between precipitation and SST anomalies. The CGCM and observation exhibits a near-quadrature relationship between precipitation and SST, with the former lagging about two pentads. The AGCM shows a less realistic phase relationship. The similar structure and propagation characteristics of ISO between the CGCM and AGCM suggest that the internal atmospheric dynamics could be more essential to the ISO than the ocean–atmosphere interaction over the Indian monsoon region.  相似文献   

2.
Decadal and bi-decadal climate responses to tropical strong volcanic eruptions (SVEs) are inspected in an ensemble simulation covering the last millennium based on the Max Planck Institute—Earth system model. An unprecedentedly large collection of pre-industrial SVEs (up to 45) producing a peak annual-average top-of-atmosphere radiative perturbation larger than ?1.5 Wm?2 is investigated by composite analysis. Post-eruption oceanic and atmospheric anomalies coherently describe a fluctuation in the coupled ocean–atmosphere system with an average length of 20–25 years. The study provides a new physically consistent theoretical framework to interpret decadal Northern Hemisphere (NH) regional winter climates variability during the last millennium. The fluctuation particularly involves interactions between the Atlantic meridional overturning circulation and the North Atlantic gyre circulation closely linked to the state of the winter North Atlantic Oscillation. It is characterized by major distinctive details. Among them, the most prominent are: (a) a strong signal amplification in the Arctic region which allows for a sustained strengthened teleconnection between the North Pacific and the North Atlantic during the first post-eruption decade and which entails important implications from oceanic heat transport and from post-eruption sea ice dynamics, and (b) an anomalous surface winter warming emerging over the Scandinavian/Western Russian region around 10–12 years after a major eruption. The simulated long-term climate response to SVEs depends, to some extent, on background conditions. Consequently, ensemble simulations spanning different phases of background multidecadal and longer climate variability are necessary to constrain the range of possible post-eruption decadal evolution of NH regional winter climates.  相似文献   

3.
The overall skill of ENSO prediction in retrospective forecasts made with ten different coupled GCMs is investigated. The coupled GCM datasets of the APCC/CliPAS and DEMETER projects are used for four seasons in the common 22 years from 1980 to 2001. As a baseline, a dynamic-statistical SST forecast and persistence are compared. Our study focuses on the tropical Pacific SST, especially by analyzing the NINO34 index. In coupled models, the accuracy of the simulated variability is related to the accuracy of the simulated mean state. Almost all models have problems in simulating the mean and mean annual cycle of SST, in spite of the positive influence of realistic initial conditions. As a result, the simulation of the interannual SST variability is also far from perfect in most coupled models. With increasing lead time, this discrepancy gets worse. As one measure of forecast skill, the tier-1 multi-model ensemble (MME) forecasts of NINO3.4 SST have an anomaly correlation coefficient of 0.86 at the month 6. This is higher than that of any individual model as well as both forecasts based on persistence and those made with the dynamic-statistical model. The forecast skill of individual models and the MME depends strongly on season, ENSO phase, and ENSO intensity. A stronger El Niño is better predicted. The growth phases of both the warm and cold events are better predicted than the corresponding decaying phases. ENSO-neutral periods are far worse predicted than warm or cold events. The skill of forecasts that start in February or May drops faster than that of forecasts that start in August or November. This behavior, often termed the spring predictability barrier, is in part because predictions starting from February or May contain more events in the decaying phase of ENSO.  相似文献   

4.
This study examines mid-latitude climate variability in a model that couples turbulent oceanic and atmospheric flows through an active oceanic mixed layer. Intrinsic ocean dynamics of the inertial recirculation regions combines with nonlinear atmospheric sensitivity to sea-surface temperature (SST) anomalies to play a dominant role in the variability of the coupled system.Intrinsic low-frequency variability arises in the model atmosphere; when run in a stand-alone mode, it is characterized by irregular transitions between preferred high-latitude and less frequent low-latitude zonal-flow states. When the atmosphere is coupled to the ocean, the low-latitude state occurrences exhibit a statistically significant signal in a broad 5–15-year band. A similar signal is found in the time series of the model ocean's energy in this coupled simulation. Accompanying uncoupled ocean-only and atmosphere-only integrations are characterized by a decrease in the decadal-band variability, relative to the coupled integration; their spectra are indistinguishable from a red spectrum.The time scale of the coupled interdecadal oscillation is set by the nonlinear adjustment of the ocean's inertial recirculations to the high-latitude and low-latitude atmospheric forcing regimes. This adjustment involves, in turn, SST changes resulting in long-term ocean–atmosphere heat-flux anomalies that induce the atmospheric regime transitions.  相似文献   

5.
Ma  Youwei  Li  Jianping  Zhang  Shaoqing  Zhao  Haoran 《Climate Dynamics》2021,56(11):3489-3509

Of great importance for guiding numerical weather and climate predictions, understanding predictability of the atmosphere in the ocean − atmosphere coupled system is the first and critical step to understand predictability of the Earth system. However, previous predictability studies based on prefect model assumption usually depend on a certain model. Here we apply the predictability study with the Nonlinear Local Lyapunov Exponent and Attractor Radius to the products of multiple re-analyses and forecast models in several operational centers to realize general predictability of the atmosphere in the Earth system. We first investigated the predictability characteristics of the atmosphere in NCEP, ECMWF and UKMO coupled systems and some of their uncoupled counterparts and other uncoupled systems. Although the ECMWF Integrated Forecast System shows higher skills in geopotential height over the tropics, there is no certain model providing the most precise forecast for all variables on all levels and the multi-model ensemble not always outperforms a single model. Improved low-frequency signals from the air − sea and stratosphere − troposphere interactions that extend predictability of the atmosphere in coupled system suggests the significance of air − sea coupling and stratosphere simulation in practical forecast development, although uncertainties exist in the model representation for physical processes in air − sea interactions and upper troposphere. These inspire further exploration on predictability of ocean and stratosphere as well as sea − ice and land processes to advance our understanding of interactions of Earth system components, thus enhancing weather − climate prediction skills.

  相似文献   

6.
This study examines the oceanic and atmospheric variability over the Intra-American Seas (IAS) from a 32-year integration of a 15-km coupled regional climate model consisting of the Regional Spectral Model (RSM) for the atmosphere and the Regional Ocean Modeling System (ROMS) for the ocean. It is forced at the lateral boundaries by National Centers for Environmental Prediction-Department of Energy (NCEP-DOE R-2) atmospheric global reanalysis and Simplified Ocean Data Assimilation global oceanic reanalysis. This coupled downscaling integration is a free run without any heat flux correction and is referred as the Regional Ocean–Atmosphere coupled downscaling of global Reanalysis over the Intra-American Seas (ROARS). The paper examines the fidelity of ROARS with respect to independent observations that are both satellite based and in situ. In order to provide a perspective on the fidelity of the ROARS simulation, we also compare it with the Climate Forecast System Reanalysis (CFSR), a modern global ocean–atmosphere reanalysis product. Our analysis reveals that ROARS exhibits reasonable climatology and interannual variability over the IAS region, with climatological SST errors less than 1 °C except along the coastlines. The anomaly correlation of the monthly SST and precipitation anomalies in ROARS are well over 0.5 over the Gulf of Mexico, Caribbean Sea, Western Atlantic and Eastern Pacific Oceans. A highlight of the ROARS simulation is its resolution of the loop current and the episodic eddy events off of it. This is rather poorly simulated in the CFSR. This is also reflected in the simulated, albeit, higher variance of the sea surface height in ROARS and the lack of any variability in the sea surface height of the CFSR over the IAS. However the anomaly correlations of the monthly heat content anomalies of ROARS are comparatively lower, especially over the Gulf of Mexico and the Caribbean Sea. This is a result of ROARS exhibiting a bias of underestimation (overestimation) of high (low) clouds. ROARS like CFSR is also able to capture the Caribbean Low Level Jet and its seasonal variability reasonably well.  相似文献   

7.
Interannual variability of the Indian summer monsoon rainfall has two dominant periodicities, one on the quasi-biennial (2–3 year) time scale corresponding to tropospheric biennial oscillation (TBO) and the other on low frequency (3–7 year) corresponding to El Niño Southern Oscillation (ENSO). In the present study, the spatial and temporal patterns of various atmospheric and oceanic parameters associated with the Indian summer monsoon on the above two periodicities were investigated using NCEP/NCAR reanalysis data sets for the period 1950–2005. Influences of Indian and Pacific Ocean SSTs on the monsoon season rainfall are different for both of the time scales. Seasonal evolution and movement of SST and Walker circulation are also different. SST and velocity potential anomalies are southeast propagating on the TBO scale, while they are stationary on the ENSO scale. Latent heat flux and relative humidity anomalies over the Indian Ocean and local Hadley circulation between the Indian monsoon region and adjacent oceans have interannual variability only on the TBO time scale. Local processes over the Indian Ocean determine the Indian Ocean SST in biennial periodicity, while the effect of equatorial east Pacific SST is significant in the ENSO periodicity. TBO scale variability is dependent on the local factors of the Indian Ocean and the Indian summer monsoon, while the ENSO scale processes are remotely controlled by the Pacific Ocean.  相似文献   

8.
Predictability of the subtropical dipole modes is assessed using the SINTEX-F coupled model. Despite the known difficulty in predicting subtropical climate due to large internal variability of the atmosphere and weak ocean–atmosphere coupling, it is shown for the first time that the coupled model can successfully predict the South Atlantic Subtropical Dipole (SASD) 1 season ahead, and the prediction skill is better than the persistence in all the 1–12 month lead hindcast experiments. There is a prediction barrier in austral winter due to the seasonal phase locking of the SASD to austral summer. The prediction skill is lower for the Indian Ocean Subtropical Dipole (IOSD) than for the SASD, and only slightly better than the persistence till 6-month lead because of the low predictability of the sea surface temperature anomaly in its southwestern pole. However, for some strong IOSD events in the last three decades, the model can predict them 1 season ahead. The co-occurrence of the negative SASD and IOSD in 1997/1998 austral summer can be predicted from July 1st of 1997. This is because the negative sea level pressure anomalies over the South Atlantic and the southern Indian Ocean in September–October (November–December) that trigger the occurrence of the negative SASD and IOSD are related to the well predicted tropical Indian Ocean Dipole (El Niño/Southern Oscillation). Owing to the overall good performances of the SINTEX-F model in predicting the SASD, some strong IOSD, and El Niño/Southern Oscillation, the prediction skill of the southern African summer precipitation is high in the SINTEX-F model.  相似文献   

9.
The sensitivity of the predictive skill of a decadal climate prediction system is investigated with respect to details of the initialization procedure. For this purpose, the coupled ocean–atmosphere UCLA/MITgcm climate model is initialized using the following three different initialization approaches: full state initialization (FSI), anomaly initialization (AI) and FSI employing heat flux and freshwater flux corrections (FC). The ocean initial conditions are provided by the German contribution to Estimating the Circulation and Climate of the Ocean state estimate (GECCO project), from which ensembles of decadal hindcasts are initialized every 5 years from 1961 to 2001. The predictive skill for sea surface temperature (SST), sea surface height (SSH) and the Atlantic meridional overturning circulation (AMOC) is assessed against the GECCO synthesis. In regions with a deep mixed layer the predictive skill for SST anomalies remains significant for up to a decade in the FC experiment. By contrast, FSI shows less persistent skill in the North Atlantic and AI does not show high skill in the extratropical Southern Hemisphere, but appears to be more skillful in the tropics. In the extratropics, the improved skill is related to the ability of the FC initialization method to better represent the mixed layer depth, and the highest skill occurs during wintertime. The correlation skill for the spatially averaged North Atlantic SSH hindcasts remains significant up to a decade only for FC. The North Atlantic MOC initialized hindcasts show high correlation values in the first pentad while correlation remains significant in the following pentad too for FSI and FC. Overall, for the current setup, the FC approach appears to lead to the best results, followed by the FSI and AI procedures.  相似文献   

10.
A typical active–break cycle of the Asian summer monsoon is taken as beginning with maximum SST (pentad 0) over the north Bay of Bengal when the oceans to its west and east from longitude 40°–160°E, and between latitudes 10° and 25°N (area A) also has maximum SST. During this pentad the recently found “Cold Pool” of the Bay of Bengal (between latitudes 3°N and 10°N) has its minimum SST. An area of convection takes genesis over the Bay of Bengal immediately after pentad 0 in the zone of large SST gradient north of the Cold Pool and it pulls the monsoon Low Level Jetstream (LLJ) through peninsular India. Convection and the LLJ westerlies then spread to the western Pacific Ocean during pentads 1–4 taken as the active phase of the monsoon during which convection and LLJ have grown in a positive feed back process. The cyclonic vorticity to the north of the LLJ axis is hypothesized to act as a flywheel maintaining the convection during the long active phase against the dissipating effect of atmospheric stabilization by each short spell of deep convection. By the end of pentad 4 the SST over area A has cooled and the convection weakens there, when the LLJ turns clockwise over the Arabian Sea and flows close to the equator in the Indian ocean. A band of convection develops at pentad 5 between the equator and latitude 10°S over the Indian ocean and it is nourished by the cyclonic vorticity of the LLJ now near the equator and the moisture supply through it. This is taken as the break monsoon phase lasting for about three to four pentads beginning from pentad 5 of a composite active–break cycle of 40 day duration. With reduced wind and convection over the area A during the break phase, solar radiation and light winds make the SST there warm rapidly and a new active–break cycle begins. SST, convection, LLJ and the net heat flux at the ocean surface have important roles in this new way of looking at the active–break cycle as a coupled ocean–atmosphere phenomenon.  相似文献   

11.
The Kuroshio Extension region is characterized by energetic oceanic mesoscale and frontal variability that alters the air–sea fluxes that can influence large-scale climate variability in the North Pacific. We investigate this mesoscale air-sea coupling using a regional eddy-resolving coupled ocean–atmosphere (OA) model that downscales the observed large-scale climate variability from 2001 to 2007. The model simulates many aspects of the observed seasonal cycle of OA coupling strength for both momentum and turbulent heat fluxes. We introduce a new modeling approach to study the scale-dependence of two well-known mechanisms for the surface wind response to mesoscale sea surface temperatures (SSTs), namely, the ‘vertical mixing mechanism’ (VMM) and the ‘pressure adjustment mechanism’ (PAM). We compare the fully coupled model to the same model with an online, 2-D spatial smoother applied to remove the mesoscale SST field felt by the atmosphere. Both VMM and PAM are found to be active during the strong wintertime peak seen in the coupling strength in both the model and observations. For VMM, large-scale SST gradients surprisingly generate coupling between downwind SST gradient and wind stress divergence that is often stronger than the coupling on the mesoscale, indicating their joint importance in OA interaction in this region. In contrast, VMM coupling between crosswind SST gradient and wind stress curl occurs only on the mesoscale, and not over large-scale SST gradients, indicating the essential role of the ocean mesocale. For PAM, the model results indicate that coupling between the Laplacian of sea level pressure and surface wind convergence occurs for both mesoscale and large-scale processes, but inclusion of the mesoscale roughly doubles the coupling strength. Coupling between latent heat flux and SST is found to be significant throughout the entire seasonal cycle in both fully coupled mode and large-scale coupled mode, with peak coupling during winter months. The atmospheric response to the oceanic mesoscale SST is also studied by comparing the fully coupled run to an uncoupled atmospheric model forced with smoothed SST prescribed from the coupled run. Precipitation anomalies are found to be forced by surface wind convergence patterns that are driven by mesoscale SST gradients, indicating the importance of the ocean forcing the atmosphere at this scale.  相似文献   

12.
Within the CIRCE project “Climate change and Impact Research: the Mediterranean Environment”, an ensemble of high resolution coupled atmosphere–ocean regional climate models (AORCMs) are used to simulate the Mediterranean climate for the period 1950–2050. For the first time, realistic net surface air-sea fluxes are obtained. The sea surface temperature (SST) variability is consistent with the atmospheric forcing above it and oceanic constraints. The surface fluxes respond to external forcing under a warming climate and show an equivalent trend in all models. This study focuses on the present day and on the evolution of the heat and water budget over the Mediterranean Sea under the SRES-A1B scenario. On the contrary to previous studies, the net total heat budget is negative over the present period in all AORCMs and satisfies the heat closure budget controlled by a net positive heat gain at the strait of Gibraltar in the present climate. Under climate change scenario, some models predict a warming of the Mediterranean Sea from the ocean surface (positive net heat flux) in addition to the positive flux at the strait of Gibraltar for the 2021–2050 period. The shortwave and latent flux are increasing and the longwave and sensible fluxes are decreasing compared to the 1961–1990 period due to a reduction of the cloud cover and an increase in greenhouse gases (GHGs) and SSTs over the 2021–2050 period. The AORCMs provide a good estimates of the water budget with a drying of the region during the twenty-first century. For the ensemble mean, he decrease in precipitation and runoff is about 10 and 15% respectively and the increase in evaporation is much weaker, about 2% compared to the 1961–1990 period which confirm results obtained in recent studies. Despite a clear consistency in the trends and results between the models, this study also underlines important differences in the model set-ups, methodology and choices of some physical parameters inducing some difference in the various air-sea fluxes. An evaluation of the uncertainty sources and possible improvement for future generation of AORCMs highlights the importance of the parameterisation of the ocean albedo, rivers and cloud cover.  相似文献   

13.
14.
The dynamics of a low-order coupled wind-driven ocean–atmosphere system is investigated with emphasis on its predictability properties. The low-order coupled deterministic system is composed of a baroclinic atmosphere for which 12 dominant dynamical modes are only retained (Charney and Straus in J Atmos Sci 37:1157–1176, 1980) and a wind-driven, quasi-geostrophic and reduced-gravity shallow ocean whose field is truncated to four dominant modes able to reproduce the large scale oceanic gyres (Pierini in J Phys Oceanogr 41:1585–1604, 2011). The two models are coupled through mechanical forcings only. The analysis of its dynamics reveals first that under aperiodic atmospheric forcings only dominant single gyres (clockwise or counterclockwise) appear, while for periodic atmospheric solutions the double gyres emerge. In the present model domain setting context, this feature is related to the level of truncation of the atmospheric fields, as indicated by a preliminary analysis of the impact of higher wavenumber (“synoptic” scale) modes on the development of oceanic gyres. In the latter case, double gyres appear in the presence of a chaotic atmosphere. Second the dynamical quantities characterizing the short-term predictability (Lyapunov exponents, Lyapunov dimension, Kolmogorov–Sinaï (KS) entropy) displays a complex dependence as a function of the key parameters of the system, namely the coupling strength and the external thermal forcing. In particular, the KS-entropy is increasing as a function of the coupling in most of the experiments, implying an increase of the rate of loss of information about the localization of the system on its attractor. Finally the dynamics of the error is explored and indicates, in particular, a rich variety of short term behaviors of the error in the atmosphere depending on the (relative) amplitude of the initial error affecting the ocean, from polynomial (at 2 + bt 3 + ct 4) up to exponential-like evolutions. These features are explained and analyzed in the light of the recent findings on error growth (Nicolis et al. in J Atmos Sci 66:766–778, 2009).  相似文献   

15.
We have used the BIOME4 biogeography–biochemistry model and comparison with palaeovegetation data to evaluate the response of six ocean–atmosphere general circulation models to mid-Holocene changes in orbital forcing in the mid- to high-latitudes of the northern hemisphere. All the models produce: (a) a northward shift of the northern limit of boreal forest, in response to simulated summer warming in high-latitudes. The northward shift is markedly asymmetric, with larger shifts in Eurasia than in North America; (b) an expansion of xerophytic vegetation in mid-continental North America and Eurasia, in response to increased temperatures during the growing season; (c) a northward expansion of temperate forests in eastern North America, in response to simulated winter warming. The northward shift of the northern limit of boreal forest and the northward expansion of temperate forests in North America are supported by palaeovegetation data. The expansion of xerophytic vegetation in mid-continental North America is consistent with palaeodata, although the extent may be over-estimated. The simulated expansion of xerophytic vegetation in Eurasia is not supported by the data. Analysis of an asynchronous coupling of one model to an equilibrium-vegetation model suggests vegetation feedback exacerbates this mid-continental drying and produces conditions more unlike the observations. Not all features of the simulations are robust: some models produce winter warming over Europe while others produce winter cooling. As a result, some models show a northward shift of temperate forests (consistent with, though less marked than, the expansion shown by data) and others produce a reduction in temperate forests. Elucidation of the cause of such differences is a focus of the current phase of the Palaeoclimate Modelling Intercomparison Project.  相似文献   

16.
17.
The effects of air?Csea coupling over the tropical Indian Ocean (TIO) on the eastward- and northward-propagating boreal summer intraseasonal oscillation (BSISO) are investigated by comparing a fully coupled (CTL) and a partially decoupled Indian Ocean (pdIO) experiment using SINTEX-F coupled GCM. Air?Csea coupling over the TIO significantly enhances the intensity of both the eastward and northward propagations of the BSISO. The maximum spectrum differences of the northward- (eastward-) propagating BSISO between the CTL and pdIO reach 30% (25%) of their respective climatological values. The enhanced eastward (northward) propagation is related to the zonal (meridional) asymmetry of sea surface temperature anomaly (SSTA). A positive SSTA appears to the east (north) of the BSISO convection, which may positively feed back to the BSISO convection. In addition, air?Csea coupling may enhance the northward propagation through the changes of the mean vertical wind shear and low-level specific humidity. The interannual variations of the TIO regulate the air?Csea interaction effect. Air?Csea coupling enhances (reduces) the eastward-propagating spectrum during the negative Indian Ocean dipole (IOD) mode, positive Indian Ocean basin (IOB) mode and normal years (during positive IOD and negative IOB years). Such phase dependence is attributed to the role of the background mean westerly in affecting the wind-evaporation-SST feedback. A climatological weak westerly in the equatorial Indian Ocean can be readily reversed by anomalous zonal SST gradients during the positive IOD and negative IOB events. Although the SSTA is always positive to the northeast of the BSISO convection for all interannual modes, air?Csea coupling reduces the zonal asymmetry of the low-level specific humidity and thus the eastward propagation spectrum during the positive IOD and negative IOB modes, while strengthening them during the other modes. Air?Csea coupling enhances the northward propagation under all interannual modes due to the persistent westerly monsoon flow over the northern Indian Ocean.  相似文献   

18.
We consider the general atmospheric circulation within the deductive framework of our climate theory. The preceding three parts of this theory have reduced the troposphere to the tropical and polar air masses and determined their temperature and the surface latitude of their dividing boundary, which provide the prior thermal constraint for the present dynamical derivation. Drawing upon its similar material conservation as the thermal property, the (columnar) potential vorticity (PV) is assumed homogenized as well in air masses, which moreover has a zero tropical value owing to the hemispheric symmetry. Inverting this PV field produces an upper-bound zonal wind that resembles the prevailing wind, suggesting that the latter may be explained as the maximum macroscopic motion extractable by random eddies – within the confine of the thermal differentiation.With the polar front determined in conjunction with the zonal wind, the approximate leveling of the isobars at the surface and high aloft specifies the tropopause, which is colder and higher in the tropics than in the polar region. The zonal wind drives the meridional circulation via the Ekman dynamics, and the preeminence of the Hadley cell stems from the singular Ekman convergence at the equator that allows it to supply the upward mass flux in the ITCZ demanded by the global energy balance.  相似文献   

19.
A preindustrial climate experiment was conducted with the third version of the CNRM global atmosphere–ocean–sea ice coupled model (CNRM-CM3) for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). This experiment is used to investigate the main physical processes involved in the variability of the North Atlantic ocean convection and the induced variability of the Atlantic meridional overturning circulation (MOC). Three ocean convection sites are simulated, in the Labrador, Irminger and Greenland–Iceland–Norwegian (GIN) Seas in agreement with observations. A mechanism linking the variability of the Arctic sea ice cover and convection in the GIN Seas is highlighted. Contrary to previous suggested mechanisms, in CNRM-CM3 the latter is not modulated by the variability of freshwater export through Fram Strait. Instead, the variability of convection is mainly driven by the variability of the sea ice edge position in the Greenland Sea. In this area, the surface freshwater balance is dominated by the freshwater input due to the melting of sea ice. The ice edge position is modulated either by northwestward geostrophic current anomalies or by an intensification of northerly winds. In the model, stronger than average northerly winds force simultaneous intense convective events in the Irminger and GIN Seas. Convection interacts with the thermohaline circulation on timescales of 5–10 years, which translates into MOC anomalies propagating southward from the convection sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号