首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1故障现象无磁控管电流,两显示器无杂波、无回波。2检修与分析开启雷达后,一手扶住复位按钮,另一手转动高压调节手轮,高压指示正常,但无磁控管电流。闸流管不起辉。松开复位按钮,高压掉至零。据上述步骤,初看起来故障应在发射机的调制器内。但是两显示器上无杂波、无回波,说明接收机的视频放大器也有故障。结合两种故障现象判断,故障应在影响上述两部分的共同电路内。因而作如下检查:门)检查发射机面板上的触发脉冲为正常。(2)通过接收机面板上的电压检查表,发现无十30O伏直流电压。门)打开接收机后门,闻到一股焦味,用手…  相似文献   

2.
当雷达发生故障后,作为机务人员需要全面弄清故障现象,分析、判断、确定故障部位。怎样才能更快地排除故障?本文几个典型故障检修过程可望对同行有所启示。1 701测风雷达典型故障的检修1.1 故障现象a.测距显示器上无主波、无固定回波、其它正常。b.收发开关的放电管不打火。c.功率指示器上无指示。d.电表  相似文献   

3.
自天气雷达问世以来,教科书和观测规范规定:在观测单体云时,先以一定仰角做PPI(平面位置显示,简称平显),然后再将雷达扫描线正对PPI扫描所得云体回波强中心做RHI(距离高度显示,简称高显),最终得出云体回波最大高度(顶高)及强度信息,这一观测方法是目前通用的观测规则,这里称为常规方法。但是,我们在实际工作中发现在某些特定的条件下用上述方法不能观测出云体回波的最大高度及强中心顶高,特别是在防雹观测指挥中由于用上述方法观测出的云体回波最大高度及强中心顶高低于实际高度值,容易发生错误识别。1环境风场对单…  相似文献   

4.
放球前40min,启动放球软件,打开雷达的电源、驱动箱、示波器及发射高压。放球前30min基测,基测完毕可浸泡电池,使电池电压在18~20V之间,冬季可略高一些。装配仪器的,使仪器同气压表槽面尽可能在同一高度,高差不超过4m。放球前10min,打开视频开关,摇动方位、仰角,将悬挂在放球点的仪器调至视频窗口的中央位置;打开小发射机开关,调整频率使凹口信号清晰度到最佳;摇动手轮使探空仪偏离一个角度(大约30);将天控开关切换为自动。这时如果探空仪迅速回到视频窗口的中间位置,说明频率已经调好,雷达工作正常,能自动跟踪。放球前5min,读取瞬间要素值;天控为自动;距离开关为自动;打开放球键,等待放球。  相似文献   

5.
在701B型雷达中,传输线分为高频和低频两种。高频传输线主要传输高频能量(高频信号).低频传输线的作用是输送交百流电压。例1故障现象:天线对准目标后,测角显示器中4条线不等高。在显示器中,有时表现为“”,有时为“”有时又正常。探空讯号正常。分析及检修:上述现象说明,雷达的高频通路有问题。测角显示器中,4条亮线不能对齐,高频信号经天线到接收机,经过放大后,加到测角显示器垂直偶相放大(G7上的幅度不等,即天线阵4组小组馈线接收到的信号,经过换相器.高频旋转关节,收发开关,高频放大、接收机,最后到达测角显示器…  相似文献   

6.
706雷达是一种新型测风雷达,本文主要分析3例雷达故障的原因及介绍排除故障经验,供大家参考。 故障1: (1)故障现象:706雷达发射机不工作时,终端显示器所显示的雷达状态都很正常,但发射机工作时,“雷达状态”一栏中的“加电”二字由褐色跳回绿色,“发射一分钟”先由绿色变为褐色,再由褐色跳回绿色;“天线仰角、方位角”指示栏角度读数及天线实时状态指示伴随闪跳;手动状态下天线方位、俯仰均不能转动,且不时出现“阶梯波故障”报警,但雷达能收到回波信号。 (2)原因分析:①发射机高频电路屏蔽不好或接地不良,加…  相似文献   

7.
1 故障现象 1992年8月,我局在架设701备分测风雷达过程中,遇到调制器脉冲电路故障而引起发射不正常。打开发射机高压开关时,高压指示灯明亮,提升高压调压器一直升到底,“测量选择”开关分别放在“高压”、“TM—85”、“FM—7F”三档位置,检查电表的指示为零。2 故障分析 通过“测量选择”开关检查分析,故障可能发生在高压电源、调制器电源、调制器等三个部分。应先着手检查高压电源及调制器电源,然后再检查调制器的有关电路。  相似文献   

8.
1 故障现象 1992年8月,我局在架设701备分测风雷达过程中,遇到调制器脉冲电路故障而引起发射不正常。打开发射机高压开关时,高压指示灯明亮,提升高压调压器一直升到底,“测量选择”开关分别放在“高压”、“TM—85”、“FM—7F”三档位置,检查电表的指示为零。2 故障分析 通过“测量选择”开关检查分析,故障可能发生在高压电源、调制器电源、调制器等三个部分。应先着手检查高压电源及调制器电源,然后再检查调制器的有关电路。  相似文献   

9.
为认识统计山西雷暴大风的雷达产品特征,做好其预报预警,利用2013—2017年4—9月高空探测资料和地面观测资料以及多普勒雷达资料对山西39次雷暴大风过程进行研究。根据500 h Pa环流形势将其分为四大类型:西北气流型、冷涡型、西风槽前型、副热带高压(简称“副高”)切变型。统计分析了不同环流背景下雷暴大风的雷达产品特征及其预警提前量。结果表明:(1)块状孤立对流单体是任一环流背景下山西雷暴大风的主要雷达回波形态。(2)副高切变型雷暴大风的最大回波强度、回波顶高、最大垂直积分液态水含量值最高,冷涡型最低。(3)低层径向速度大值区对雷暴大风的指示意义最明显,预警提前量最多,可提前30 min以上。(4)雷暴大风发生时,有阵风锋和逆风区出现,但出现次数极少。研究结果对利用雷达产品预警山西雷暴大风提供参考依据。  相似文献   

10.
许国仁 《气象》1982,8(2):33-36
一、发射机的一般检修方法 711雷达发射机除了产生大功率的高频发射脉冲,直接从磁控管振荡器耦合输出,经波导系统传输至天线喇叭口定向辐射外,还从它的触发脉冲产生器同时输出触发脉冲,送到显示器和接收机,控制它们与发射机同步工作,所以发射机工作的好坏,不仅影响自身而且也影响其他分机。 怎样判断发射机是否正常呢?它正常工作的明显标志是:“磁流”(或功率指示)正常,磁控管振荡器的振荡频率符合要求(9370±30兆周)。“磁流”是通过接收机控制盒面板上的电表或距离显示器面板上的电表测量的;功率则是通过发射机预调器面板上的功率表测量的;而磁控管振荡器的振荡频率,要通过波导系统的定向耦合器接上回波箱来测量。如果这些指示不正常或没有,说明发射机有故障,需要进行检修。 发射机有了故障,从何下手呢?一般来说,先要通过看光亮、听声响、量数据、测波形等方法的综合  相似文献   

11.
故障现象:加“收发高压”后,“手动-自动”开关置于自动位置时,杂波幅度和晶流周期性跳动,即不跟踪。但置于手动位置时,接收机可以工作。检修过程:按接收机的正规调整步骤反复调整,但故障现象依旧。测量插孔3ckz的电压正常,并用示波器检查有脉冲输出,用扫频仪观自频调鉴频曲线也正常,这说明自频调工作基本是正常的。后换磁控管、速调管及自频调混频晶体等仍不见效。后来,取下磁控管与平衡晶体混频器的连接波导,发现其波导内壁上有很多细小的麻点,这说明在这波导内有打火现象。用酒精、绸布反复擦洗其波导并将其装好,自频调跟踪正常。  相似文献   

12.
利用MICAPS、自动站和双偏振雷达资料,分析营口2019年8月16日龙卷天气过程。发现此次龙卷天气在高空低涡的天气背景下发生,高层冷平流与低层暖平流叠加,积累了充分的不稳定能量,为龙卷的发生提供了潜势;温度层结曲线与露点温度曲线呈“X”型,有利于雷暴大风生成。雷达图上南北两条窄带回波相遇是雷暴的触发条件;产生龙卷的雷暴单体强回波区域向下延伸指示了雷暴的发展情况,反射率图上高层强回波悬垂、低层弱回波区、钩状回波预示着该风暴为强风暴;径向速度产品图上表征气旋式旋转的正负速度对的发展变化可以指示龙卷的位置和强度,05°仰角上辐散区可以确定地面大风的发生时间和位置;相关系数CC产品、差分反射率ZDR产品、差分相移率KDP产品等偏振量有利于确定龙卷的影响范围;粒子分类产品对冰雹落地时间有较好的指示。  相似文献   

13.
王铁岩 《吉林气象》2013,(1):14-19,24
通过分析2012年6月12日和7月1日发生在白城市境内的强对流天气的环境背景和多普勒雷达资料、探空资料表明:两次强对流发生前,强对流发生地附近低层垂直风切变较大,抬升凝结高度较低,空气湿度较大,对流有效位能(CAPE)较大。雷达资料显示:两次强对流天气中,产生强对流天气的雷达回波强度均超过45dBz,且存在明显的“钩”状,强天气产生在“钩状”回波附近,回波具有“WER”或“BWER”结构。冰雹和短时强降水回波均具有较大的VIL值,速度场上存在“逆风区”或“中气旋”。不同之处是产生冰雹的强回波高度超过一20℃等温线高度,一般强回波高度超过8km,产生短时强降水的强回波高度较低,一般在6km左右处,,产生龙卷的强回波VIL没有冰雹和短时强降水大,两次龙卷过程的母体虽然回波形态、强度和高度各异,但均具有“钩状”回波结构,且速度场都存在中气旋。另外,雷达导出产品中的中气旋识别产品对强对流天气的监测有重要的应用价值,尤其是TVS识别对龙卷发生有一定指示意义,雷达超前于龙卷发生约半小时识别出中气旋,这对龙卷的预警非常有意义。  相似文献   

14.
利用MICAPS常规天气图资料、地面自动气象站资料、雷电资料和雷达拼图等资料,采用天气图中分析方法、统计方法、回波图像、回波廓线等分析方法,对2020年7月11日江西副热带高压边缘中尺度雷暴大风回波特征进行分析,结果表明:1)副热带高压控制或边缘上,江西上空100 hPa是东北风,500 hPa是西南风,高空呈现逆时针环流,T-lnP图上层结不稳定,对流有效位能CAPE (Convective Available Potential Energy)面积较大,对产生强对流天气有利;由于上下两层的风向不同,使得雷暴回波系统的移动与回波系统的云砧伸展方向不一致,从而加剧了对流上升运动,使得雷暴回波系统发展、加强、维持。2)回波产生初期是局地对流单体回波,通过不断新生单体和单体合并等方式,形成南北走向的回波短带,这种合并形成的回波短带发展旺盛时,会产生多站雷暴大风天气。3)南北走向的回波短带是产生雷暴大风的主要回波特征,虽然回波强度只有55 dBZ,但移动速度较快(60~70 km/h),造成地面大风。江西WebGIS雷达拼图上叠加多部雷达风暴跟踪信息STI (Storm Tracking Information),可以明确风暴的移动方向和移动速度,根据STI密集区判断,增加了STI的可用性。4)“前伸”或“延伸”回波反映了回波系统上方的高空风走向和积雨云的云砧飘离方向。“延伸”回波一定程度上表现出副高边缘雷暴回波系统的强弱程度。为改进副热带高压边缘中尺度雷暴大风的预警预报准确率提供依据。  相似文献   

15.
万李玲 《四川气象》1995,15(2):54-57
711测雨雷达中频衰减器电路简化万李玲(雅安地区气象局邮编:625000)在711测雨雷达中设有一中频衰减器,接在前置中放电路(133分机)和主中放(135分机)之间,它的作用是测量反射回波的中心强度,在实际电路中,是由八节“”型集中电阻衰减器串联组...  相似文献   

16.
利用新一代天气雷达(CINRAD/SA)对2004年11月10日闽西地区出现的一次秋季强降雹过程的超级单体风暴进行分析,对风暴的演变、结构、三体散射现象及相应的雷达产品做初步分析,得出该超级单体具有钩状回波、有界弱回波区、中气旋及三体散射现象等特征,这些持征对判断强对流天气有较好的指示作用。秋季出现强对流天气时垂直累积液态含水量(VIL)值较春、夏季小。  相似文献   

17.
在天气雷达“平显”上强降水回波中心的移动,是相应的天气系统移动的反映。精确地确定出该中心的移向和移速(即移速矢量)对做短时天气预报具有很重要的意义。然而,若靠“素描图”来确定此移速矢量,不仅环节多、程序麻烦、浪费时间和精力,而且所得结果的精确度也很难保证。  相似文献   

18.
本文主要利用黔东南榕江双偏振多普勒天气雷达、常规观测和加密自动站观测等资料,对黔东南2020年5月31日及6月8日两次暖区暴雨天气过程的雷达回波特征进行分析,结果表明:(1)月亮山区暖区暴雨的雷达回波主要以积状云回波为主,地形对回波具有明显强迫抬升作用;(2)回波演变主要分为三个阶段,对流回波的“合并增强”,单体后向传播形成长时间的“列车效应”,造成了月亮山区的暴雨过程;(3)径向速度场往往配合逆风区及γ中尺度的气旋式辐合;回波顶高、垂直积分液态含水量伴随跃增现象;(4)暖区暴雨由低质心+高质心回波共同影响造成,发展旺盛的单体生消较快,对流性特征显著;(5)随着质心高度、最大垂直液态水含量及最大回波强度的升高,雨强也会随之增强,但是三者与雨强变化之间存在一定的滞后关系;(6)暴雨以上降水以大雨滴为主,降水强度强,雨滴浓度大;(7)雷达估测的1h累积降水量、3h累积水量及风暴总降水量产品的演变与对应的自动站观测到的实际雨量变化趋势较为一致,但与实况均存在一定的偏差,且随着雨强的增大,误差随之增大;3h累积水量及风暴总降水量两个产品能较好地反映出强降水落区。  相似文献   

19.
利用新一代天气雷达(CINRAD/SA)探测到的四次“三体散射”现象的冰雹天气过程进行分析,通过分析得出以下结论:“三体散射”现象首先在高层出现,强中心回波强度达60dB z以上,三体散射是降大雹的指示性指标并有一定的提前量,同时可能伴有灾害性大风。  相似文献   

20.
北京短时局地暴雨多普勒天气雷达观测分析   总被引:2,自引:0,他引:2  
中小尺度天气系统造成的短时局地暴雨的临近预报目前仍是预报中的难点,也是2008年奥运会提供精细化预报需要进一步研究的问题。了解不同云系的结构及雷达回波的特征,还可以为人工增雨制定最佳作业方案,选择最佳作业时机。用每小时的地面自动站雨量资料结合北京市气象台的多普勒天气雷达资料,查找出造成北京2004年夏季(6~8月)的短时局地暴雨天气的雷达回波单体。对多普勒雷达回波资料分析表明:在多普勒径向速度图上“辐合点”、“中气旋”的图像特征出现有利于局地暴雨发生,并提前于暴雨。对突发性局地暴雨的临近预报有一定的指示意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号