首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
冷空气对两例高原低涡移出高原影响的分析   总被引:12,自引:7,他引:5  
利用NCEP再分析资料对2002年8月12~20日托勒涡及2003年7月12~14日诺木洪涡两例高原低涡在冷空气影响下移出高原的斜压性和温度平流进行诊断分析,结果表明:(1)受切变线影响的托勒低涡移出高原时主要受东北方冷空气不断伸入涡区的影响,西风槽前的诺木洪低涡主要受西北方冷空气伸入涡区的影响。(2)高原低涡是在600 hPa以上涡柱内斜压性较强、500 hPa涡区内斜压性加强情况下移出高原的。不同的是:托勒低涡移出高原,涡柱内对流层中上层斜压性、500 hPa涡区内斜压性都比诺木洪低涡弱;托勒低涡涡柱内北冷南暖现象比诺木洪低涡强。(3)高原低涡是在低涡区内大部分受冷平流控制,涡区西部冷平流比东部强时移出高原的;低涡西部的冷平流加强将会使低涡发展加强,在高原以东持续。不同的是:受切变线影响的托勒低涡移出高原时低涡西部冷平流区强度比受西风槽前诺木洪低涡弱;而托勒低涡区冷平流区比诺木洪低涡移出高原时大。  相似文献   

2.
利用NCEP再分析资料对2001年以来移出青藏高原后活动时间长(>48小时)的3次高原低涡在南支气流影响下移出高原的个例,进行了325°K等熵面分析、500hPa水汽输送、涡度平流的诊断分析,得出了南支气流影响高原低涡移出高原的共同特征与差异,给出了南支气流对高原低涡移出高原影响的综合作用的概念模型。丰富了高原低涡东移的认识,为高原低涡洪涝暴雨的预报提供了科学依据。  相似文献   

3.
南支气流对高原低涡移出青藏高原影响的诊断分析   总被引:1,自引:0,他引:1  
利用NCEP再分析资料对2001年以来移出青藏高原后活动时间长(〉48小时)的3次高原低涡在南支气流影响下移出高原的个例,进行了325°K等熵面分析、500hPa水汽输送、涡度平流的诊断分析,得出了南支气流影响高原低涡移出高原的共同特征与差异,给出了南支气流对高原低涡移出高原影响的综合作用的概念模型。丰富了高原低涡东移的认识,为高原低涡洪涝暴雨的预报提供了科学依据。  相似文献   

4.
南支气流对高原低涡移出高原影响的数值试验   总被引:2,自引:0,他引:2  
本文在对2000年以来移出青藏高原后活动时间长的高原低涡活动过程,进行对流层中层南支气流对高原低涡移出高原的影响的观测事实分析基础上,通过对2001年6月1~5日索县低涡移出高原活动的数值模拟和试验分析,得出了在高原低涡以南的南支气流减弱或者是没有南风或者是没有南风脉动的影响,会使低涡移出高原的速度减慢,移出高原12小时后减弱消失。低涡以南的南支气流起到了向低涡区输送水汽通量、正涡度平流的作用,提供利于低涡活动持续的条件。从而丰富了高原低涡东移的认识,为高原低涡洪涝暴雨的预报提供了科学依据。  相似文献   

5.
本文在对2000年以来移出青藏高原后活动时间长的高原低涡活动过程,进行对流层中层南支气流对高原低涡移出高原的影响的观测事实分析基础上,通过对2001年6月1~5日索县低涡移出高原活动的数值模拟和试验分析,得出了在高原低涡以南的南支气流减弱或者是没有南风或者是没有南风脉动的影响,会使低涡移出高原的速度减慢,移出高原12小时后减弱消失。低涡以南的南支气流起到了向低涡区输送水汽通量、正涡度平流的作用,提供利于低涡活动持续的条件。从而丰富了高原低涡东移的认识,为高原低涡洪涝暴雨的预报提供了科学依据。  相似文献   

6.
郁淑华  高文良 《大气科学》2018,42(6):1297-1326
本文利用NCEP/NCAR-FNL再分析资料、历史天气图和青藏高原低涡切变线年鉴,通过分析1998~2016年高原涡活动情况,对在高原以东活动时间大于96 h的高原涡(长持续涡)和在高原以东活动时间不大于30 h的高原涡(短持续涡),进行了环流与冷空气活动特征与位涡诊断的对比分析,得出了长、短持续涡的环境场、冷空气活动特征,揭示了冷空气活动、高空锋区对长、短持续涡的影响。结果表明:(1)长持续涡移出高原后是在受较明显冷空气影响情况下加强并持续的,短持续涡则没有明显受冷空气影响。长持续涡所处的低槽较深,槽后的冷温度槽较明显,副热带高压(简称副高)偏南;短持续涡处在分裂槽中,有冷舌,副高偏北;说明影响低涡活动的天气系统强,槽后的冷温度槽明显,副高偏南是低涡能较长时间持续的重要环流条件。(2)长持续涡不仅受到较强冷平流的影响,还处在有狭长的干冷与暖湿空气相遇的地带,使涡区极易产生对流不稳定和低涡扰动,利于低涡加强并持续,短持续涡则远不及长持续涡。(3)长持续涡移出高原后受两个不同方向冷空气影响,涡区内一般伴有两个高位涡中心区,而短持续涡的只有一个高位涡中心区,且位涡值比长持续涡小,长持续涡活动过程中的斜压性也比短持续涡强。另外,长持续涡活动过程中相应的高空急流较强,在增强、东伸、南压作用下,造成200 hPa高空有高位涡下传到低涡,而短持续涡所伴的西风急流平直、弱,造成了短持续涡只受到400 hPa高位涡下传的影响。(4)冷空气影响高原涡维持的作用有:使影响高原涡活动的天气系统加强;使高原涡斜压性增强、对流不稳定增强;使高空有高位涡下传至低涡附近层次,造成低涡区域正位涡异常,垂直涡度发展,低涡加强。  相似文献   

7.
高原低涡移出高原的观测事实分析   总被引:27,自引:0,他引:27  
郁淑华  高文良 《气象学报》2006,64(3):392-399
应用天气学、统计学原理,结合TRMM资料,分析了1998—2004年5—9月移出高原的低涡的活动特征。结果指出:6—8月是高原低涡移出高原影响中国东部天气的主要时段,它与高原低涡在高原上的活动特征及西南低涡移出高原特征均不同;移出高原的高原低涡的涡源主要在曲麻莱附近、德格附近,这与高原上产生低涡的涡源不同;移出高原的高原低涡的移动路径多数是随低槽的活动而向东、向东南移动,这与高原低涡在高原上多数是沿切变线移向东北不同,高原低涡移出高原后,不仅影响中国的范围广,还可能影响到朝鲜半岛、日本;高原低涡移出高原后涡的强度、性质会有变化,在高原以东活动时间长(≥36 h)的高原低涡,移出高原前多数为暖性低涡,移出高原后多数为斜压性低涡,低涡加强、多数可产生暴雨、大暴雨;高原低涡移出高原后移到海洋上,往往因下垫面不同而变化,出海后都有降水加强、多数位势高度下降的现象;移出高原后的高原低涡因东面海上热带气旋活动而少动,与其南面热带气旋活动相向而行,因季风低压少动而少动的现象。  相似文献   

8.
青藏高原低涡东移的数值试验   总被引:8,自引:0,他引:8  
本文利用钱永甫的五层有地形的原始方程模式,模拟了一次高原低涡的东移过程。发现非绝热因子(辐射、积云对流、大尺度凝结潜热)只影响高原低涡的强度,其中辐射加热对高原低涡强度影响最大。当高原低涡西部有冷槽配合或高原北部45—55°N有高压脊存在时,有利于高原低涡东移。  相似文献   

9.
利用ECMWF资料对2001年6月1~5日东移出高原的低涡个例的动力结构进行了诊断分析。结果表明:(1)低涡东移过程中,闭合等高线或者闭合气旋式环流的垂直厚度随时间呈加厚趋势;(2)高原低涡在东移过程中,垂直方向上几乎都是正涡度,500hPa上正涡度随时间呈增强趋势;(3)在高原上时涡区明显低层辐合、高层辐散;移出高原后表现为微弱的低层辐合、高层辐散,甚至低层辐散、中层辐合、高层辐散。(4)处于高原上时涡区整层都为上升运动,移出高原以后上升运动微弱,中低空经常为下沉运动。(5)低涡处于高原上时,涡区在边界层始终有水汽辐合,移出高原以后在低空只有微弱的水汽辐合甚至辐散。涡区外围东南侧的槽前脊后区存在低空急流,是水汽通量和水汽辐合的大值区。  相似文献   

10.
利用1998—2016年NCEP/DOE逐日的日平均地面感热通量和地面潜热通量、MICAPS历史天气图资料、青藏高原低涡切变线年鉴,对高原低涡涡源区与高原地面加热特征进行统计分析,对比研究了移出青藏高原的高原涡(移出涡)、未移出青藏高原的高原涡(未移出涡)的涡源与高原地面加热的季节变化特征,及移出涡、未移出涡涡源区的地面加热特征及高原地面加热与低涡生成的相关性。结果表明,高原涡、未移出涡、移出涡的涡源分布季节变化特征相似,由冬到春到夏,初生区域逐渐扩大,由夏到秋到冬正好相反,不同的是移出涡涡源区明显比高原涡、未移出涡小,初生中心位置的季节变化也不同;高原地面感热、地面潜热、地面热源分布的季节变化特征相似,由冬到春到夏经历了明显增强的过程,由夏到秋到冬经历了减弱的过程,不同的是热源的快速增强、减弱程度及其发生季节差异大,地面潜热由春到夏增强特别明显,这与移出涡生成个数的明显增加相一致;未移出涡、移出涡春、夏、秋季主要涡源区所处的地面热源值域不同,移出涡夏季的值比未移出涡高,移出涡生成对高原区域地面热源依赖要比未移出涡强一些;夏季移出涡、未移出涡的涡源区都处在与高原地面热源正相关区内,它们与地面潜热的显著正相关区比高原地面感热的大,尤其是移出涡,高原地面潜热在高原涡生成中有重要作用,对移出涡生成影响更大。  相似文献   

11.
高原低涡东移出高原的平均环流场分析   总被引:7,自引:7,他引:7  
高文良  郁淑华 《高原气象》2007,26(1):206-212
利用美国国家环境预测中心(NCEP)再分析资料,挑选出1998—2004年夏季高原涡移出高原多、少的年、月对它们的环流场进行对比分析。对比分析指出,6~8月是高原涡最易移出的月;当500hPa孟湾季风槽偏北,或西太副高明显西伸,高原东部有切变线活动;当200hPa南亚高压东伸明显,高原东部为南亚高压脊前西北气流控制时,有利于高原涡东移出高原。为高原低涡暴雨预报的气候背景提供了科学依据。  相似文献   

12.
郁淑华  高文良 《大气科学》2017,41(4):831-856
本文利用NCEP/NCAR-FNL再分析资料、历史天气图、青藏高原低涡切变线年鉴,通过分析1998~2015年持续高原涡影响西南涡结伴而行(简称两涡伴行)过程的活动形式,并对不同活动形式的个例进行了环境场与位涡分析,得出了不同活动形式两涡伴行的环境场特征,揭示了冷空气活动、200 hPa急流对不同活动形式的两涡伴行的影响原因。结果表明:(1)两涡伴行有三种活动形式,它们是高原涡诱发西南涡、高原涡与西南涡耦合以及同一天气系统下两涡,其中以高原涡诱发西南涡的活动形式占多数。(2)两涡伴行的500 hPa环境场主要是40°N以北东亚环流经向度不强,纬向气流主导,受500 hPa低槽、冷空气活动的影响;200 hPa环境场主要与200 hPa急流的强度、距急流核距离、在急流两侧的位置密切相关;不同活动形式的西南涡上空200 hPa、500 hPa环境场特征是有差别的。(3)受500 hPa低槽、冷空气影响的两涡伴行中的西南涡的生成是通过500 hPa高位涡空气伸入西南涡上空,造成西南涡上空斜压不稳定所至;在西南涡上空500 hPa斜压不稳定增强且具有较强的斜压不稳定时西南涡加强;200 hPa西南风急流影响高原涡诱发或耦合、加强西南涡是分别在高空高位涡下传影响到高原涡与西南涡上空、西南涡的情况下实现的,同一天气系统下,高空高位涡下传只影响高原涡,而未影响西南涡。  相似文献   

13.
利用长时间序列气象卫星及多源数据,研究青藏高原低涡综合识别方法,完成低涡数据集并与青藏高原低涡年鉴中低涡位置、路径和分布进行对比分析。研究表明:卫星识别多年平均低涡分布存在两个高值区,分别位于西藏的中北部和青海西南部及青藏高原西部,在有探空站的青藏高原东部(90°E以东),卫星识别低涡高值区和年鉴数据吻合,冬半年,卫星识别低涡活动明显高于年鉴,主要为青藏高原西部低涡活动引起,逐年及2008年低涡路径对比也显示,有探空站区域卫星识别低涡和年鉴具有较好的一致性,表明卫星识别低涡在青藏高原东部地区的可信性;2015年青藏高原中西部新增3个探空站,年鉴中90°E以西低涡约占全年低涡总数量的22%,该区域卫星识别低涡和年鉴一致性较高,表明卫星识别低涡在高原中西部的可信性。因此,卫星识别低涡与年鉴低涡在有探空站区域有较好的一致性,可对年鉴中青藏高原东部低涡源地进行追踪,又可识别青藏高原中西部尤其是活跃于冬半年的低涡,是青藏高原年鉴低涡数据的有效补充。  相似文献   

14.
顾清源  师锐  徐会明 《气象》2010,36(4):7-15
利用NECP再分析资料,采用对比分析方法,对2000-2004年汛期(6-9月)的高原低涡活动过程进行普查,并对移出高原低涡与未移出高原低涡在其生成时刻的环流特征场,以及移出高原低涡的移出高原时刻与未移出高原低涡的强盛时刻的环流特征场进行对比分析。分析表明:500 hPa上,移出高原低涡背景环流中巴尔喀什湖低槽、东亚大槽比未移出高原低涡深,蒙古高压脊更强,背景环流经向度大,而且副热带高压比未移出高原低涡西伸明显;暖平流对高原低涡的生成很重要,而涡后新疆冷平流有利于高原低涡移出高原主体;青藏高原上的正涡度平流有利于高原低涡的生成和加深,河套地区正涡度平流带的存在有利于高原低涡的移出。在200 hPa上,南亚高压的存在有利于高原低涡的生成,移出高原低涡上空的南亚高压强度要强于未移出高原低涡;青藏高原东北部、四川盆地到陕西一带位于高空急流入口区南侧时有利于高原低涡东移。找出高原低涡移出与未移出高原主体的环流场、温度平流场、涡度平流场的异同特征,为高原低涡能否东移出高原主体提供科学依据。  相似文献   

15.
青藏高原低涡活动对降水影响的统计分析   总被引:6,自引:0,他引:6  
郁淑华  高文良  彭骏 《高原气象》2012,31(3):592-604
利用1998—2004年逐日08:00(北京时,下同)和20:00 500hPa高空图、日雨量和青藏高原低涡(下称高原低涡)切变线年鉴资料,统计分析了冬、夏半年不同生命史的高原低涡对我国和四川盆地东、西部降水的影响。结果表明,冬、夏半年高原低涡以东部涡占多数,6-10月有三分之一的东部涡能移出高原。冬半年高原低涡出现次数少,约占全年的五分之一,但也可造成高原及其周边地区的雨雪天气,特别是生命史超过36h以上的高原低涡有近半数可移出高原,造成高原区域暴雨雪,四川盆地中雨,半数可造成云南大雨雪或暴雨雪。夏半年,随着低涡生命史的增长,高原低涡影响高原及其周边地区和我国其他地区的降水范围和强度在增大,生命史超过60h以上的高原低涡可造成高原暴雨、甘肃中雨以上、四川盆地暴雨或大暴雨及云南大部分地区大雨以上的降水,每年都有1~5次可影响到华中、华东地区产生大雨以上的降水。100°E以东的高原低涡,不论是否移出,均可造成四川盆地中雨以上的降水。影响四川盆地降水的高原低涡以偏东路径为主,但东南路径影响更强。  相似文献   

16.
基于TRMM资料的高原涡与西南涡引发强降水的对比研究   总被引:4,自引:0,他引:4  
利用TRMM(Tropical Rainfall Measuring Mission)卫星探测结果结合NCEP(National Centers for Environmental Prediction)再分析资料, 对2007年7月17日四川、重庆地区的一次西南涡强降水系统和2008年7月21日四川东部的东移高原涡强降水系统的三维结构特征、雨顶高度以及降水廓线特征进行对比分析研究。结果表明:(1)两次降水过程均是发生在西南—东北向的水汽辐合带中, 且降水云群均位于低涡的东南方。(2)两次强降水在水平结构上均表现为由一个主降水雨带和多个零散降水云团组成, 高原涡强降水过程比西南涡强降水的降水强度和范围都要大。降水雷达探测到的两个中尺度降水系统均以降水范围大、强度弱的层云降水为主, 但对流性降水对总降水量的贡献较大, 其中西南涡降水中对流降水所占比例比高原涡的大, 对总降水率的贡献也大。(3)垂直结构上:两次强降水的雨顶高度均是随地表雨强的增加而增加, 且最大雨顶高度接近16 km, 但西南涡强降水中的雨顶高度比高原涡更高, 说明西南涡降水过程中对流旺盛程度强于高原涡。(4)两次强降水中雨滴碰并增长过程以及凝结潜热的释放主要集中在8 km以下, 但8 km以上西南涡降水变化大于高原涡, 且前者在8~12 km高度层的降水量对总降水量贡献百分比大于后者。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号