首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The Mendocino Fracture Zone, a 3,000-km-long transform fault, extends from the San Andreas Fault at Cape Mendocino, California due west into the central Pacific basin. The shallow crest of this fracture zone, known as the Mendocino Ridge, rises to within 1,100 m of the sea surface at 270 km west of the California Coast. Rounded basalt pebbles and cobbles, indicative of a beach environment, are the dominant lithology at two locations on the crest of Mendocino Ridge and a40Ar/39 Ar incremental heating age of 11.0 ± 1.0 million years was determined for one of the these cobbles. This basalt must have been erupted on the Gorda Ridge because the crust immediately to the south of the fracture zone is older than 27 Ma. This age also implies that the crest of Mendocino Ridge was at sea level and would have blocked Pacific Ocean eastern boundary currents and affected the climate of the North American continent at some time since the late Miocene. Basalts from the Mendocino Fracture Zone (MFZ) are FeTi basalts similar to those commonly found at intersections of mid-ocean ridges and fracture zones. These basalts are chemically distinct from the nearby Gorda Ridge but they could have been derived from the same mantle source as the Gorda Ridge basalts. The location of the 11 Ma basalt suggests that Mendocino Ridge was transferred from the Gorda Plate to the Pacific Plate and the southern end of Gorda Ridge was truncated by a northward jump in the transform fault of MFZ.  相似文献   

2.
The southern end of the Shackleton Fracture Zone is subducted below the South Shetland forearc, while the basal detachment of the forearc continues eastward of the Shackleton ridge as a thrust fault. The western boundary between the Antarctic/Scotia plates is located at the eastern margin of the Shackleton ridge, where an elongated depositional basin and a morphological trough delineates the contact. The boundary of the Antarctic/Scotia plates and the South Shetland forearc form a triple junction at the intersection of the Shackleton Fracture Zone with the trench, between these two plates, and an independent South Shetland block.  相似文献   

3.
During the last three years, the North Fiji Basin (SW Pacific) has been intensively studied on three oceanographic cruises carried out by French, American and Japanese ships. One of the main goals of these cruises was to study by means of precise SeaBeam, SEAMARC II, seismic and magnetic surveys, the active spreading system and its associated hydrothermal processes. The North Fiji basin, bounded by the major Pacific and Indo-Australian plates, shows a complex polyphased tectonic evolution. One of the last phases of this evolution is the functioning since 3 Ma of a NS spreading center in the axial part of the basin. The tectonic instability of the area resulted in a permanent rearrangement of the ridge axis. Among others, the 16°40′ S triple junction is one of the major manifestations of such an instability. Sinistral strike-slip motion 1 Ma ago, along the North Fiji Fracture Zone induced the change in direction of two segments of the axis from NS to N15 and N160. The first segment is characterized by a typical spreading ridge similar to various parts of the EPR, while the second shows an atypical ‘en echelon’ fan-shape opening. The N15 and N160 ridges converging with the North Fiji Fracture Zone constitute the 16°40′ S Ridge-Ridge-Fracture Zone triple junction. The detailed morphologic and kinematic study of this junction allows us to understand one of the mechanisms of the deformation in the North Fiji basin.  相似文献   

4.
西太平洋中部地区是西太平洋板块边缘沟-弧-盆体系构造演化的关键区域,其地质特征与构造演化一直是地学家关注的焦点问题之一。开展岩石圈有效弹性厚度的研究对于认识该区域的形成演化具有重要的科学意义。本文采用滑动窗口导纳技术,并在挠曲模型中考虑了表面荷载和内部荷载同时存在的情况,计算得到该区域的岩石圈有效弹性厚度(Te)。计算结果显示,研究区的Te值整体上为0~50 km,其变化基本上与构造单元相吻合,且与主要的构造边界密切相关。除海底火山具有相对较小的Te值(15~20 km)外,太平洋板块整体上具有较强的岩石圈强度(25~30 km)。马里亚纳海沟和菲律宾海沟的岩石圈强度从外隆起到海沟方向表现为明显的减弱,表明岩石圈由外隆起向海沟发生了弱化。帕里西维拉海盆西部相较于东部具有较弱的岩石圈强度,这可能与海盆的非对称扩张有关。卡罗琳板块的岩石圈整体上表现为相对均一的低Te值特征(<15 km)。欧里皮克海隆、卡罗琳海岭和索罗尔海槽的Te值为3 km,这可能是强烈的火山作用所导致的结果。  相似文献   

5.
Gallo  D. G.  Kidd  W. S. F.  Fox  P. J.  Karson  J. A.  Macdonald  K.  Crane  K.  Choukroune  P.  Seguret  M.  Moody  R.  Kastens  K. 《Marine Geophysical Researches》1984,6(2):159-185
During the Fall of 1979, a manned submersible program, utilizing DSRV ALVIN, was carried out at the intersection of the East Pacific Rise (EPR) with the Tamayo Transform boundary. A total of seven dives were completed in the vicinity of the EPR/Tamayo intersection depression and documented the geologic relationships that characterize the juxtaposition of these types of plate boundaries. The young volcanic terrain of the EPR axis can be traced into and across the Tamayo Transform valley but becomes buried by sedimentary talus that is being shed from sediment scarps along the unstable sediment slope that defines the north side of the intersection depression. Within 4 km of the transform boundary, the dominant trend (000°) of the fissures and faults that disrupt the rise-generated volcanics is markedly oblique to the regional direction of sea floor spreading (120°). Since no evidence was found to suggest that these structures accommodate significant amounts of strike-slip displacement, they are taken to reflect a distortion of the EPR extensional tectonic regime by a transform generated shear couple. The floor of the Tamayo Transform valley in this area is inundated by mass-wasted sediment, and the principal transform displacement zone is characterized at the surface by a narrow (<1.5 km) interval of fault scarps in sediment that trends parallel with the transform valley. Extrapolated to the west, this zone links with zones of transform deformation investigated during earlier submersible studies (CYAMEX and Pastouret, 1981). Evidence of low-level hydrothermal discharge was seen at one locality on the EPR axis and at another 8 km west of the axis at the edge of the zone of transform deformation.  相似文献   

6.
The western New Britain Trench contains relatively thin sediment fill in the east, compared to the west where a sequence of thick turbidites is ponded behind a basement high in the trench axis, The trench trends toward Huon Gulf, but intersects the Trobriand Trench at an acute angle at the 149° Embayment, where both trenches end. Seismic structure west of the trench is incoherent, related to incipient collision of the Indian-Australia Plate and the South Bismarck Plate. The collision suture is marked by the Markham Canyon, continuous in its upper reaches with the Ramu-Markham Fault Zone on shore.  相似文献   

7.
我国南海历史性水域线的地质特征   总被引:3,自引:1,他引:2  
40a的海洋地质、地球物理实测研究表明,九段线不仅是显示我国南海主权的历史性水域线,而且总体上也是南海与东部、南部和西部陆区及岛区的巨型地质边界线。根据实测数据,本文将从地质成因、来源、演化的角度论述此南海历史性水域线的合理性。主要结论包括:历史性水域线的东段在地形上基本与马尼拉海沟一致,海沟西侧为南海中央海盆洋壳区,东侧为菲律宾群岛。根据国际地质研究的资料,菲律宾群岛始新世以前位于较偏南的纬度,后来于中晚中新世(距今16~10Ma)仰冲于南海中央海盆之上,因此菲律宾群岛是一个外来群岛。而黄岩岛在马尼拉海沟以西,是中央海盆洋壳区的一个岛礁,与菲律宾群岛成因不同。南海历史性水域线的南段在地形上基本与南沙海槽一致,伴随南沙地块由北部陆缘向南裂离,古南海洋壳沿此海槽以南俯冲至加里曼丹岛陆壳之下,因此南沙地块与加里曼丹陆块为两个来历不同的地块。南海历史性水域线西段的分布在地形上与越东巨型走滑断裂带基本一致,可能与西沙地块、中沙地块、南沙地块从南海北部陆缘向南滑移有关。南沙地块北缘陡直的正断层结构,突显中央海盆是拉裂形成,其基底和中新生代地层与北部珠江口盆地的地层结构可以对比,说明南沙岛礁原属我国华南大陆南缘,后因南海的形成裂离至现今的位置。  相似文献   

8.
王述功  高仰 《海洋科学》1989,13(2):24-27
根据我们实测的水深、重力连续剖面资料,计算了自东海至北斐济盆地的地壳厚度。本文旨在对冲绳海槽至马里亚纳海沟的重力异常和地壳结构进行初步的研究。该地段位于太平洋板块俯冲带以西,构造活动十分复杂、剧烈,并含有多种类型的地壳结构。  相似文献   

9.
The steep Antipodes Scarp, along the eastern boundary of the Campbell Plateau south‐east of New Zealand, is attributed to dextral tear‐faulting within a NE‐SW belt, the Antipodes Fracture Zone, which also truncates the eastern end of the Chatham Rise. A complementary zone of sinistral movement, the Waipounamu Fracture, separates the Campbell Plateau and Chatham Rise from mainland New Zealand.

The origin of these fracture zones is linked with that of the parallel Alpine Fault of South Island, and is related to a phase of NE‐SW crustal compression that dominated the New Zealand region during the Mesozoic era. It is suggested that this compression resulted from the north‐eastward “drift” of the Australian craton and the simultaneous elevation of the Darwin Rise in the central Pacific.  相似文献   

10.
New (2009) multi-beam bathymetric and previously published seismic reflection data from the NE-SW-oriented Fethiye Bay and the neighboring N-S-oriented Marmaris Bay off SW Anatolia were evaluated in order to interpret the seafloor morphology in terms of the currently still active regional tectonic setting. This area lies between the Pliny Trench, which constitutes the eastern sector of the subduction zone between the African and Eurasian plates in the Eastern Mediterranean, and the Fethiye-Burdur Fault Zone of the Anatolian Plate. The bathymetric data document the very narrow shelf of the Anatolian coast, a submarine plain between the island of Rhodes and Marmaris Bay, and a large canyon connecting the abyssal floor of the Rhodes Basin with Fethiye Bay. The latter are here referred to as the Marmaris Plain and Fethiye Canyon, respectively. Several active and inactive faults have been identified. Inactive faults (faults f1) delineate a buried basin beneath the Marmaris Plain, here referred to as the Marmaris Basin. Other faults that affect all stratigraphic units are interpreted as being active. Of these, the NE-SW-oriented Marmaris Fault Zone located on the Marmaris Plain is interpreted as a transtensional fault zone in the seismic and bathymetric data. The transtensional character of this fault zone and associated normal faults (faults f3) on the Marmaris Plain correlates well with the Fethiye-Burdur Fault Zone on land. Another important fault zone (f4) occurs along the Fethiye Canyon, forming the northeastern extension of the Pliny Trench. The transpressional character of faults f4 inferred from the seismic data is well correlated with the compressional structures along the Pliny Trench in the Rhodes Basin and its vicinity. These observations suggest that the Marmaris Fault Zone and faults f3 have evolved independently of faults f4. The evidence for this missing link between the Pliny Trench and the Fethiye-Burdur Fault Zone implies possible kinematic problems in this tectonic zone that deserve further detailed studies. Notably, several active channels and submarine landslides interpreted as having been triggered by ongoing faulting attest to substantial present-day sediment transport from the coast into the Rhodes Basin.  相似文献   

11.
A simple dissolved silica (Si) and dissolved oxygen (O) diagram method was applied to study the deep-water circulation in the North Pacific and the following results and conclusion have been obtained. In the abyssal water flowing northward in the western Pacific Si increases with a constant ratio of Si to decreasing O(Si/O=–0.30). The water is designated as the main sequence. In the eastern Pacific the Si-O diagram is characteristic of the location and reflects the degrees of mixing with older waters and of alteration due to decomposition of biogenic material. The Bay of Alaska is found to be a great source of silica in the North Pacific and its bottom water spreads out to the central North Pacific north of 40°N, called here the abyssal front. The younger abyssal water in the Aleutian Trench flowing to the eastern North Pacific north of 40°N comes through the north end of the Kuril-Kamchatka Trench instead of the gap in the Emperor Seamounts at about 46°N. The deep water is almost completely homogenized by active isopycnal mixing and advection when the deep water reaches its upper boundary by upwelling in the western North Pacific including the Bering Sea. Thus the high productivity in the Bering Sea is principally caused neither by the direct supply of abyssal water rich in nutrients nor by the extremely active vertical mixing reaching depths greater than 500 m, but it may be caused simply by the shallower upper boundary of the deep water mass in the Bering Sea, from which nutrients are easily transported to the surface.  相似文献   

12.
A multi-channel seismic reflection image shows the reflection Moho dipping toward the Clipperton Fracture Zone in crust 1.4 my old. This seismic line crosses the fracture zone at its eastern intersection with the East Pacific Rise. The seismic observations are made in travel time, not depth. To establish constraints on crustal structure despite the absence of direct velocity determinations in this region, the possible effects of temperature, tectonism, and anomalous lithospheric structure have been considered. Conductive, advective, and frictional heating of the old crust proximal to the ridge-transform intersection can explain <20% of the observed travel-time increase. Heating has a negligible effect on crustal seismic velocity beyond ~10 km from the ridge tip. The transform tectonized zone extends only 6 km from the ridge tip. Serpentinization is unlikely to have thickened the seafloor-to-reflection Moho section in this case. It is concluded that, contrary to conventional wisdom, the 1.4 my old Cocos Plate crust thickens approaching the eastern Clipperton Ridge-Transform Intersection. Increase in thickness must be at least 0.9 km between 22 and 3 km from the fracture zone.  相似文献   

13.
The Porcupine Plate, postulated in 1986 to explain difficulties in reconstructing anomalies 21 and 24 in the North Atlantic, is re-examined. Focusing sharply on the spreading segments nearest to Charlie-Gibbs Fracture Zone casts doubt on the Porcupine Plate hypothesis.  相似文献   

14.
Swath bathymetric, sonar imagery and seismic reflection data collected during the SOPACMAPS cruise Leg 3 over segments of the Vitiaz Trench Lineament and adjacent areas provide new insights on the geometry and the stuctural evolution of this seismically inactive lineament. The Vitiaz Trench Lineament, although largely unknown, is one of the most important tectonic feature in the SW Pacific because it separates the Cretaceous crust of the Pacific Plate to the north from the Cenozoic lithosphere of the North Fiji and Lau Basins to the south. The lineament is considered to be the convergent plate boundary between the Pacific and Australian Plates during midde to late Tertiary time when the Vitiaz Arc was a continuous east-facing are from the Tonga to the Solomon Islands before the development of the North Fiji and Lau Basins. Progressive reversal and cessation of subduction from west to east in the Late Miocene-Lower Plioene have been also proposed. However, precise structures and age of initiation and cessation of deformation along the Vitiaz Trench Lineament are unknown.The lineament consists of the Vitiaz Trench and three discontinuous and elongated troughs (Alexa, Rotuma and Horne Troughs) which connect the Vitiaz Trench to the northern end of the Tonga Trench. Our survey of the Alexa and Rotuma Troughs reveals that the lineament is composed of a series of WNW-ESE and ENE-WSW trending segments in front of large volcanic massifs belonging to the Melanesian Border Plateau, a WNW trending volcanic belt of seamounts and ridges on Pacific crust. The Plateau and Pacific plate lying immediately north of the lineament have been affected by intense normal faulting, collapse, and volcanism as evidenced by a series of tilted blocks, grabens, horsts and ridges trending N 120° to N100° and N60°–70°. This tectonism includes several normal faulting episodes, the latest being very recent and possibly still active. The trend of the fault scarps and volcanic ridges parallels the different segments of the Vitiaz Trench Lineament, suggesting that tectonics and volcanism are related to crustal motion along the lineament.Although the superficial observed features are mainly extensional, they are interpreted as the result of shortening along the Vitiaz Trench Lineament. The fabric north of the lineament would result from subduction-induced normal faulting on the outer wall of the trench and the zig-zag geometry of the Vitiaz Trench Lineament might be due to collision of large volcanic edifices of the Melanesian Border Plateau with the trench, provoking trench segmentation along left-lateral ENE-WSW trending transform zones. The newly acquired bathymetric and seismic data suggest that crustal motion (tectonism associated with volcanism) continued up to recent times along the Vitiaz Trench Lineament and was active during the development of the North Fiji Basin.  相似文献   

15.
We confirm that a Malvinas Plate is required in the Agulhas Basin during the Late Cretaceous because: (1) oblique Mercator plots of marine gravity show that fracture zones generated on the Agulhas rift, as well as the Agulhas Fracture Zone, do not lie on small circles about the 33o-28y South America-Africa stage pole and were therefore not formed by South America-Africa spreading, (2) the 33o-28y South America-Africa stage rotation does not bring 33o magnetic anomalies on the Malvinas Plate into alignment with their conjugates on the African Plate, and (3) errors in the 33o-28y South America-Africa stage rotation cannot account for the misalignment. We present improved Malvinas-Africa finite rotations determined by interpreting magnetic anomaly data in light of fracture zones and extinct spreading rift segments (the Agulhas rift) that are clearly revealed in satellite-derived marine gravity fields covering the Agulhas Basin. The tectonic history of the Malvinas Plate is chronicled through gravity field reconstructions that use the improved Malvinas-Africa finite rotations and more recent South America-Africa and Antarctica-Africa finite rotations. Newly-mapped triple junction traces on the Antarctic, South American, Malvinas, and African Plates, combined with geometric and magnetic constraints observed in the reconstructions, enable us to investigate the locations of the elusive western and southern boundaries of the Malvinas Plate. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

16.
李凯  宋立军  东玉  李爱荣 《海洋学报》2019,41(3):96-105
塔斯曼海位于西南太平洋地区,处于印度-澳大利亚板块和西兰板块之间,大地构造背景复杂。该地区是全球油气资源勘探的重点海域之一,但是国内对该地区的研究相当匮乏。本文根据塔斯曼海海域的自由空气重力异常对塔斯曼海海域的构造单元进行了划分,前人关于塔斯曼海的研究主要集中在Resolution海岭北部,我们认为塔斯曼海的范围应包括Resolution海岭以南,麦夸里海岭以西,塔斯曼断裂带以东的区域(即南部次盆)。结果显示,塔斯曼海域及邻区包括3个一级构造单元:东澳大利亚陆缘、西兰板块和塔斯曼海盆,且塔斯曼海盆可进一步划分为西部次盆、东部次盆和南部次盆。本文基于塔斯曼海域90 Ma以来的洋壳年龄数据编制了构造演化图,将塔斯曼海的形成演化过程分为4个阶段:(1)中生代陆内裂谷期(90~83 Ma BP);(2)塔斯曼海扩张阶段(83~61 Ma BP);(3)塔斯曼海北部扩张停止阶段(61~52 Ma BP);(4)塔斯曼海南部改造阶段(52 Ma BP至今)。  相似文献   

17.
Five expeditions (1965–1970) across parts of the Aleutian Abyssal Plain and adjacent areas in the Gulf of Alaska, and results of the Deep Sea Drilling Project, provide new information for the geologic history of the region which forms restrictive limits on models of plate tectonics. In general: (1) the Eocene-Oligocene, turbidite Aleutian Abyssal Plain was deposited from channelized turbidity currents from the north or northeast; (2) the plain is bounded on the south by the northern ridges of the Surveyor Fracture Zone, and is isolated from the Tufts Abyssal Plain; (3) turbidites were deposited from many buried channels and smaller surficial channels, but mainly from four great channels: Seamap, Sagittarius, Aquarius, and Taurus.The channels are depositional features; accumulation of sediments causes the channels to lie, topographically, along low ridges, with channels above distal portions of their levees. Western levees are higher and broader than eastern levees. Levee heights decrease from 30–100 m in the north to 15–25 m in the south.Rates of deposition and thicknesses of pelagic sediments in the northwest are 3 to 4 times greater than in the southeast. The data indicate the pelagics were deposited near the margin of the Pacific, at or near present locations. Thus, little or no northward plate motion is indicated.Turbidite thicknesses decrease from about 400–800 m in the north to about 200 m in the south. Turbidite thicknesses in the east-central plain are greater than in the Alaskan Abyssal Plain (formed since the Miocene), the northern Tufts Abyssal Plain, or the Sohm Abyssal Plain in the North Atlantic.Faulting and flexure of the oceanic crust seaward of the Aleutian Trench have strongly affected the channels. Seamap Channel has its high point midway along its course. The other three major channels are uplifted and faulted in the north.Required volumes of off-scraped sediments, undisturbed turbidites in the Aleutian Trench floor, and paleoclimatology also argue for little northward plate movement.The total evidence indicates that the turbidite Aleutian Abyssal Plain was formed in the Eocene-Oliogocene at, or near, its present position, and that the sediment source was probably Alaska. Cretaceous flysch of the Alaska Peninsula continental terrace was a possible source.The evidence does not require, but does not exclude, plate tectonics hypotheses. The evidence apparently excludes those continuous spreading models which cannot explain deposition of an Eocene-Oligocene turbidite plain over the magnetic bight, or which require an active, subducting, paleogene Aleutian Trench. Plate movements to the north over small distances cannot be excluded. The evidence is consistent with concepts of discontinuous sea-floor spreading with episodic subduction, or discontinuous, relative plate motion in this area. Two models are outlined which are consistent with the regional evidence: (1) a model with discontinuous relative plate motion and episodic subduction (a variation of one published by Hayes and Pitman, 1970); or (2) a no-plate-motion, or very-little-motion, model with long periods of inter-plate inactivity without subduction.  相似文献   

18.
The aim of the Japanese-French Kaiyo 87 cruise was the study of the spreading axis in the North Fiji Basin (SW Pacific). A Seabeam and geophysical survey allowed us to define the detailed structure of the active NS spreading axis between 16° and 22° S and its relationships with the left lateral motion of the North Fiji Fracture Zone. Between 21° S and 18°10′ S, the spreading axis trends NS. From 18°10 S to 16°40 S the orientation of the spreading axis changes from NS to 015°. North of 16°40′ S the spreading axis trends 160°. These two 015° and 160° branches converge with the left lateral North Fiji fracture zone around 16°40′ S to define an RRFZ triple junction. Water sampling, dredging and photo TV deep towing give new information concerning the hydrothermal activity along the spreading axis. The discovery of hydrothermal deposits associated with living communities confirms this activity.  相似文献   

19.
张志毅  韩喜彬  许冬 《海洋学报》2022,44(11):63-76
雅浦海沟是西太平洋“沟–弧–盆”体系的重要组成部分。在雅浦海沟北部,雅浦海沟与马里亚纳海沟呈典型的垂直相交。本文对该海域的地貌进行了详细的研究。结果表明,两条海沟连接处附近,海沟的水深、形态、剖面等都发生明显变化,且具有分段性,两侧斜坡上拥有隆起、凹陷、断裂等地貌,这些特征与海沟连接处特殊的俯冲位置具有密切的联系;通过地貌特征和板块扩张速度判断,20 Ma前帕里西维拉海盆扩张中心应位于137°35′34″E附近,雅浦海沟很可能是由帕里西维拉海盆暴露出来的扩张中心转变而成。  相似文献   

20.
根据地质、地貌及地球物理资料分析,探讨展布于云南边陲哀牢山两侧的北西向断裂组成的红河断裂构造带,在东南亚的延伸特征。提出在该延伸带两侧沉积建造、构造活动,地球物理场和大地构造发展上均有显著差异。并进一步探讨该断裂构造带在大地构造上的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号