首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geology of the basal-structural Loypishnyun low-sulfide Pt–Pd deposit is characterized, including its mineral composition and the peculiarities of its PGE and chalcophile-element distribution in ore. The deposit is situated in the northeastern part of the Monchetundra basic massif and is localized in its lower norite–orthopyroxenite zone, intensely injected with late gabbroic rocks. Two ore zones are distinguished within the deposit. Ore zone 1 has been traced by drilling for about 1.5 km at a thickness from 10–15 to 120 m and incorporates from two to nine separate lenticular–sheetlike orebodies 0.5–25 m in thickness. Ore zone 2 has been traced for 550 m and is represented by one orebody 5–35 m thick. The internal structure of the orebodies is characterized by alternation of low-grade (Pt + Pd = 0.5–0.9 gpt), ordinary (Pt + Pd = 1.0–1.9 gpt), and high-grade (Pt + Pd > 2 gpt) interlayers of various thickness. The ores are spatially and genetically related to sulfide mineralization (pentlandite–chalcopyrite–pyrrhotite) in an amount of 1–5 vol %. The PGE distribution in ores normalized to primitive mantle is characterized by fractionation of easily fusible platinoids with a positive Pd anomaly. The spectra of chalcophile elements normalized to primitive mantle are notable for elevated Te, Bi, As, and Se contents with respect to Sn, Hg, and Pb, which reflects the significant contribution of Te, Bi, and As in the formation of platinum group minerals (PGM), whereas Se, which is devoid of proper mineral phases, most likely is an admixture in the composition of sulfides. The S/Se value in ore of the Loypishnyun deposit varies from 31 to 814. The platinum group elements (PGE) in ore are represented by 45 noble metal minerals. Ore zone 1 is characterized by lateral mineral zoning, which is expressed as replacement of a bismuthotelluride–sulfide PGM assemblage by an assemblage of copper–PGE compounds and alloys. In ore zone 2, a mineral assemblage of tellurides, copper–PGE compounds and alloys predominates, with native gold, silver, and palladium, as well as sulfides and bismuthotellurides, playing a subordinate role. The formation of PGM ore proceeded under variable sulfur fugacity conditions, beginning with the late magmatic stage at temperatures of 900–700°C and ending with hydrothermal transformation at a temperature of <500°C.  相似文献   

2.
The internal structure of the Volchetundra gabbro-anorthosite massif is considered, including localization of low-sulfide PGE mineralization and its mineralogy. The Volchetundra massif 24 km long and 0.5–4.0 km wide occupies the middle part of the Main Range complex, which extends for 75 km in the nearly meridional direction. The main and marginal zones are distinguished in the massif. The marginal zone 20–400 m wide extends along the entire eastern contact of the massif and is primarily composed of mediumgrained meso- and leucocratic norite, gabbronorite, plagioclasite, and less fequent orthopyroxenite. The main zone consists of coarse-grained leucogabbro and gabbronorite with an anorthosite zone in the axial part of the massif. The PGE mineralization of the Volchetundra massif is distinctly subdivided into two types substantially differing in localization, mineralogy, geochemistry, and economic importance. Mineralization of the first type is localized in the marginal zone and characterized by the highest resource potential. Mineralization hosted in the main zone belongs to the second type. The PGE ore of marginal zone is spatially and genetically related to the pyrite-pentlandite-chalcopyrite-pyrrhotite sulfide mineralization (1–5%) in the form of fine inequigranular interstitial disseminations, and less frequent larger grains and pockets localized within two ore zones each up to 2 km in extent. The thickness of separate mineralized layers varies from 0.5 to 3.0 m and up to 45 m in bulges. The average Pt + Pd grade is 1.37 gpt at Pd/Pt = 3.1. The mineralization of the second type has been penetrated by boreholes. Separate intersections do not correlate with one another and are limited in extent both along the strike and down the dip. The PGE mineralization is related to finely dispersed pentlandite-pyrite-pyrrhotite-chalcopyrite sulfides, sulfide emulsions, and less abundant stringer-disseminated sulfide ore. The orebodies vary from 2 to 7 m in thickness. The average Pt + Pd grade is 1.61 gpt; Pd/Pt = 1.3. The PGE mineralization includes 22 mineral species. PGE sulfides (cooperite-braggite-vysotskite; laurite and erlichmanite in insignificant amounts) are predominant. Bismuthotellurides (moncheite-kotulskite-merenskyite) and arsenides (sperrylite, palladoarsenite, arsenopalladinite, atheneite) are subordinate in abundance. In addition, sulfoarsenides (platarsite, hollingworthite), tellurides (telargpalite, sopcheite, keithconnite, melonite, hessite), paolovite, and Pt-Fe alloy have been identified. An admixture of native gold and electrum occur constantly.  相似文献   

3.
A new style of komatiite-associated sulfide-poor platinum-group element (PGE: Os, Ir, Ru, Rh, Pt, Pd) mineralisation has been identified at Wiluna in the strongly nickel sulfide (NiS) mineralised Agnew – Wiluna Greenstone Belt, Western Australia. The komatiite sequence at Wiluna is ~200 m thick and comprises a basal pyroxenite layer, a thick ortho-to-mesocumulate-textured peridotite core, which is overlain by rhythmically layered wehrlite, oikocrystic pyroxenite and thick upper gabbroic margins. Pegmatoid and dendritic (harrisitic) domains are common features, whereas spinifex-textured horizons and flow-top breccias are absent. The presence of anomalous PGE-enriched horizons (ΣPt – Pd = 200 – 500 ppb) in the oikocrystic pyroxenite and in the layered melagabbro and gabbronorite horizons directly overlying the wehrlite unit is due to the presence of fine-grained (1 – 10 μm) platinum-group minerals (PGMs). More than 70 PGM grains were identified, and a considerable mineralogical variability was constrained. However, only Pd – Pt-bearing phases were identified, whereas no Ir – Ru-bearing PGMs were found in any of the sections examined. Interestingly, all PGMs are not in paragenetic association with sulfides, and only sulfide-poor/free intervals contain significant PGM concentrations. The whole-rock PGE sequence largely reflects the PGM distribution. It is hypothesised that the Pd – Pt enrichment in the oikocrystic pyroxenite and melagabbros and the overall Ir – Ru depletion in the upper mafic section of the sequence are the result of extensive olivine and chromite crystallisation in the basal ultramafic section. PGE saturation was driven by extensive crystallisation of silicate and oxide phases in a sulfide-undersaturated environment. The crystallisation of clinopyroxene in the oikocrystic pyroxenite horizon may have triggered the formation of Pt – Pd-bearing alloys and arsenides, which were the first PGMs to form. Stratiform sulfide-poor PGE mineralisation at Wiluna is more similar in stratigraphic setting, style and composition to PGE-rich sulfide-poor mineralisation zones in thick differentiated intrusions, rather than to other PGE-enriched zones in komatiite-hosted systems, where PGE enrichment is directly associated with accumulations of magmatic sulfides.  相似文献   

4.
The Kaalamo massif is located in the Northern Ladoga region, Karelia, on the extension of the Kotalahti Belt of Ni-bearing ultramafic intrusions in Finland. The massif, 1.89 Ga in age, is differentiated from pyroxenite to diorite. Nickel–copper sulfide mineralization with platinoids is related to the pyroxenite phase. The ore consists of two mineral types: (i) pentlandite–chalcopyrite–pyrrhotite and (ii) chalcopyrite, both enriched in PGE. Pd and Pt bismuthotellurides, as well as Pd and Pt tellurobismuthides, are represented by the following mineral species: kotulskite, sobolevskite, merenskyite, michenerite, moncheite, keithconnite, telluropalladinite; Pt and Pd sulfides comprise vysotskite, cooperite, braggite, palladium pentlandite, and some other rare phases. High-palladium minerals are contained in pentlandite–chalcopyrite–pyrrhotite ore. Native gold intergrown with kotulskite commonly contains microinclusions (1–3 μm) of Pd stannides: paolovite and atokite. Ore with 20–60% copper sulfides (0.2–6.0% Cu) contains 5.1–6.6 gpt PGE and up to 0.13–2.3 gpt Au. Pd minerals, arsenides and sulfoarsenides of Pt, Rh, Ir, Os, and Ru are identified as well. These are sperrylite, ruthenium platarsite, hollingworthite, and irarsite; silvery gold and paolovite have also been noted. All these minerals have been revealed in the massif for the first time. The paper also presents data on the compositions of 25 PGE minerals (PGM) from Kaalamo ores.  相似文献   

5.
The massif of Fedorov Tundra was formed as part of the Paleoproterozoic (2.5 Ga) Fedorov-Pana platinum-bearing layered complex as a result of consecutive emplacement of two intrusive phases. The emplacement of the first phase resulted in the formation of a large layered intrusive body composed of amphibole gabbro, gabbronorite, norite, pyroxenite, olivine pyroxenite, and harzburgite. The second phase gave birth to a gabbronorite intrusion smaller in volume and enriched in sulfides and PGM. Magmatic breccia has been observed in the contact zone between two phases. The rocks of the massif are referred to the series of normal alkalinity and to the quartz- and olivine-normative groups differing in saturation with silica. Using isoplethic and isobaric joins of the q-fo-fa-di-hd-ab-an-aq phase diagram, the stages of rock formation are considered. The thermodynamic conditions of rock crystallization were determined as T = 1000−800°C and $ P_{H_2 O} $ P_{H_2 O} = 1000−2500 bar for the first intrusive phase and T = 1000–900°C and $ P_{H_2 O} $ P_{H_2 O} = 800−1000 bar for the second intrusive phase.  相似文献   

6.
The Northern Ultramafic Centre (NUC) of the Lac des Iles Complex, Northwest Ontario hosts several platinum group element (PGE) occurrences, including the Sutcliffe Zone, which consists of four subparallel, stratiform PGE-enriched intervals exposed within the cyclically layered eastern flank of the NUC. Field relationships, mineral paragenesis and lithogeochemistry allowed for the identification of 14 cyclic cumulate sequences of two distinct types – Cyclic unit type A (CUA) and Cyclic unit type B (CUB). CUA-type and CUB-type units are interpreted to have formed from a Si-enriched and Si-poor parent magmas, respectively. PGE-enriched intervals occur in four of the CUA-type cyclic units (CUA-5, -6, -8 and -11). PGE enriched intervals are commonly associated with websterite, olivine websterite and gabbronorite containing primary disseminated sulfide (0.2–2 vol%) which are dominated by pyrrhotite, chalcopyrite, and pentlandite with minor cubanite, and troilite. In hydrothermally altered rocks enriched in PGE, primary sulfides are locally partially replaced by secondary chalcopyrite, sphalerite, heazlewoodite, and chalcocite. Palladium occurs either in solid solution with primary pentlandite or is associated with platinum group minerals (PGM) such as Pd-plumbide, Pd-telluride, and Pt-bismuthotelluride. PGMs commonly occur within primary sulfides, at contacts between primary sulfide–silicate minerals, or in association with secondary serpentine and actinolite. Gold and silver typically occur as electrum that exhibits similar textural characteristics and mineralogical associations as the PGMs.Two different chemostratigraphic patterns of PGE, Cu and S enrichment can be recognized among the mineralized CUA cycles: The first (top-loaded) occurs near the top of CUA cycles (CUA-6, -8 and -11) in websterite and/or gabbronorite, just below the levels at which CUB magmas were emplaced. The second (middle-loaded), occurs midway through the lower cycle (CUA-5) in the olivine websterite, which is overlain by CUA-6. Within the four mineralized intervals, PGE tenors average 643 ppm Pd + Pt (in 100% sulfide), Pd/Pt and Pd/Ir ratios range from 0.9 to 3.5 and 35 to 537, respectively, and S/Se ratios range between 500 and 6000. The highest PGE tenors (4377 ppm Pd + Pt) are found in the lowermost interval in serpentinized olivine websterite and have an average Pd/Pt ratio of 3.5 and a S/Se ratio of approximately 2000.It is proposed that orthomagmatic processes of fractional crystallization and dynamic magma recharge were the dominant mineralization processes triggering sulfide-saturation and PGE concentration at the Sutcliffe Zone. Textural relationships between PGM, sulfide minerals, and primary and secondary hydrous silicates suggest that late magmatic to postcumulus hydrothermal fluid infiltration occurred locally during and after sulfide mineralization of the PGE-enriched intervals. However, these fluids had a minimal effect on the distribution of PGE in the Sutcliffe Zone. The Sutcliffe Zone shares many similarities with classic stratiform PGE deposits in terms of Pd/Pt ratio, high PGE tenors, low abundance of sulfide, and PGM assemblages. However, it is distinguished from most stratiform PGE deposits by its tectonic environment and lithostratigraphic position and by the intimate spatial association of the two parental magmas that are interpreted to have been responsible for the observed chemostratigraphy and PGE enrichment.  相似文献   

7.
铂族元素矿物共生组合(英文)   总被引:1,自引:2,他引:1  
CHEN Yuan 《现代地质》2001,15(2):131-142
由于铂族元素能有效地降低汽车尾气的污染 ,其需求量日益增加 ,对铂族元素矿床的寻找已是当务之急。着重从矿物矿床学角度对铂族元素的矿物共生特点进行了探讨。铂族元素可呈独立矿床产出 ,主要产于基性超基性层状侵入体、蛇绿岩套及阿拉斯加式侵入体中。铂族元素也伴生于铜镍矿床中 ,该类铜镍矿床主要与苏长岩侵入体、溢流玄武岩及科马提岩有关。产于基性超基性层状侵入体中的铂族矿物有铂钯硫化物、铂铁合金、钌硫化物、铑硫化物、铂钯碲化物、钯砷化物及钯的合金。这些铂族矿物可与硫化物矿物共生 ,也可与硅酸盐矿物共生 ,还可与铬铁矿及其他氧化物矿物共生。产于蛇绿岩套中的铂族矿物主要是钌铱锇的矿物 ,而铂钯铑的矿物则较少出现 ,这些铂族矿物可呈合金、硫化物、硫砷化物以及砷化物 4种形式出现。产于阿拉斯加式侵入体中的铂族矿物主要有铂铁合金、锑铂矿、硫铂矿、砷铂矿、硫锇矿及马兰矿等少数几种 ,其中铂铁合金与铬铁矿及与其同时结晶的高温硅酸盐矿物共生 ,而其他的铂族矿物则与后来的变质作用及蛇纹岩化作用中形成的多金属硫化物及砷化物共生。产于铜镍矿床中的铂族矿物主要是铂和钯的矿物。产于基性超基性层状侵入体、蛇绿岩套及阿拉斯加式侵入体中的铂族矿物的共同特点是它们均与铬铁矿?  相似文献   

8.
Summary The Jinchuan deposit is a platinum group element (PGE)-rich sulfide deposit in China. Drilling and surface sampling show that three categories of platinum group element (PGE) mineralization occur; type I formed at magmatic temperatures, type II occurs in hydrothermally altered zones of the intrusion, and type III in sheared dunite and lherzolite. All ore types were analyzed for Os, Ir, Ru, Rh, Pd, Pt and Au, as well as for Cu, Ni, Co and S. Type I ore has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios of <7 and relatively flat chondrite-normalized noble metal patterns; the platinum group minerals (PGM) are dominated by sperrylite and moncheite associated with chalcopyrite, pyrrhotite and pentlandite. Type II has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 40 to 330 and noble metal distribution patterns with a positive slope; the most common PGM are sperrylite and Pd bismuthotelluride phases concentrated mostly at the margins of base metal sulfides. Type III ores have the highest (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 240 to 710; the most abundant PGM are sperrylite and phases of the Pt–Pd–Te–Bi–As–Cl system. It is concluded that the Jinchuan deposit formed as a result of primary magmatic crystallization followed by hydrothermal remobilization, transport, and deposition of the PGE.  相似文献   

9.
The Ferguson Lake Ni–Cu–Co–platinum-group element (PGE) deposit in Nunavut, Canada, occurs near the structural hanging wall of a metamorphosed gabbroic sill that is concordant with the enclosing country rock gneisses and amphibolites. Massive to semi-massive sulfide occurs toward the structural hanging wall of the metagabbro, and a low-sulfide, high-PGE style of mineralization (sulfide veins and disseminations) locally occurs ~30–50 m below the main massive sulfide. Water–rock interaction in the Ferguson Lake Ni–Cu–Co–PGE deposit is manifested mostly as widespread, post-metamorphic, epidote–chlorite–calcite veins, and replacement assemblages that contain variable amounts of sulfides and platinum-group minerals (PGM). PGM occur as inclusions in magmatic pyrrhotite and chalcopyrite in both the massive sulfide and high-PGE zones, at the contact between sulfides and hornblende or magnetite inclusions in the massive sulfide, in undeformed sulfide veins and adjacent chlorite and/or epidote halos, in hornblende adjacent to hydrothermal veins, and in plagioclase–chlorite aggregates replacing garnet cemented by sulfide. The PGM are mostly represented by the kotulskite (PdTe)–sobolevskite (PdBi) solid solution but also include michenerite (PdBiTe), froodite (PdBi2), merenskyite (PdTe2), mertieite II (Pd8[Sb,As]3), and sperrylite (PtAs2) and occur in variety of textural settings. Those that occur in massive and interstitial sulfides, interpreted to be of magmatic origin and formed through exsolution from base metal sulfides at temperatures <600°C, are dominantly Bi rich (i.e., Te-bearing sobolevskite), whereas those that occur in late-stage hydrothermal sulfide/silicate veins and their epidote–chlorite alteration halos tend to be more Te rich (i.e., Bi-bearing kotulskite). The chemistry and textural setting of the various PGM supports a genetic model that links the magmatic and hydrothermal end-members of the sulfide–PGM mineralization. The association of PGM with magmatic sulfides in the massive sulfide and high-PGE zones has been interpreted to indicate that PGE mineralization was initially formed through exsolution from base metal sulfides which formed by magmatic sulfide liquid segregation and crystallization. However, the occurrence of PGM in undeformed sulfide-bearing veins and in their chlorite–epidote halos and differences in PGM chemistry indicate that hydrothermal fluids were responsible for post-metamorphic redistribution and dispersion of PGE.  相似文献   

10.
New data on the composition, assemblages, and formation conditions of platinum-group minerals (PGM) identified in platinum-group element (PGE) occurrences of the Monchetundra intrusion (2495 +- 13 to 2435 ± 11 Ma) are described. This intrusion is a part of the Paleoproterozoic pluton of the Monche-Chuna-Volch’i and Losevy tundras located in the Pechenga-Imandra-Varzuga Rift System. The rhythmically layered host rocks comprise multiple megarhythms juxtaposed to mylonite zones and magmatic breccia and injected by younger intrusive rocks in the process of intense and long magmatic and fluid activity in the Monchetundra Fault Zone. The primary PGM and later assemblages that formed as a result of replacement of the former have been identified in low-sulfide PGE occurrences. More than 50 minerals and unnamed PGE phases including alloys, Pt and Pd sulfides and bismuthotellurides, PGE sulfarsenides, and minerals of the Pd-As-Sb, Pd-Ni-As, and Pd-Ag-Te systems have been established. The unnamed PGE phases—Ni6Pd2As3, Pd6AgTe4, Cu3Pt, Pd2NiTe2, and (Pd, Cu)9Pb(Te, S)4—are described. The primary PGM were altered due to the effect of several mineral-forming processes that resulted in the formation of micro- and nanograins of Pt and Pd alloys, sulfides, and oxides, as well as in the complex distribution of PGE, Au, and Ag mineral assemblages. New types of complex Pt and Pd oxides with variable Cu and Fe contents were identified in the altered ores. Pt and Pd oxides as products of replacement of secondary Pt-Pd-Cu-Fe alloys occur as zonal and fibrous nanoscale Pt-Pd-Cu-Fe-(±S)-O aggregates.  相似文献   

11.
The Wengeqi complex in Guyang County, Inner Mongolia, is one of several Pd–Pt-mineralized Paleozoic mafic–ultramafic complexes along the north-central margin of the North China. The complex comprises pyroxenites, biotite pyroxenites, amphibole pyroxenites, gabbros, and amphibolites. Zircons extracted from a pyroxenite yield a U–Pb SHRIMP age of 399?±?4?Ma. Several 2–6-m wide syngenetic websterite dikes contain 1–3?ppm Pd?+?Pd and are dominated by pyrite–chalcopyrite–pyrrhotite–magnetite–(pentlandite) assemblages with minor sperrylite, sudburyite, and kotuskite. Textural relationships indicate that pyrite has replaced magmatic chalcopyrite and that magnetite has replaced magmatic pyrrhotite. The mineralization is enriched in Pd–Pt–Cu > Au >> Rh–Ir–Os–Ni > Ru, similar to other occurrences of hydrothermally modified magmatic mineralization, but very different from the much less fractionated compositions of magmatic PGE mineralization. Textural, mineralogical, and geochemical relationships are consistent with alteration of an original magmatic Fe–Ni–Cu sulfide assemblage by a S-rich oxidizing high-temperature (deuteric) hydrothermal fluid.  相似文献   

12.
攀西裂谷地区层状镁铁岩的PGE矿化作用   总被引:2,自引:1,他引:1  
攀西裂谷位于四川西部,裂谷经历了元古宙和海西期二次地幔柱活动,形成多处穹窿构造和层状镁铁质岩体的侵入。后一期的层状岩体赋存著名的超大型钒钛磁铁矿床。中国和南非合作研究认为,层状岩体PGE矿化应进一步研究。以新街岩体为代表,经钻探工程建立了岩体剖面;岩石学、矿物学和地球化学研究证实,岩体有三个岩浆旋回和许多韵律层,层厚仅2~3cm。自上而下岩相为辉长岩、橄辉岩、辉石岩和橄榄岩,造岩矿物为贵橄榄石、普通辉石、钛普通辉石和中长石。岩体下部旋回,硫化物较富集,多在高镁质岩相。硅酸盐、氧化物和硫化物三系列矿物共生而不混熔。硫化物呈浸染状,主要有三层,产在橄榄岩、辉石岩和下辉长岩内。铂族矿物有砷铂矿、自然铂、硫锇矿、铋碲钯矿、碲铋矿、碲银矿、自然银等。PGE富集可能有三个阶段:岩浆早期,岩浆中"S"不饱和,PGE易进入硅酸盐;岩浆晚期"S"逸度增高,硫化物富集,为PGE富集阶段;热液阶段PGE再分配富集。PGE和Ni、Cu、S为正相关关系,和Fe、Ti相辅相成,无明显关系。岩石中PGE背景值为(0.166~0.411)×10-6,PGE矿化体的品位变化较大,为(0.94~0.976)×10-6。有的钻孔样品Pt+Pd含量大于1×10-6,可做进一步找矿的依据。  相似文献   

13.
The Rietfontein platinum group element (PGE)–Cu–Ni sulfide deposit of the Eastern Limb of the Bushveld Complex hosts disseminated contact-style mineralization that is similar to other economic magmatic sulfide deposits in marginal settings within the complex. The mineralization at Rietfontein consists of disseminated PGE-bearing base metal sulfides that are preferentially located at the contact between a distinct package of marginal norites overlain by a thick heterogeneous unit dominated by gabbronorites with lesser norites and ultramafic rocks. Down-hole composite data and metal scatterplots indicate that the PGE correlate well with Ni, Cu and S and that only minor metal remobilization has taken place within the basal norite sequence. Plots of (Nb/Th)PM vs. (Th/Yb)PM indicate that the melts that formed the Rietfontein intrusive sequence were strongly crustally contaminated prior to emplacement at Rietfontein, whereas inverse relationships between PGE tenors and S/Se ratios indicate that these magmas assimilated crustal S, causing S-saturation and the formation of immiscible sulfides under high R-factor conditions that generated high PGE tenor sulfides. Reverse zoning of cumulus minerals at Rietfontein suggests that fresh primitive melts were introduced to a partially fractionated staging chamber. The introduction of new magmas into the chamber caused overpressure and the forced evacuation of the contents of the chamber, leading to the emplacement of the existing magmas within the staging chamber at Rietfontein in two separate pulses. The first pulse of magma contained late-formed cumulus phases, including low Mg# orthopyroxene and plagioclase, was emplaced between footwall unreactive and S-poor Pretoria Group quartzites and a hangingwall sequence of Rooiberg Group felsites, and was rapidly chilled to form the basal norite sequence at Rietfontein. The second pulse of magma contained early formed cumulus phases, including olivine, chromite, and high Mg# orthopyroxene, and was emplaced above the chilled norite sequence as a crystal mush to form gabbronorites and ultramafic rocks. This second pulse of magma also contained PGE-bearing base metal sulfides that accumulated at the contact between this second batch of magma and the already chilled basal norite sequence. The formation of Platreef-type mineralization outside of the Northern Limb of the Bushveld Complex confirms there are a number of areas within the Bushveld Complex that are prospective for this style of mineralization.  相似文献   

14.
河北矾山钾质碱性岩体,由3期侵入岩和脉岩正长岩组成。第1期岩石为层状超镁铁质岩系,具韵律层结构。层状岩系中赋存巨大磁铁磷灰石矿床。碱性岩体全岩225个样品平均含金为7.8×10-9。矾山岩体金的丰度为6.1×10-9,是地壳金丰度(3.5×10-9)的1.74倍。第1期岩石平均金含量为8.8×10-9,第2期岩石为5.1×10-9,第3期岩石为7.4×10-9,正长岩为4.2×10-9。第1期侵入岩中辉石岩平均金含量为9.31×10-9,黑云辉石岩平均为7.78×10-9,伟晶正长黑云辉石岩为7.40×10-9,间隙状正长辉石岩为8.00×10-9,磁铁磷灰石岩为13.78×10-9,磷灰石岩和黑云磷灰石岩为11.80×10-9,黑云母岩为18.63×10-9。在垂直层状岩系的剖面上,岩石金含量呈韵律性变化。在东矿区,岩石金含量由西向东趋于降低。在岩浆液相分离过程中,金倾向富集在含铁、镁、钙和磷的熔体相中,而在岩浆结晶分异过程中,金可能富集在流体相中。  相似文献   

15.
The Grasvally Norite–Pyroxenite–Anorthosite (GNPA) member within the northern limb of the Bushveld Complex is a mineralized, layered package of mafic cumulates developed to the south of the town of Mokopane, at a similar stratigraphic position to the Platreef. The concentration of platinum-group elements (PGE) in base metal sulfides (BMS) has been determined by laser ablation inductively coupled plasma–mass spectrometry. These data, coupled with whole-rock PGE concentrations and a detailed account of the platinum-group mineralogy (PGM), provide an insight into the distribution of PGE and chalcophile elements within the GNPA member, during both primary magmatic and secondary hydrothermal alteration processes. Within the most unaltered sulfides (containing pyrrhotite, pentlandite, and chalcopyrite only), the majority of IPGE, Rh, and some Pd occur in solid solution within pyrrhotite and pentlandite, with an associated Pt–As and Pd–Bi–Te dominated PGM assemblage. These observations in conjunction with the presence of good correlations between all bulk PGE and base metals throughout the GNPA member indicate the presence and subsequent fractionation of a single PGE-rich sulfide liquid, which has not been significantly altered. In places, the primary sulfides have been replaced to varying degrees by a low-temperature assemblage of pyrite, millerite, and chalcopyrite. These sulfides are associated with a PGM assemblage characterized by the presence of Pd antimonides and Pd arsenides, which are indicative of hydrothermal assemblages. The presence of appreciable quantities of IPGE, Pd and Rh within pyrite, and, to a lesser, extent millerite suggests these phases directly inherited PGE contents from the pyrrhotite and pentlandite that they replaced. The replacement of both the sulfides and PGM occurred in situ, thus preserving the originally strong spatial association between PGM and BMS, but altering the mineralogy. Precious metal geochemistry indicates that fluid redistribution of PGE is minimal with only Pd, Au, and Cu being partially remobilized and decoupled from BMS. This is also indicated by the lower concentrations of Pd evident in both pyrite and millerite compared with the pentlandite being replaced. The observations that the GNPA member was mineralized prior to intrusion of the Main Zone and that there was no local footwall control over the development of sulfide mineralization are inconsistent with genetic models involving the in situ development of a sulfide liquid through either depletion of an overlying magma column or in situ contamination of crustal S. We therefore believe that our observations are more compatible with a multistage emplacement model, where preformed PGE-rich sulfides were emplaced into the GNPA member. Such a model explains the development and distribution of a single sulfide liquid throughout the entire 400–800 m thick succession. It is therefore envisaged that the GNPA member formed in a similar manner to its nearest analogue the Platreef. Notable differences however in PGE tenors indicate that the ore-forming process may have differed slightly within the staging chambers that supplied the Platreef and GNPA member.  相似文献   

16.
Summary This study reports the first documented occurrence of platinum group-minerals (PGM) in the vicinity of the Voisey’s Bay magmatic sulfide ore deposit. The PGM are present in a sulfide poor, hornblende gabbro dyke in the Southeast Extension Zone of the massive sulfide Ovoid deposit. The dyke has somewhat elevated concentrations of platinum-group elements (PGE) and gold (up to 1.95 g/t Pt, 1.41 g/t Pd, and 6.59 g/t Au), as well as Cu, Pb, Ag, Sn, Te, Bi and Sb. The PGM formed by magmatic processes and were little disturbed by subsequent infiltration of an externally-supplied hydrothermal fluid. To date, no similar PGM occurrences have been discovered in the Ovoid deposit itself. Whole rock REE patterns indicate that the dyke is geochemically related to the main conduit troctolites, which carry the bulk of the massive sulfide mineralization at Voisey’s Bay. The PGE mineralization is Pt- and Pd-rich, where the Pt and Pd occur predominantly as discrete PGM with minor Pd in solid solution in galena (average=1.8 ppm) and pentlandite (average=2 ppm). The discrete PGM are predominantly hosted by disseminated base-metal sulfides (bornite, chalcopyrite, and galena) (56 vol%) and are associated with other precious metal minerals (13 vol%) with only ∼3 vol% of the PGM hosted by silicate minerals. In whole rock samples, the PPGE (Pt, Pd, and Rh) correlate with abundances of chalcopyrite, bornite, galena, and other precious metal minerals (PMM), whereas the IPGE (Ir, Ru, and Rh) correlate with pyrrhotite and pentlandite. There are no correlations of the PGE with chlorine. Lead isotope compositions of galena associated with the PGE mineralization in the Southeast Extension Zone are broadly similar to those for galena in the Ovoid. The lead isotope compositions are much different from those in the Voisey’s Bay Syenite, which is a potential external hydrothermal fluid source. The observed Cu-rich, Pb-rich sulfide compositions and associated Pt-Pd-Au-Ag-Sn-Te-Bi-Sb assemblage in the dyke can be produced magmatically as late ISS differentiates (e.g., Prichard et al., 2004). Melting temperatures of the PGM are also consistent with a magmatic origin. Following crystallization of PGM from magmatic sulfide, an external REE-enriched hydrothermal fluid was introduced to the system, producing secondary amphibole and locally remobilizing the Pb and Sn from the sulfides hosting the PGM. Author’s address: M. A. E. Huminicki, Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada A1B 3X5  相似文献   

17.
The Early Paleoproterozoic Monchegorsk Complex comprises two independent large layered mafic-ultramafic intrusions: the Monchegorsk pluton and the Main Range massif formed about 2.50 and 2.46 Ga ago, respectively. They are composed of similar cumulates, though they differ somewhat in the isotopic parameters of rocks, cumulate stratigraphy and derived from siliceous high-Mg series melts that arose in the same large long-living volcanic center. The economic syngenetic Ni-Cu-PGE sulfide mineralization related to the earlier Monchegorsk pluton is represented by two types of ores. The first type, pertaining to fractionation of the primary melt, is opposite to the reef formed due to injection of a special ore-bearing melt into the solidifying intrusive chamber. The primary magmatic mineralization is largely composed of Ni-Fe-Cu sulfides and Pd-Pt sulfides, bismuthides, and tellurides. Only small PGE and probably chromite occurrences are related to the Main Range massif. In the Mid-Paleoproterozoic (2.0-1.9 Ga), the complex was transformed into a collage of tectonic blocks confined to the regional fault zone. The Monchegorsk pluton was retained better, and only rocks of its southern framework were involved into tectonic and metamorphic reworking with the formation of economic metamorphic low-sulfide PGE mineralization with widespread Pd and Pt telluro-bismuthides, arsenides, stannides, antimonides, and selenides. The ore formation was accompanied by PGE redistribution and segregation of lenticular orebodies with diffuse contours. Thus, the Monchegorsk ore cluster is characterized by juxtaposition of unaltered primary magmatic deposits and those formed as a result of their metamorphism and distinguished from the former by structure and composition. The comparative study of these deposits opens up new possibilities for comprehending ore-forming processes in the same situations.  相似文献   

18.
The paper presents data on the geochemical and geochronological characteristics of zircons from mafic rocks of part of the Monchegorsk layered complex represented by the Vurechuaivench massif. Ages of zircons (SHRIMP-II) from samples V-l-09 (anorthosite) and V-2-09 (gabbronorite) are dated back to 2508 ± 7 and 2504 ± 8 Ma, respectively. The chondrite-normalized REE patterns confirm the magmatic nature of zircons. The data unequivocally indicate that the U–Pb age of zircon from both gabbronorite and anorthosite corresponds to the age of melt crystallization in a magmatic chamber. The mantle origin of gabbroic rocks of the Vurechuaivench massif is confirmed by the REE patterns of three zircon generations with different crystallization sequences. The wide range of the Ce/Ce* ratio (9.96–105.24) established for zircons from gabbroic rocks of the Vurechuaivench massif indicates sharply oxidative conditions of zircon crystallization. For deepseated mantle rocks, these data can only be explained by significant contamination of the melt with country rock material.  相似文献   

19.
20.
铂族元素在地壳中的富集:以布什维尔德杂岩为例   总被引:1,自引:0,他引:1  
地幔是地壳铂族元素富集的主要源库。铂族元素迁移主要有两个途径:(1)地幔部分熔融物质侵入地壳;(2)地幔板片就位于俯冲/碰撞带。前一途径比后一途径重要得多。地幔物质进入地壳造成铂族元素富集并成为可供开采的主矿产而非副产品,这一过程可包含许多成矿作用机制:(i)基性侵入体中Ni-Cu硫化物矿浆的发育,岩浆冷却与分离结晶作用导致富含Cu,Pt,Pd的硫化物矿浆的形成;(ii)层状侵入体一定层位形成高品位的铂族元素硫化物层,伴生或不伴生铬铁岩;(iii)富铂族元素及硫化物的岩浆沿着层状侵入体的边缘就位;(iv)直至层状侵入体结晶分异作用晚期的硫化物不混溶滞后分离;(v)不发育硫化物不混溶作用的铬铁矿结晶作用;(vi)低程度硫化物浸染带中的热液作用与铂族元素富集;(vii)乌拉尔-阿拉斯加型侵入体重结晶过程中的铂族元素与铬铁矿的次生富集作用,岩体在风化过程中形成砂矿床;(viii)黑色页岩形成过程中Pt的富集。南非布什维尔德火成杂岩蕴藏世界Pt资源的75%,Pd资源的54%,Rh资源的82%,并具有(ii)、(iii)、(iv)、(v)、(vi)成矿作用的实例。在这些作用中,作用(ii)形成的现有经济储量和资源量占90%,作用(iii)占9%。Merensky矿层(占总资源量30%)是一个铂族元素富集层位,它含1~3铬铁矿薄层,在可采宽度内硫化物平均含量为1%~3%(质量分数)。硫化物一般被认为是铂族元素的主要聚集体。该矿层由两个或两个以上含硫化物的基性热岩浆上升汇聚而成。这些岩浆的汇聚造成超镁铁质堆晶岩的厚度(主要是斜方辉石岩,某些地区包括橄榄岩)变化于50cm至数米之间。开采通常集中在厚度不到1m的地带。矿层的成因至今仍存在争议,一些观点认为铂族元素来自下部上升的热液流体,另一些观点认为铂族元素来自上部岩浆的硫化物沉降作用,并形成了Merensky辉石岩。已经知道矿层上覆的辉石岩、苏长岩和斜长岩中矿物来自两种岩浆类型:一种富含MgO(12%,质量分数)和Cr,而贫Al2O3(12%);另一种含典型的粒玄岩成分。UG-2铬铁岩含有全部经济资源量的58%,由一0.6~1m厚的铬铁岩层(有时见辉石岩夹层)和上覆的1~3层由铬铁矿所构成的薄层。虽然硫化物被认为至少是某些情况下对铂族元素的富集起作用,但UG-2的硫化物含量(0.5%~1.5%)显著低于Merensky矿层。UG-2层之下共有13个铬铁岩层位,所有的都含铂族元素,虽然铂族元素总含量和(Pt+Pd)/(Ru+Ir+Os)比值远低于UG-2。UG-2内所含的辉石岩"夹层"具高的87Sr/86Sr比值,说明与顶部熔融岩石的混合促进了铬铁岩和硫化物的形成。作用(iii)的主要实例是Platreef。目前它占总资源量的9%。不过,沿该带正积极开展找矿勘探工作,这一比例将来还会提高。这一矿层的厚度比Merensky和UG-2都要大,目前开采厚度达50多米。Platreef呈带状,上部为斜方辉石岩的堆晶岩;下部为辉石岩、长石辉石岩和苏长岩,它们与页岩、铁矿层和白云岩强烈相互作用,直接形成了底盘岩石。笔者认为Platreef是不同期次岩浆作用的结果,这些作用形成了不同的单元产物,包括布什维尔德主岩浆房的UG-2和Merensky矿层。新的岩浆进入主岩浆房会造成先存岩浆移位、岩浆错动并会冲破岩浆房的壁。圆筒状、带状岩管中的超镁铁岩含极高的Pt品位,在布什维尔德杂岩的下部切穿堆晶层,被认为是热液再活化的产物。它们现在未被开采,只是构成存封的铂族元素资源,对整个杂岩体资源没有重要的贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号