首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed tectonic analysis demonstrates that the present observed regional tectonic configuration of the ultrahigh-pressure metamorphic terrane in the Dabie massif was mainly formed by the extension processes of the post-Indosinian continent-continent oblique collision between the Sino-Korean and Yangtze cratons and ultrahigh-pressure metamorphism (UHPM). The configuration is characterized by a regional tectonic pattern similar to metamorphic core complexes and by the development of multi-layered detachment zones. On the basis of the identification of compressional and extensional fabrics, it is indicated that the exhumation and uplift of ultrahigh-pressure (UHP) metamorphic rocks from the mantle depth to the surface can be divided into at least three different decompression retrogressive metamorphism and tectonic deformation stages, in which the subhorizontal crustal-scale extensional flow in the middle-lower crust under amphibolite facies conditions is an important geodynamic process in the exhumation of UHP metamorphic rocks. Moreover, the extensional flow is probably driven by delamination and magmatic underplating of thickened lithospheric mantle following the continental oblique collision.  相似文献   

2.
Cong  Bolin  Wang  Qingchen  Zhai  Mingguo  Zhang  Ruyuan  Zhao  Zhongyan Ye  Kai 《Island Arc》1994,3(3):135-150
Abstract Based on petrological, structural, geological and geochronological research, the authors summarize the progress of ultra-high pressure (UHP) metamorphic rock study since 1989 by Chinese geoscientists and foreign geoscientists in the Dabie-Su-Lu region. The authors introduce and discuss a two-stage exhumation process for the UHP metamorphic rocks that have various lithologies; eclogite, ultramafics, jadeitic quartzite, gneiss, schist and marble. The metamorphic history of UHP metamorphic rocks is divided into three stages, that is, the pre-eclogite stage, coesite eclogite stage, and retrograde stage. Prior to UHP metamorphism, the ultramafics had a high temperature environment assemblage of mantle and others had blueschist facies assemblages. The granulite facies assemblages, which have recorded a temperature increase event with decompression, have developed locally in the Weihai basaltic rocks. Isotopic ages show a long range from > 700 Ma to 200 Ma. The diversity in protoliths of UHP metamorphic rocks may be related to the variation of isotopic ages older than 400 Ma. The Sm-Nd dating of ~ 220 Ma could reflect the initial exhumation stage after the peak UHP metamorphism in relation to the collision between the Sino-Korean and Yangtze blocks and subsequent events. Petrological and structural evidence imply a two-stage exhumation process. During the initial exhumation, the UHP metamorphic rocks were sheared and squeezed up in a high P/T regime. In the second exhumation stage the UHP metamorphic rocks were uplifted and eventually exposed with middle crustal rocks.  相似文献   

3.
The occurrence of ultrahigh pressure (UHP) minerals, such as coesite and diamond in crustal rocks in orogenic belts suggests that a huge amount of continental crust can be subducted to man-tle depth during the continental-continental collision[1—6]. This…  相似文献   

4.
Investigations on the oxygen and carbon isotope compositions from the ultrahigh-pressure (UHP)-metamorphosed Shuanghe marbles, that occur as a member of a UHP slab, show that the δ18 O values range from +11.1% to+20.5% SMOW, and δ13 C from+1.0% to+5.7% PDB, respectively. The variations in isotope compositions show a centimeter scale of homogeneity and a heterogeneity of regional scale larger than 1 meter. In contrast to the eclogite marbles from Norway, the Shuanghe marbles have inherited the carbon isotope compositions from their sedimentary precursor. The δ13C shows positive correlation to the content of dolomite. The depletion in18O, compared with the pmtolithic carbonate strata, might result from three possible geological processes: 1) exchanging oxygen isotope with meteoric water before the UHP metamorphism, 2) decarbonation during the UHP metamorphism, and 3) exchanging oxygen isotope with country gneiss at local scale during retrograde metamorphism. It seems that the advection of fluid in the orogenic belt was very limited during subduction and exhumation of UHP rocks. Project supported by a U. S. -China cooperative project led by Prof. Cong Bolin of the Institute of Geology. Chinese Acade-my of Sciences, and Prof. J. G. Liou of the Department of Geological and Environmental Sciences, Stanford University and by the National Natural Science Foundation of china (Grant No. 49794042). Chinese Academy of Sciences (Grant No. KZ951-A1-401r, and National Science Foundation (Grant No. EAR-95-26700).  相似文献   

5.
Distribution of hydrous components in jadeite of the Dabie Mountains   总被引:1,自引:0,他引:1  
Two kinds of jadeite occur in the jadeite-quartzite from the Dabie Mountains, Eastern China: associated either with weak or strong deformation. The former shows a uniform composition while the latter shows both uniform and zoning composition. These jadeites were examined with infrared (IR) spectroscopy. All jadeite displays hydroxyl (OH) stretching bands, implying that hydrous components commonly exist in jadeite. The concentration of the hydrous components in the jadeite with weak deformation is homogenous, whereas the concentration of the hydrous components in strongly deformed samples is variable. The correlation between the intensity of OH-band absorbance and compositional zoning of jadeite with strong deformation indicates that Na-rich jadeite can accommodate more OH than Na-poor jadeite. Its interpretation is that there is more Na associated with greater OH availability in the initial crystallization environment. Our data of the comparatively high OH concentrations recorded in the core of the jadeite which contains relative high vacancies in M2 site imply that both OH content and the vacancies in M2 site could decrease during exhumation of the jadeite-quartzite. The decrease of OH solubility in jadeite would result in the formation of H2O fluid during the early exhumation of UHP metamorphic rocks. The H2O fluid transformed from OH during exhumation could trigger and enhance the early retrograde metamorphism of the host rocks and facilitate plastic deformation of jadeite grain by dislocation creep and diffusion creep.  相似文献   

6.
The Mesozoic high-K granitic intrusions from the eastern Dabie Mountains, Central China, can be divided into three superunits namely the Yaohe, Penghe and Huangbai superunits. The Yaohe superunit is compositionally dominated by quartz monzonite extending as a band in NW direction which is differently foliated, contains numerous dioritic enclaves and has been dated as 174 Ma. The Penghe superunit, widely distributed in the field, varies in composition but is dominated by quartz monzonitic and granitic rocks, which is massive in structure, has well developed with dioritic enclaves and is aged in 125-127 Ma. The Huangbai superunit is mainly composed of granitic composition which is massive in structure, rarely contains dioritic enclaves and is aged in 120-111 Ma. These three superunits of granitic intrusions can also be clearly distinguished in geochemistry. They have recorded an orogenic process of the Dabie Mountains from the end of regional metamorphism to the overprinting of the circum-Pacific tectonic regime.  相似文献   

7.
8.
The Dabie Mountain is one of the best places for geologists to study the ultrahigh-pressure metamorphism (UHPM) because coesite-bearing eclogites and other UHPM rocks are well ex-posed on the surface. The Dabie UHPM belt has been studied by many geoscientists with re-markable results[1—9]. Recent researches show that the host rocks of the coesite-bearing eclogites, such as gneiss and marble, also contain coesites[10—14], thus undergoing ultrahigh-pressure meta-morphism. The idea of con…  相似文献   

9.
通过对中国大陆科学钻探井先导孔(CCSD-PH)测井资料的研究,并结合全井段的取芯资料,总结出了单一变质岩岩性在声、电、核三方面的测井响应,建立了岩性-测井响应数据库,并提取出了多种特征参数.应用聚类分析和逐步判别的方法,结合不同岩性的测井响应和多种特征参数,进行岩性的识别,以达到岩性剖面重组的目的.最后将岩性识别结果与取心资料进行对比,按厚度统计,达到了80%以上的符合率,取得了良好的应用效果.  相似文献   

10.
Metamorphic rocks experience change in the mode of deformation from ductile flow to brittle failure during their exhumation. We investigated the spatial variation of phengite K–Ar ages of pelitic schist of the Sambagawa metamorphic rocks (sensu lato) from the Saruta River area, central Shikoku, to evaluate if those ages are disturbed by faults or not. As a result, we found that these ages change by ca 5 my across the two boundaries between the lower‐garnet and albite–biotite, and the albite–biotite and upper‐garnet zones. These spatial changes in phengite K–Ar ages were perhaps caused by truncation of the metamorphic layers by large‐scale normal faulting at D2 phase under the brittle‐ductile transition conditions (ca 300°C) during exhumation, because an actinolite rock was formed along a fault near the former boundary. Assuming that the horizontal metamorphic layers and a previously estimated exhumation rate of 1 km/my before the D2 phase, the change of 5 my in phengite K–Ar ages is converted to a displacement of about 10 km along the north‐dipping, low‐angle normal fault documented in the previous study. Phengite 40Ar–39Ar ages (ca 85 to 78 Ma) in the actinolite rock could be reasonably comparable to the phengite K–Ar ages of the surrounding non‐faulted pelitic schist, because the K–Ar ages of pelitic schist could have been also reset at temperatures close to the brittle–ductile transition conditions far below the closure temperature for thermal retention of argon in phengite (about 500–600°C).  相似文献   

11.
Hydrogen and oxygen isotope studies were carried out on mineral separates from high to ultrahigh pressure metamorphic rocks at Huangzhen and Shuanghe in the eastern Dabie Mountains, East China. The δ18O values of eclogites cover a wide range of −5‰ to+9‰, but the δD values of micas fall within a narrow range of −85% to −70‰. Both equilibrium and disequilibrium oxygen isotope fractionations were observed between quartz and the other minerals, with reversed fractionations between omphacite and garnet in some eclogite samples. The δ18 O values of −5‰ to −1‰ for some of the eclogites represent the oxygen isotope compositions of their protoliths which underwent meteoric water-rock interaction prior to plate subduction. The preservation of oxygen isotope heterogeneity in the eclogites implies a channelized flow of fluids during progressive metamorphism caused by rapid subduction. Retrograde metamorphism has caused oxygen and hydrogen isotope disequilibria between some of the minerals, but the fluid for retrograde reactions was internally buffered in the stable isotope compositions. Project supported by the Chinese Ministry of Science and Technology (Grant No. 95-Pre-39), the National Natural Science Foundation of China (Grant Nos. 49794042, 49473173 and 49453003) and the Chinese Academy of Sciences (Grant No. KZ951-A1-401-5)  相似文献   

12.
通过在大别造山带东部横穿超高压变质带的一条NNE向剖面大地电磁测深资料的分析解释,获得了关于沿剖面的地壳上地幔二维电性结构,显示北淮阳与大别地块是电性差异显著的构造单元,它们之间的界面与晓天—磨子潭断裂对应;晓天—磨子潭断裂倾向北,在中上地壳层位出现错动解耦现象;从地表向深处可划分出4个主要电性层:地表风化层、中上地壳高阻层、壳内相对高导层以及上地幔层;大别地块内中、上地壳层位以高阻层为主,与高压-超高压变质岩分布区对应,高阻层最厚处在岳西—英山之间;在大别地块内,推测存在燕山期花岗质岩浆活动的通道,它们造成了超高压变质岩的进一步抬升,同时影响了大别地块内存在的壳内相对高导层的分布,壳内相对高导层在层位上相差较大.  相似文献   

13.
Previous studies of weathering generally started with geochemistry[1—8] and mineralogy[9—12], and have been focused on chemical weathering rates[1—3], removability-enrichment of elements[3—6] during chemical weathering, and the age of weathering profi…  相似文献   

14.
The present paper examines a kinetic model of the coesite–quartz transition under an elastic field. This model is applied to discuss the possible exhumation path of ultrahigh-pressure (UHP) metamorphic rocks. By incorporating the model of transition kinetics into a three-shelled composite sphere model in linear elasticity, the internal stresses in coesite, quartz, and garnet shells were calculated for given external pressure ( P )–temperature ( T ) paths. The occurrence of rupture provides a constraint on the temperature and the amount of quartz inverted from coesite at the rupture for each P–T path. Comparison of calculated results and the natural occurrence of coesite inclusion from the Dora Maira Massif, containing ∼ 27% quartz at the rupture, enables us to constrain the possible exhumation path and possible transition kinetics. A steep decompression path with slow transition kinetics is most favorable, which is consistent with the estimated P–T path during exhumation for most UHP metamorphic rocks.  相似文献   

15.
Shigenori  Maruyama  J. G. Liou  Ruyuan  Zhang 《Island Arc》1994,3(2):112-121
Abstract In the Triassic suture between the Sino-Korean and Yangtze cratons, the Dabie metamorphic Complex in central China includes three tectonic units: the northern Dabie migmatitic terrane, the central ultrahigh-P coesite- and diamond-bearing eclogite belt, and the southern high-P blueschist-eclogite belt. This complex is bounded to the north by a north-dipping normal fault with a Paleozoic accretionary complex and to the south by a north-dipping reverse fault with Yangtze basement plus its foreland fold-and-thrust sequence. Great differences in metamorphic pressure suggests that these units reached different depths during metamorphism and their juxtaposition occurred by wedge extrusion of subducted old continental fragments. These units were subsequently subjected to (i) Barrovian type regional metamorphism and deformation at shallow depths; (ii) intrusion of Cretaceous granitic plutons; and (iii) doming and segmentation into several blocks by normal and strike-slip faults. A new speculative model of tectonic exhumation of UHP rocks is proposed.  相似文献   

16.
Abstract Pseudotachylytes are present along the Dahezhen shear zone in the Qinling–Dabie Shan collisional orogenic belt, central China. Two types of pseudotachylyte vein are documented in the shear zone: cataclasite‐related pseudotachylyte (C‐Pt) and mylonite‐related pseudotachylyte (M‐Pt). M‐Pt is associated with mylonite‐development and is overprinted by C‐Pt. All of the quartz and most of the feldspar porphyroclasts within the M‐Pt are plastically deformed, but not in the C‐Pt. Dynamically recrystallized fine‐grained quartz and feldspar bands are oriented subparallel to the mylonite and M‐Pt foliation, and partially surround the porphyroclasts. Our results suggest that the M‐Pt formed cyclically in the ductile region at estimated conditions of 400–650°C and 400–800 MPa due to propagation of seismic fracturing associated with the thrusting‐related rapid exhumation of the ultrahigh‐pressure metamorphic complex in the brittle regime down to a greater depth than the base of the seismogenic zone. The M‐Pt and mylonite formed in the Dahezhen shear zone at estimated conditions of 400–650°C and 400–800 MPa. The coexistence of C‐Pt and M‐Pt in the same shear zone suggests that repeated seismic slips occurred in both the brittle and ductile portions of the crust during the thrusting‐related rapid exhumation of the ultrahigh‐pressure metamorphic complex.  相似文献   

17.
Geochronological studies of mafic-ultramafic intrusions occurrence in the northern Dabie zone (NDZ) suggest that these pyroxenite-gabbro intrusions formed 120—130 Ma ago should be post-collisional magmatic rocks[1—4]. These mafic-ultramafic rocks provid…  相似文献   

18.
A broadband seismic array of 7 stations was set up in the western Dabie Mountains (31°20′-31°50′N, 114°30′-115°E). Teleseismic events from May 2001 to November 2001 were collected and analyzed by radial receiver function to determine the S-wave velocity structure of the crust and uppermost mantle. The crustal thickness is 32-38 km beneath the array. The crust-mantle boundary appears as a gently north-dipping velocity discontinuity, but turns to be a velocity gradient beneath a station near the Qiliping shea...  相似文献   

19.
Step heating experiments on ultra-high pressure (UHP) mcks from the Dabie Mountain shows a majority of CO2 in fluid inclusion (excluding H2O); CO is also a significant component, with a small content of N2 and CH4. Carbon isotopic composition of CO2 in fluid of metamorphic climax stage (-25%0- -30%0) is different from that of mantle carbon, indicating that UHP rocks did not experience obvious transformation by mantle fluids despite their subduction depth. CO2 was derived from carbon matter in the pmtoliths of UHP rocks in a relatively confined system, showing that the UHP rocks subsided quickly and uplifted quickly from the mantle. Current organization: Research Institute of Petroleum Exploration and Development, Beijing 100083, China.  相似文献   

20.
Strain analyses for the Shuanghe pluton show that the main strain planes suffered distinct deformation. The main strain value (XZ) is up to 1.59-2.18, and the value of Flinn index (K) ranges from 0.11 to 0.82. Anisotropy of magnetic susceptibility (AMS) measurements reveal that the orientations of the magnetic foliation and lineation gently dip SE, consistent with the macroscopic foliation of the pluton. The value of anisotropy degree (P) ranges from 1.109 to 1.639, and the shape parameter (7) from 0.079 to 0.534. These studies prove that the pluton was deformed under strong compression. Quartz c-axis textures, defined by monoclinic or triclinic asymmetry, usually developed the high maxima paralleling the b-axis, which is defined by the developed in the high-ultrahigh pressure rocks (UHP) which were captured in the pluton or country rocks. It is concluded that the Shuanghe pluton emplaced under regional compression slightly after the formation of UHP, and it is characterized by synkinematic granitic deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号