首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study compares the aerosol optical depth (AOD) Level 2 Collection 5 products from the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS) with ground-based measurements from a Microtops II sun photometer over Sanya (18.23°N, 109.52°E), a tropical coastal site in China, from July 2005 to June 2006. The results indicate that the Terra and Aqua MODIS AOD retrievals at 550 nm have good correlations with the measurements from the Microtops II sun photometer. The correlation coefficients for the linear regression fits (R²) are 0.83 for Terra and 0.78 for Aqua, and the regressed intercepts are near zero (0.005 for Terra, 0.009 for Aqua). However, the Terra and Aqua MODIS are found to consistently underestimate AOD with respect to the Microtops II sun photometer, with slope values of 0.805 (Terra) and 0.767 (Aqua). The comparison of the monthly mean AOD indicates that for each month, the Terra and Aqua MODIS retrievals are matched with corresponding Microtops measurements but are systematically less than those of the Microtops. This validation study indicates that the Terra and Aqua MODIS AOD retrievals can adequately characterize the AOD distributions over the tropical coastal region of China, but further efforts to eliminate systematic errors are needed.  相似文献   

2.
This paper analyzes seasonal and diurnal variations of MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) data at ~1.1 km for the period of 2003–2011 over a region in West-Central Texas, where four of the world’s largest wind farms are located. Seasonal anomalies are created from MODIS Terra (~10:30 a.m. and 10:30 p.m. local solar time) and Aqua (~1:30 a.m. and 1:30 p.m. local solar time) LSTs, and their spatiotemporal variability is analyzed by comparing the LST changes between wind farm pixels (WFPs) and nearby non wind farm pixels (NNWFPs) using different methods under different quality controls. Our analyses show consistently that there is a warming effect of 0.31–0.70 °C at nighttime for the nine-year period during which data was collected over WFPs relative to NNWFPs, in all seasons for both Terra and Aqua measurements, while the changes at daytime are much noisier. The nighttime warming effect is much larger in summer than winter and at ~10:30 p.m. than ~1:30 a.m. and hence the largest warming effect is observed at ~10:30 p.m. in summer. The spatial pattern and magnitude of this warming effect couple very well with the geographic distribution of wind turbines and such coupling is stronger at nighttime than daytime and in summer than winter. Together, these results suggest that the warming effect observed in MODIS over wind farms are very likely attributable to the development of wind farms. This inference is consistent with the increasing number of operational wind turbines with time during the study period, the diurnal and seasonal variations in the frequency of wind speed and direction distribution, and the changes in near-surface atmospheric boundary layer (ABL) conditions due to wind farm operations. The nocturnal ABL is typically stable and much thinner than the daytime ABL and hence the turbine enhanced vertical mixing produces a stronger nighttime effect. The stronger wind speed and the higher frequency of the wind speed within the optimal power generation range in summer than winter and at nighttime than daytime likely drives wind turbines to generate more electricity and turbulence and consequently results in the strongest warming effect at nighttime in summer. Similarly, the stronger wind speed and the higher frequency of optimal wind speed at ~10:30 p.m. than that at ~1:30 a.m. might help explain, to some extent, why the nighttime LST warming effect is slightly larger at ~10:30 p.m. than ~1:30 a.m. The nighttime warming effect seen in spring and fall are smaller than that in summer and can be explained similarly.  相似文献   

3.
The first Korean geostationary satellite, the Communication, Ocean, Meteorological Satellite (COMS) carries the Meteorological Imager (MI) that measures solar radiance at 0.675 μm and infrared (IR) brightness temperatures at four spectral bands centered at 3.8, 6.7, 10.8, and 12.0 μm. This study reports the calibration status of the COMS MI solar and four IR channels, based mainly on a comparison with Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. The results obtained from four months of COMS MI solar channel measurements demonstrate that the solar channel has a dark bias of about 9–10%. On the other hand, the four IR channels appear to be well-calibrated as evidenced by a high correlation and near-unity slope between COMS and MODIS data. Nevertheless, existing biases of tenths of a kelvin are still considered to be substantial. Overall, the interpretation of COMS-derived meteorological products should take into account some uncertainty caused by possible calibration errors.  相似文献   

4.
The features of sea ice drift in the Sea ofOkhotsk are studied using Terra and Aqua satellite MODIS spectroradiometer data. The spatial heterogeneity of sea ice drift in the areas of hydrocarbon fields on the Magadan and Sakhalin shelves is analyzed.  相似文献   

5.
Sunshine duration (SD) is strongly correlated with solar radiation, and is most widely used to estimate the latter. This study builds a remote sensing model on a 100 m × 100 m spatial resolution to est...  相似文献   

6.
Past studies based on the NOAA/AVHRR and GOES I-M imager instruments have documented the link between certain storm top features referred to as the “cold-U/V” shape in the 10–12 μm IR band imagery and plumes of increased 3.7/3.9 μm band reflectivity. Later, similar features in the 3.7/3.9 μm band have been documented in the AVHRR/3 1.6 μm band imagery.The present work focuses on storm top observations utilizing the MODIS data. The MODIS instrument (available onboard NASA's EOS Terra and Aqua satellites) provides image data with significantly better geometrical resolution (in some of its bands) and broader range of spectral bands as compared to that from AVHRR/3 observations. One of the goals of this study is to evaluate the contribution of this new instrument to observations of convective storm tops. Besides the cloud top features linked to storm top microphysics and morphology, the paper also addresses the possibility of detection of lower stratospheric water vapor above cold convective storm tops. This issue is explored utilizing MODIS as well as GOES and MSG imagery.In addition, the paper discusses an alternative interpretation of the “cold-U/V” patterns at the top of intense storms by a mechanism of “plume masking” as suggested by some of the observations.  相似文献   

7.
Satellite and human visual observation are two of the most important observation approaches for cloud cover. In this study, the total cloud cover(TCC) observed by MODIS onboard the Terra and Aqua satellites was compared with Synop meteorological station observations over the North China Plain and its surrounding regions for 11 years during daytime and7 years during nighttime. The Synop data were recorded eight times a day at 3-h intervals. Linear interpolation was used to interpolate the Synop data to the MODIS overpass time in order to reduce the temporal deviation between the satellite and Synop observations. Results showed that MODIS-derived TCC had good consistency with the Synop observations; the correlation coefficients ranged from 0.56 in winter to 0.73 in summer for Terra MODIS, and from 0.55 in winter to 0.71 in summer for Aqua MODIS. However, they also had certain differences. On average, the MODIS-derived TCC was 15.16%higher than the Synop data, and this value was higher at nighttime(15.58%–16.64%) than daytime(12.74%–14.14%). The deviation between the MODIS and Synop TCC had large seasonal variation, being largest in winter(29.53%–31.07%) and smallest in summer(4.46%–6.07%). Analysis indicated that cloud with low cloud-top height and small cloud optical thickness was more likely to cause observation bias. Besides, an increase in the satellite view zenith angle, aerosol optical depth, or snow cover could lead to positively biased MODIS results, and this affect differed among different cloud types.  相似文献   

8.
开发AVHRR可见光通道反演陆地气溶胶光学厚度 (AOD) 的算法对于研究长时间序列AOD的变化有重要意义。AVHRR由于缺少2.1 μm通道而不能采用MODIS的暗背景算法,该文利用背景合成算法进行陆地AOD反演。背景合成算法是指假设一段时间内地表反射率变化不大且会出现相对清洁大气, 采用最小值合成即可得到地表反射率,再通过辐射传输模式6S制作的查算表查算得到AOD的反演结果。将此算法应用到2009年AVHRR中国部分陆地区域 (15°~45°N,75°~135°E) 得到AOD的时空分布,将反演结果与同期Aqua/MODIS的MOD04 AOD产品进行对比分析表明,华北和华东地区的反演效果较好,西北地区结果较差。以长江三角洲地区为例可知,AVHRR AOD产品与MODIS AOD产品以及AERONET观测的AOD相比相关系数基本在0.6以上,从时间变化规律来看,AVHRR AOD和MODIS AOD产品年变化趋势具有很好的一致性。该文为建立长时间序列AVHRR AOD数据集提供了一个较为可行的方法。  相似文献   

9.
FY-2B与NOAA卫星红外通道的相对定标   总被引:2,自引:0,他引:2  
FY-2是自旋扫描静止气象卫星,其红外通道的在轨定标是将黑体从后光路插入目标光路中进行的,此种定标不是全光路定标,存在较大的误差。为了获得较好的红外通道在轨定标系数,用定标精度较高的NOAA(16,17)卫星通道4观测数据与FY-2B红外通道观测数据进行了相对定标试验。相对定标的工作主要是两种卫星观测仪器响应函数之间的光谱匹配和观测图像之间的几何匹配。拟合匹配后两种卫星的观测数据,利用NOAA卫星较高精度的定标系数可得到改进的FY-2B定标系数。FY-2B相对定标系数的精度比原定标系数有较大的提高。  相似文献   

10.
The instrument cross-calibration is an effective way to assess the quality of satellite data. In this study, a new method is proposed to cross-calibrate the sensors among satellite instruments by using a RObotic Lunar Observatory(ROLO) model and Apollo sample reflectance in reflective solar bands(RSBs). The ROLO model acts as a transfer radiometer to bridge between the instruments. The reflective spectrum of the Apollo sample is used to compensate for the difference in the instrument's relative spectral responses(RSRs). In addition, the double ratio between the observed lunar irradiance and the simulated lunar irradiance is used to reduce the difference in instrument lunar viewing and illumining geometry. This approach is applied to the Moderate Resolution Imaging Spectroradiometer(MODIS), the Sea-Viewing Wide Field-of-View Sensor(Sea Wi FS), and the Advanced Land Imager(ALI) on board three satellites, respectively. The mean difference between MODIS and Sea Wi FS is less than 3.14%, and the difference between MODIS and ALI is less than 4.75%. These results indicate that the proposed cross-calibration method not only compensates for the RSR mismatches but also reduces the differences in lunar observation geometry. Thus,radiance calibration of any satellite instrument can be validated with a reference instrument bridged by the moon.  相似文献   

11.
The Moderate Resolution Imaging Spectroradiometer(MODIS) sensor onboard NASA's Aqua satellite has been collecting valuable data about the Earth system for more than 14 years, and one of the benefits of this is that it has made it possible to detect the long-term variation in aerosol loading across the globe. However, the long-term aerosol optical depth(AOD)trends derived from MODIS need careful validation and assessment, especially over land. Using AOD products with at least 70 months' worth of measurements collected during 2002–15 at 53 Aerosol Robotic Network(AERONET) sites over land,Mann–Kendall(MK) trends in AOD were derived and taken as the ground truth data for evaluating the corresponding results from MODIS onboard Aqua. The results showed that the AERONET AOD trends over all sites in Europe and North America, as well as most sites in Africa and Asia, can be reproduced by MODIS/Aqua. However, disagreement in AOD trends between MODIS and AERONET was found at a few sites in Australia and South America. The AOD trends calculated from AERONET instantaneous data at the MODIS overpass times were consistent with those from AERONET daily data, which suggests that the AOD trends derived from satellite measurements of 1–2 overpasses may be representative of those from daily measurements.  相似文献   

12.
利用NASA Terra和Aqua卫星MODIS气溶胶卫星产品,统计了亚洲地区气溶胶光学厚度的空间和季节变化特点,发现东亚与南亚两气溶胶光学厚度高值区年际变化类似,季节变化有所不同。同时结合季风区气候条件,分析亚洲季风对气溶胶分布传输的影响,认为南亚气溶胶光学厚度大值区主要是由于南亚季风和高原地形综合作用形成,东亚地区主要是以当地人类活动产生的气溶胶为主,夏季会受到南亚地区气溶胶输送的影响。光学厚度大值区会随着强季风移动。  相似文献   

13.
西藏林芝地区混合像元MODIS地表温度产品验证   总被引:1,自引:1,他引:0       下载免费PDF全文
西藏林芝地区地形复杂、土地覆盖类型多样,MODIS地表温度 (land surface temperature,LST) 产品验证面临处理混合像元的难题,为获得与像元尺度 (1 km) 相匹配的地表温度数据,该文提出采用多点同时观测结合面积加权的方法,将该方法应用于验证林芝地区2013年6月10日夜间晴空MODIS/LST产品。结果显示:单点观测对像元的代表性不足,容易低估产品精度 (10个样本均方根误差为2.2 K),面积加权法可获得综合性更好的地面LST信息,对MODIS/LST产品的精度给出更高的评价 (30个样本均方根误差为1.40 K)。对于地表类型混杂程度高且地势较为平坦的像元,面积加权法的优势更为明显,可将卫星LST产品与地面LST之间的差异由3 K降至1 K以内。  相似文献   

14.
以2002-2004年中国地区Terra MODIS数据开展对照反演试验,获得大范围具有相同时空代表性的反照率全反演结果和当量反演结果,统计分析MODIS反照率两种反演结果的差异,结果表明:在MODIS 1-7波段及可见光、近红外和短波波段,黑空反照率、白空反照率的当量反演结果与全反演结果的绝对偏差均小于0.05,且黑空反照率两种反演结果的绝对偏差明显小于白空反照率两种反演结果的绝对偏差;MODIS反照率两种反演结果在红外波段的绝对偏差大于其在可见光波段的绝对偏差;夏季MODIS反照率两种反演结果的绝对偏差最大,秋季则最小.  相似文献   

15.
中国中东部MODIS与MISR气溶胶光学厚度的对比   总被引:5,自引:2,他引:3  
张莹  孙照渤 《气象科学》2010,30(1):48-54
Terra/MODIS前一版本C4和最新版本C5的气溶胶光学厚度(AOT Aerosol OpticalThickness)数据,以及搭载于同一卫星上的Terra/MISR气溶胶光学厚度数据,在中国中东部地区存在差异。本文利用AERONET气溶胶光学厚度数据对以上三种资料验证的结果表明:MODIS气溶胶算法改进之后得到的C5 AOT数据较C4精度确有很大提高,且优于MISR的AOT数据。  相似文献   

16.
The method of the AVHRR-3 (NOAA) radiometer measurement data subject processing is produced for the retrieval of underlying surface temperature and several vegetation characteristics under cloud-free conditions. A technology for deriving the values of these parameters from the MODIS (EOS/Terra and Aqua) radiometer data is developed. The estimation of the temperature and vegetation characteristics is carried out for the Seim River basin (Kursk region) with the catchment area of 7460 km2 for 2003–2005 vegetation seasons. Practical coincidence of estimations of AVHRR- and MODIS-derived temperatures, as well as the coincidence with ground observation results, is revealed. Statistics of these estimation errors is analyzed. Satellite-derived estimations of land surface temperature (LST) and vegetation characteristics are used for the calibration and verification of the developed model of the vertical heat and water transfer in the soil-vegetation-atmosphere system (SVAT). The model is intended for calculations of evapotranspiration, soil water and heat content, latent and sensible heat fluxes, and other water and heat balance components. The abilities to compute these parameters using the satellite estimations of the leaf area index and projective vegetation cover fraction as the model parameters and LST satellite estimations as the model input variable are investigated.  相似文献   

17.
Trend analysis of rainfall time series for Sindh river basin in India   总被引:1,自引:1,他引:0  
The main goal of this paper is to estimate a set of optimal seasonal, daily, and hourly values of atmospheric turbidity and surface radiative parameters Ångström’s turbidity coefficient (β), Ångström’s wavelength exponent (α), aerosol single scattering albedo (ωo), forward scatterance (Fc) and average surface albedo (ρg), using the Brute Force multidimensional minimization method to minimize the difference between measured and simulated solar irradiance components, expressed as cost functions. In order to simulate the components of short-wave solar irradiance (direct, diffuse and global) for clear sky conditions, incidents on a horizontal surface in the Metropolitan Area of Rio de Janeiro (MARJ), Brazil (22° 51′ 27″ S, 43° 13′ 58″ W), we use two parameterized broadband solar irradiance models, called CPCR2 and Iqbal C, based on synoptic information. The meteorological variables such as precipitable water (uw) and ozone concentration (uo) required by the broadband solar models were obtained from moderate-resolution imaging spectroradiometer (MODIS) sensor on Terra and Aqua NASA platforms. For the implementation and validation processes, we use global and diffuse solar irradiance data measured by the radiometric platform of LabMiM, located in the north area of the MARJ. The data were measured between the years 2010 and 2012 at 1-min intervals. The performance of solar irradiance models using optimal parameters was evaluated with several quantitative statistical indicators and a subset of measured solar irradiance data. Some daily results for Ångström’s wavelength exponent α were compared with Ångström’s parameter (440–870 nm) values obtained by aerosol robotic network (AERONET) for 11 days, showing an acceptable level of agreement. Results for Ångström’s turbidity coefficient β, associated with the amount of aerosols in the atmosphere, show a seasonal pattern according with increased precipitation during summer months (December–February) in the MARJ.  相似文献   

18.
中国区域MODIS陆上气溶胶光学厚度产品检验   总被引:15,自引:2,他引:13       下载免费PDF全文
以我国MODIS共享网站积累的MODIS L1B数据和美国威斯康辛大学提供的IMAPP软件包气溶胶产品软件为基础, 经过产品运行本地化改进处理, 在国家卫星气象中心建立了气溶胶产品业务化生成和发布机制。为支持气溶胶遥感产品算法改进以及潜在用户对产品的合理应用, 给出对国家卫星气象中心运行的MODIS气溶胶遥感产品质量检验分析结果。利用2005年1月— 2007年5月AERONET地基气溶胶监测网的L2.0级气溶胶光学厚度产品作为真值, 用它匹配MODIS陆上气溶胶光学厚度产品开展检验。检验结果表明:以卫星过境前后30min地基观测时间平均值匹配地基站点位置10 km半径范围内的卫星反演结果空间平均值开展检验, 总体样本的气溶胶光学厚度均方根误差约为0.25;满足产品误差要求 (±0.05±0.20τ) 的样本占总样本数的44%; 气溶胶光学厚度反演结果精度具有季节和地域差异, 干季(秋、冬、春)的气溶胶光学厚度误差较小, 而雨季气溶胶光学厚度误差较大, 云是雨季气溶胶光学厚度反演结果误差较大的主要影响因素。  相似文献   

19.
基于FY-3/IRAS利用非线性模式反演OLR   总被引:1,自引:0,他引:1       下载免费PDF全文
FY-3系列卫星星载IRAS仪器设有26个通道,其中20个通道用于探测地球大气在红外波段的热辐射,通道辐射率代表了地球大气系统在大气顶的向外辐射光谱信息,与总波段的射出长波辐射(OLR)通量相关性高。该文基于逐线辐射传输模式计算软件LBLRTM对全球2521条大气廓线的大气顶射出辐射率模拟数据,计算了每条廓线的OLR和FY-3B/IRAS,FY-3C/IRAS通道辐射率,用统计回归方法建立了利用IRAS的多通道辐射率计算OLR的非线性理论回归模式;应用模式和FY-3B/IRAS,FY-3C/IRAS的L1级数据,处理得到2016年4月1-30日的全球日平均、月平均OLR格点产品。与Aqua/CERES,Terra/CERES仪器宽波段观测OLR产品对比表明:对于水平分辨率为1°×1°的全球月平均OLR格点产品,均方根误差为2.22 W·m-2,相关系数为0.9982 W·m-2,平均偏差为-0.2 W·m-2,表明FY-3/IRAS仪器定标及反演模式均达到较高水平。文中还回顾了历史上不同气象卫星的多种OLR反演算法模式,并对不同模式精度进行了比较。  相似文献   

20.
准确获取气溶胶光学厚度对于气候变化研究和大气环境监测具有重要意义。通过波长插值和时空匹配方法,利用气溶胶自动观测站网(AERONET)观测的气溶胶光学厚度(AOD)对风云3A/中分辨率光谱成像仪(FY-3A/MERSI)、Terra(Aqua)/MODIS的C5.1(Collections 5.1)和C6(Collections 6)气溶胶光学厚度产品在中国区域的反演精度进行验证分析。结合一次发生在中国境内的沙尘天气与一次严重雾霾天气个例,分析上述卫星气溶胶光学厚度的分布特征。研究结果表明,(1)FY-3A/MERSI AOD的反演精度较高(R=0.887,RMSE=0.234),其值低于AERONET的观测值(Bias=-0.293)。(2)在不同的下垫面下,各种卫星暗像元算法AOD产品反演精度有差异,植被覆盖情况越好,反演精度越高,而植被很少的地区,即亮地表甚至没有反演值。(3)MODIS C5.1深蓝算法产品能在亮地表地区反演AOD,但效果不佳。MODIS C6中的深蓝算法产品在不同下垫面的反演精度都很高(RMSE为0.096-0.127)。(4)在不同季节的对比中,各种卫星AOD产品在夏季的反演精度最差,而反演最好的季节各有不同。(5)在一次沙尘天气污染与一次严重雾霾天气个例中,中国西部与北部区域,MODIS C6深蓝算法AOD的监测效果优于其他算法AOD;MERSI AOD产品在此区域的分布不连续。总体而言,MODIS C6 AOD分布比MODIS C5.1产品连续,MODIS 3 km产品在相同区域的AOD值高于其他产品。以上结论可为卫星AOD产品在中国区域的使用提供参考。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号