首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
植被生物量高光谱遥感监测研究进展   总被引:2,自引:0,他引:2  
植被生物量的评估对于研究全球碳循环具有重大意义,而高光谱遥感技术为精确反演地表属性提供了重要的数据支持。针对如何更好地应用高光谱遥感技术进行植被生物量精确反演的问题,该文详细阐述了国内外应用高光谱技术估测植被生物量的研究进展。对反演植被生物量所涉及的数据源、反演模型的构建方法及其模型特点、反演模型应用对象等内容进行了综合评述,并通过分析认为,高光谱遥感技术较传统的多光谱遥感技术在生物量反演精度上有了显著的提高。同时,对建模方法、多源遥感数据融合以及模型通用性等方面的研究进行了展望,以达到在大尺度范围内对植被生物量进行准确反演的目的。  相似文献   

2.
传统的植被状况调查方式费时、费力,并且更新困难,而高光谱遥感数据图谱合一,能够更精细、准确地进行遥感地物识别和分类,因此采用Hyperion高光谱数据来研究地物混合严重并且呈零星碎片状的城市植被。利用混合像元分解思想改进Gram-Schmidt融合算法,将Hyperion高光谱和ALI全色波段进行融合,提高光谱数据的空间分辨率,来解决城市植被像元混合严重和分布过于零散破碎难题,进而提高植被识别精度。为了避免高光谱植被识别陷入维数灾难,采用主成分分析对融合后的高光谱数据进行数据降维。最后,在地面光谱成像仪获取的纯净像元光谱信息辅助下,选取训练样本进行最小距离分类,完成植被类型识别,总体精度达到84.9%。  相似文献   

3.
针对植被高光谱遥感分类过程中参考光谱训练样本的选择问题,研究分类过程中常用训练样本的选择方法,并在此基础上提出2种新的训练样本选择(纯化)方法,然后结合具体的OMIS-I高光谱遥感数据,验证方法的有效性。  相似文献   

4.
随着航空航天技术与遥感技术的不断发展,遥感影像在诸多领域的应用不断拓展,其中高光谱分辨率遥感影像具有“图谱合一”的特点,即该数据既包含了具有强大区分性的地物光谱信息,又包含了丰富的地物空间位置信息,因此高光谱数据具有非常大的应用潜力。高光谱异常目标检测问题,是在对目标先验信息未知的前提下,根据光谱与空间信息实现对区域中的异常目标的进行“盲”检测,因此其在资源调查、灾害救援等领域发挥了巨大的作用,是遥感领域非常重要的研究课题。本文针对高光谱遥感影像异常目标检测研究方向,首先总结阐述了目前高光谱异常目标检测问题的主要研究进展,根据算法原理的不同对现有主流算法进行了分类与总结,主要分成了基于统计学、基于数据表达、基于数据分解、基于深度学习等不同的种类的方法,并对每类方法的特点进行分析。随后通过对现有方法的调研、分析与总结,提出了数据库拓展、多源数据融合、算法实用化等高光谱异常检测研究未来发展的3个方向。  相似文献   

5.
高光谱遥感及其影像空间结构特征分析   总被引:8,自引:1,他引:8  
分析了高光谱遥感技术相对于传统的低光谱分辨率遥感的特点,以及其在环境监测等领域的应用。然后分析了高光谱影像的空间结构特征,并指出高光谱影像的空间结构特征在实际应用中也具有很重要的意义。最后,本文使用了统计学分析方法对实验影像的空间结构特征进行了分析,并提出了一个可用于描述高光谱影像空间特征的统计学参数。  相似文献   

6.
根据高光谱遥感影像数据特点,首先利用光谱相关性进行特征选择,然后引进SVM进行高光谱遥感影像分析解译,最后利用AVIRIS影像进行试验,结果显示分类精度和时间比常规方法都有很大改善。  相似文献   

7.
湿地植被成象光谱遥感研究   总被引:58,自引:5,他引:58  
该文论述了成象光谱信息在鄱阳湖湿地进行植被光谱识别分类与生物量制图的部分研究结果,研究如何从高光谱分析图象上有效地定量提取植被生长物理参量以及湿植被类型识别,包括(1)基地多高度大气订正后的反射率图像获取;(2)导数光谱分析与生物量制图;(3)基于光谱波形匹配的湿地植被分类,识别。  相似文献   

8.
在对矿物光谱特征理解与归纳的基础之上,对矿物光谱特征进行知识化表达,利用数理逻辑和一定的判别规则实现对高光谱遥感影像矿物的自动识别与批量化信息提取。在ENVI平台上,利用IDL语言开发了高光谱遥感影像矿物分层自动识别模(Mineral Auto-identification Module Basedon Spectral Identification Tree:MAIM-SIT)。该模块已经在新疆东天山哈密地区利用HyMap数据、西藏驱龙地区利用Hyperion数据以及美国Cuprite地区利用AVIRIS数据成功地进行了矿物识别,可识别的矿物或矿物组合可达10种以上,基本实现了高光谱矿物信息提取的智能化与批处理能力。  相似文献   

9.
杜会建  赵银娣  蔡燕 《测绘科学》2012,37(2):126-128,32
端元提取技术是混合像元分解中重要的步骤之一,传统的端元提取方法仅考虑了像元的光谱信息.本文将数学形态学算子扩展到高光谱空间,并应用到端元提取技术中,可以顾及像元的上下文信息.利用AVIRIS高光谱仿真数据对算法进行了实验验证,结果表明本文算法具有较强的抗噪能力和较高的可靠性.在此基础上,结合徐州地区的EO-1 Hyperion高光谱遥感图像,使用本文算法进行了端元提取应用研究,将实验结果与纯净像元指数、顶点成分分析方法做了对比分析和精度评价,证明本文算法是一种可靠的高光谱遥感图像端元提取技术.  相似文献   

10.
高光谱影像的能量边缘提取方法的本质是利用高光谱信号的能量相似性与能量分布特征来寻找边缘,从能量边缘图可以提取属于不同地物类别的主要边缘,这些边缘都比较明显与完整。实验结果表明,能量边缘对噪声信号不敏感,与用其他方法寻找边缘的结果相比,能量边缘具有更好的效果。  相似文献   

11.
一种基于PPI的高光谱数据矿物信息自动提取方法   总被引:1,自引:0,他引:1  
许宁  胡玉新  雷斌  张聪  汪大明  石涛 《测绘科学》2013,38(4):138-141
本文通过分析PPI算法后续处理存在的问题,引入最大距离法(MD)实现基于PPI的端元自动分类,并将获得的未知端元在波谱库中遍历以匹配最佳地类,最终完成基于PPI端元的矿物信息的自动提取。实验采用美国内华达州Cuprite地区的机载AVIRIS和我国东天山地区的星载Hyperion高光谱遥感数据,利用IDL编程实现矿物信息的自动提取,通过对实验结果的比较分析,验证了本文方法的有效性和实用性。  相似文献   

12.
王亚利  都伟冰  王双亭 《遥感学报》2021,25(7):1434-1444
利用阈值法进行遥感地物提取效率高、准确率高,但是在阈值的选取方面,传统的手动选取阈值,自动化低,需反复试操作,且易受主观因素影响。文中通过期望最大算法对局部冰川区域归一化雪覆盖指数建立高斯混合模型,去除区域内的混合像元类,再利用高斯混合模型模拟纯净化后的冰川类、非冰川类的NDSI分布情况,根据改进后的高斯混合模型分布情况,自动计算出区域内的冰川提取阈值。本文对不同海拔的3个区域进行算法实验,然后将新疆哈密的哈尔里克山冰川提取边界与冰川编目数据进行对比验证。研究结果表明,该方法自动计算的冰川提取阈值结果可靠、精度高,在差异较大区域仍较稳定,有一定的应用价值。  相似文献   

13.
中国高光谱遥感的前沿进展   总被引:6,自引:0,他引:6  
童庆禧  张兵  张立福 《遥感学报》2016,20(5):689-707
高光谱成像技术具有光谱分辨率高、图谱合一的独特优势,是遥感技术发展以来最重大的科技突破之一。中国的高光谱遥感发展与国际基本同步,在国家和省部级科研项目的支持下,解决了高光谱遥感信息机理、图像处理和多学科应用等方面多项世界性难题,有效解决了高光谱遥感理论研究与多领域应用中的关键技术瓶颈,实现了在农业、地矿、环境、文物保护等多领域的成功应用,产生了显著的社会经济效益。本文回顾了中国高光谱遥感技术的前沿研究进展,总结分析了取得的主要创新性成果。  相似文献   

14.
赵亮  王立国  刘丹凤 《遥感学报》2019,23(5):904-910
为降低高光谱遥感数据光谱空间的冗余度,提出一种快速的波段选择方法。该方法在波段子空间下进行,依次选择各子空间中方差最大的波段作为初始波段,设定目标函数,然后逐子空间替换波段使得目标性能更加优化,直至没有替换可以使得目标更优为止。在两个公开高光谱影像数据集上对比3种常用波段选择方法(ABC、AP、ABS)来验证提出方法的有效性,实验结果表明:(1)在印第安纳数据上,本文方法与ABC、AP、ABS所选波段子集相比平均相关性分别降低22.04%、52.61%、55.71%,最佳指数分别提高0.58%、51.73%、0.95%,总体分类精度分别提高0.16%、1.39%、23.07%,在搜索效率上与同类型的ABC方法相比提高6.61%—69.02%;(2)在帕维亚大学数据上,本文方法与ABC、AP、ABS所选波段子集相比平均相关性分别降低2.38%、0.51%、32.83%,最佳指数分别提高1.34%、17.97%、12.92%,总体分类精度分别提高0.31%、0.69%、8.53%,在搜索效率上与同类型的ABC方法相比提高19.13%—86.34%。本文提出的波段选择方法能够选择合适的波段子集满足不同的应用需要,是一种有效的波段选择方法。  相似文献   

15.
基于多层形状特征提取与融合的城市高光谱影像解译   总被引:1,自引:0,他引:1  
以前的研究往往从像素光谱的角度来解译高光谱影像,忽略了像素间的空间上下文关系。本文提出一种基于像素和对象层形状特征提取与融合的方法,把多层形状特征和光谱信息用支持向量机(SVM)输出函数方法进行融合,用于提取城市高光谱影像的形状特性,利用影像的空间关系。实验用HydICE-DC航空高光谱数据对提出的方法进行了验证,结果表明:像素级形状指数能够提供比对象级形状指数更优的结果,但像素—对象级形状特征的融合,能够给出更高的精度。  相似文献   

16.
针对高维遥感数据的降维困难问题,该文提出并构建了一种融合粒子群优化算法全局寻优能力和支持向量机优秀分类性能的高光谱遥感影像特征子集选择与分类方法。通过引入混沌优化搜索技术改进融合粒子群优化算法的全局寻优能力;提出并采用一种基于粒度的网格搜索策略对支持向量机模型参数进行优化;利用二进制融合粒子群优化算法进行特征选择;然后,支持向量机采用该特征子集所对应的训练数据集进行模型参数优化和分类。实验结果表明该方法能有效地提取出用于分类的最佳波段,具有较高的分类精度。为高光谱遥感影像的特征选择与分类探索出了一种可行的方法。  相似文献   

17.
高光谱遥感技术在环境监测、应急保障、精细地物提取等方面有着广泛的应用,随着高分五号高光谱数据的正式发布,高光谱遥感技术将发挥更重要的作用。遥感影像分类作为高光谱遥感影像信息处理的重要部分,已成为当前研究重点。本文针对传统多级联森林深度学习中模型复杂、无法利用基分类器差异信息、对类间差异较小的样本无法正确区分等不足,提出了一种改进的多级联森林深度学习模型,在模型框架中,分别采用了随机森林和旋转森林作为基分类器,并引入逻辑回归分类器作为判别器用于训练层扩展。相较于传统的深度神经网络,改进的多级联森林深度网络超参数较少且能够自适应确定训练层,更方便进行模型优化。实验采用了高分五号数据集及两个公开的高光谱数据集(Indian Pines数据集及Pavia University数据集)进行精度评定,同时选择了传统分类器支持向量机、深度置信网等模型作为对比分析。实验结果表明,改进的多级联森林深度学习模型能有效地进行高光谱遥感影像分类,且较传统的分类方法精度有所提升。  相似文献   

18.
 Maximum likelihood supervised classifications with 1-m 128 band hyperspectral data accurately map in-stream habitats in the Lamar River, Wyoming with producer's accuracies of 91% for pools, 87% for glides, 76% for riffles, and 85% for eddy drop zones. Coarser resolution 5-m hyperspectral data and 1-m simulated multiband imagery yield lower accuracies that are unacceptable for inventory and analysis. Both high spatial resolution and hyperspectral coverage are therefore necessary to map microhabitats in the study area. In many instances, the high spatial resolution hyperspectral (HSRH) imagery appears to map the stream habitats with greater accuracy than our ground-based surveys, thus challenging classical approaches used for accuracy assessment in remote sensing. Received: 9 April 2001 / Accepted: 8 October 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号