首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Unfertilizable fruiting buds of mango plant Mangifera Indica L, an agrowaste, is used as a biomass in this study. The efficacy of the biosorbent was tested for the removal of lead, copper, zinc and nickel metal ions using batch experiments in single and binary metal solution under controlled experimental conditions. It is found that metal sorption increases when the equilibrium metal concentration rises. At highest experimental solution concentration used (150 mg/L), the removal of metal ions were 82.76 % for lead, 76.60 % for copper, 63.35 % for zinc and 59.35 % for nickel while at lowest experimental solution concentration (25 mg/L), the removal of metal ions were 92.00% for lead, 86.84 % for copper, 83.96 % for zinc and 82.29 % for nickel. Biosorption equilibrium isotherms were plotted for metal uptake capacity (q) against residual metal concentrations (Cf) in solution. The q versus Cf sorption isotherm relationship was mathematically expressed by Langmuir and Freundlich models. The values of separation factor were between zero and one indicating favourable sorption for four tested metals on the biosorbent. The surface coverage values were approaching unity with increasing solution concentration indicating effectiveness of biosorbent under investigation. The non-living biomass of Mangifera indica L present comparable biosorption capacity for lead, copper, zinc and nickel metal ions with other types of biosorbent materials found in literature and is effective to remove metal ions from single metal solutions as well as in the presence of other co-ions with the main metal of solution.  相似文献   

2.
An analytical expression that evaluates the effect of pH and the redox potential (E) on Pu-colloid association was studied on a model basis. It includes surface complexation with one type of surface site and its formulation leads to a distribution coefficient (Kd) as a function of the pH (hydrolysis) and E (redox sensitive species). The formulation also considers the values of the stability and hydrolysis constants for all species present in solution and associated at the surface. Correlations between hydrolysis and surface complexation constants reported in the literature have been applied systematically to evaluate sorption of all species for each colloid system. The presence of ligands in solution was also taken into account. The model was applied to study the association of Pu onto colloids coated with AlOH, FeOH or SiOH groups in the presence and in the absence of carbonates in solution. The tests performed with the model suggest that the oxidation of Pu(III) to Pu(IV) has the potential to increase sorption, as demonstrated by the increased Kd values. Under natural conditions Pu may be present at oxidation states of (III)--(VI), and the effect of redox potential is significant because of the differences in the sorption of each oxidation state. When carbonates are present in the solution, the calculated values of distribution coefficient were lower than those calculated in the absence of carbonates, particularly in the case of Pu(VI). The Kd values obtained with the developed model are compared with experimental values reported for the sorption of Pu onto colloids. This model can equally be applied to study the sorption of other redox sensitive elements.  相似文献   

3.
The rate of Cd2+ sorption by calcite was determined as a function of pH and Mg2+ in aqueous solutions saturated with respect to calcite but undersaturated with respect to CdCO3. The sorption is characterized by two reaction steps, with the first reaching completion within 24 hours. The second step proceeded at a slow and nearly constant rate for at least 7 days. The rate of calcite recrystallization was also studied, using a Ca2+ isotopic exchange technique. Both the recrystallization rate of calcite and the rate of slow Cd2+ sorption decrease with increasing pH or with increasing Mg2+. The recrystallization rate could be predicted from the number of moles of Ca present in the hydrated surface layer.A model is presented which is consistent with the rates of Cd2+ sorption and Ca2+ isotopic exchange. In the model, the first step in Cd2+ sorption involves a fast adsorption reaction that is followed by diffusion of Cd2+ into a surface layer of hydrated CaCO3 that overlies crystalline calcite. Desorption of Cd2+ from the hydrated layer is slow. The second step is solid solution formation in new crystalline material, which grows from the disordered mixture of Cd and Ca carbonate in the hydrated surface layer. Calculated distribution coefficients for solid solutions formed at the surface are slightly greater than the ratio of equilibrium constants for dissolution of calcite and CdCO3, which is the value that would be expected for an ideal solid solution in equilibrium with the aqueous solution.  相似文献   

4.
Laboratory batch experiments were carried out to study the competitive sorption behavior of metals in three types of Indian soils, differing in their physicochemical properties: acid laterite (SL1), red alfisol (SL2) and black vertisol (SL3) treated with different proportions of fly ash and sewage sludge mixture. Representative samples were equilibrated with 10 to 200 µM L -1 concentrations of metals simultaneously containing Cd, Cu, Ni, Pb and Zn in 5 mM of Ca(NO 3) 2 solution. In most of the cases the affinity sequence of metals was Pb>Cu>Zn>Ni>Cd based on their amount of sorption, which varied little with either metal equilibrating concentrations or the soil/mixture type. The observed metal affinity sequences in different soils amended with mixtures were compared to the predicted affinity sequences based on metal properties and a good match was found with those predicted by metal hydrolysis constants. This indicated that formation and subsequent sorption of metal hydrolysis products on soil surface is the predominant mechanism for sorption. In all the cases, Pb and Cu showed higher affinity followed by Zn, Ni or Cd. The increase in the metal additions further enhanced the competition among metals for exchange sites. Adsorption isotherms showed that metal sorption was linearly related to its concentration in the equilibrium solution. The distribution coefficients (K D) computed from the slopes of linear regression for different metals were higher in SL3 than in both SL2 and SL1. All the mixture amended soils produced higher K D values than their respective controls. Selectivity between metals resulted in the following affinities based on their K D values—Pb>Cu>Zn>Ni or Cd—which was in line with the value of the hydrolysis constant of the metals under study.  相似文献   

5.
Sorption interactions with montmorillonite and other clay minerals in soils, sediments, and rocks are potentially important mechanisms for attenuating the mobility of U(6+) and other radionuclides through the subsurface environment. Batch experiments were conducted (in equilibrium with atmospheric % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% acbiGaiWiG-bfadaWgaaWcbaacbaGaa43qaiaa+9eadaWgaaqaaiaa% +jdaaWqabaaaleqaaaaa!400D!\[P_{CO_2 } \])to determine the effects of varying pH (2 to 9), solid-mass to solution-volume ratio (M/V = 0.028 to 3.2 g/L), and solution concentration (2 × 10?7 and 2 × 10?6 M 233U) on U(6+) sorption on SAz-1 montmorillonite. The study focused on U(6+) surface complexation on hydroxylated edge sites as the sorption mechanism of interest because it is expected to be the predominant sorption mechanism at pHs typical of natural waters (pH ≈6 to ≈9). Thus, the experiments were conducted with a 0.1 M NaNO3 matrix to suppress ion-exchange between U(6+) in solution and interlayer cations. The results show that U(6+) sorption on montmorillonite is a strong function of pH, reaching a maximum at near-neutral pH (≈6 to ≈6.5) and decreasing sharply towards more acidic or more alkaline conditions. A comparison of the pH-dependence of U(6+) sorption with that of U(6+) aqueous speciation indicates a close correspondence between U(6+) sorption and the predominance field of U(6+)-hydroxy complexes. At high pH, sorption is inhibited due to formation of aqueous U(6+)-carbonate complexes. At low pH, the low sorption values indicate that the 0.1 M NaNO3 matrix was effective in suppressing ion-exchange between the uranyl (UO2 2+) species and interlayer cations in montmorillonite. At pH and carbonate concentrations typical of natural waters, sorption of U(6+) on montmorillonite can vary by four orders of magnitude and can become negligible at high pH. The experimental results were used to develop a thermodynamic model based on a surface complexation approach to permit predictions of U(6+) sorption at differing physicochemical conditions. A Diffuse-Layer model (DLM) assuming aluminol (>AlOH?) and silanol (>SiOH?) edge sites and two U(6+) surface complexation reactions per site effectively simulates the complex sorption behavior observed in the U(6+)-H2O-CO2-montmorillonite system at an ionic strength of 0.1 M and pH > 3.5. A comparison of model predictions with data from this study and from published literature shows good agreement and suggests that surface complexation models based on parameters derived from a limited set of data could be useful in extrapolating radionuclide sorption over a range of geochemical conditions. Such an approach could be used to support transport modeling by providing a better alternative to the use of constant K d s in transport calculations.  相似文献   

6.
Various sorption phenomena, such as aging, hysteresis and irreversible sorption, can cause differences between contaminant (ad)sorption and desorption behavior and lead to apparent sorption ‘asymmetry’. We evaluate the relevance of these characteristics for neptunium(V) (Np(V)) sorption/desorption on goethite using a 34-day flow-cell experiment and kinetic modeling. Based on experimental results, the Np(V) desorption rate is much slower than the (ad)sorption rate, and appears to decrease over the course of the experiment. The best model fit with a minimum number of fitting parameters was achieved with a multi-reaction model including (1) an equilibrium Freundlich site (site 1), (2) a kinetically-controlled, consecutive, first-order site (site 2), and (3) a parameter ψ2,de, which characterizes the desorption rate on site 2 based on a concept related to transition state theory (TST). This approach allows us to link differences in adsorption and desorption kinetics to changes in overall reaction pathways, without assuming different adsorption and desorption affinities (hysteresis) or irreversible sorption behavior a priori. Using modeling as a heuristic tool, we determined that aging processes are relevant. However, hysteresis and irreversible sorption behavior can be neglected within the time-frame (desorption over 32 days) and chemical solution conditions evaluated in the flow-cell experiment. In this system, desorption reactions are very slow, but they are not irreversible. Hence, our data do not justify an assumption of irreversible Np(V) sorption to goethite in transport models, which effectively limits the relevance of colloid-facilitated Np(V) transport to near-field environments. However, slow Np(V) desorption behavior may also lead to a continuous contaminant source term when metals are sorbed to bulk mineral phases. Additional long-term experiments are recommended to definitely rule out irreversible Np(V) sorption behavior at very low surface loadings and environmentally-relevant time-scales.  相似文献   

7.
The sorption of lead (II) and cadmium (II) on seven shales belonging to the Proterozoic Vindhyan basin, central India, and a black cotton soil, Mumbai, India, was studied and compared with sorbent geochemistry. The sorption equilibrium studies were conducted under completely mixed conditions in batch reactors (pH=5.0 and ionic strength= 0.01 M) at room temperature. The Freundlich model provided better fits to the experimental data compared to Langmuir model. High cadmium and lead sorption was observed for the calcareous shales with greater than 5% CaCO3. The Freundlich isotherm parameter relating to sorption capacity, i.e., KF, yielded a strong correlation with the calcium carbonate and calcium oxide content across the various geosorbents studied. The observed sorption pattern may be attributed to complex formation of CaCO3 with Pb2+ and Cd2+ leading to surface precipitation. Moreover, the Ca2+ present in the sorbents may also involve in ion exchange reaction with lead and cadmium.  相似文献   

8.
《Applied Geochemistry》1986,1(5):607-618
The interactions between calcite particles and solutions containing MgCl2, BaCl2 or ZnCl2 were investigated in two different systems. In one system the solution was percolating through a column of ground calcite. In the second system the solution was equilibrated with calcite powder and the suspension was thoroughly shaken. The solid sediment was then examined by X-ray diffraction, IR spectroscopy, SEM, microprobe analysis and thermal analysis. During the percolation, the reaction which occurred at the solid-liquid interface predominated. With BaCl2, witherite was obtained; with ZnCl2, Zn5(OH)8Cl2 was obtained. Under equilibration conditions, the products dependent on the reaction which occurred in the aqueous phase. With BaCl2, witherite enriched with Ca was obtained, together with small amounts of alstonite. Very small amounts of calcite recrystallized to aragonite as well. With ZnCl2, only traces of smithsonite were obtained, while there were no new phases with MgCl2. In addition, the following reactions, which do not lead to the formation of new phases, also occurred: (1) sorption of the metallic cation onto the calcite surface, either by cation exchange or by surface hydrolysis; (2) topochemical substitution of Ca by the metallic cation inside the calcite crystal. The first was favored in the percolation system, whereas the second occurred in both.  相似文献   

9.
Oxidation of As(III) by natural manganese (hydr)oxides is an important geochemical reaction mediating the transformation of highly concentrated As(III) in the acidic environment such as acid mine drainage (AMD) and industrial As-contaminated wastewater, however, little is known regarding the presence of dissolved Fe(II) on the oxidation process. In this study, oxidation of As(III) in the absence and presence of Fe(II) by MnO2 under acidic conditions was investigated. Kinetic results showed that the presence of Fe(II) significantly inhibited the removal of As(III) (including oxidation and sorption) by MnO2 in As(III)-Fe(II) simultaneous oxidation system even at the molar ratio of Fe(II):As(III) = 1/64:1, and the inhibitory effects increased with the increasing ratios of Fe(II):As(III). Such an inhibition could be attributed to the formation of Fe(III) compounds covering the surface of MnO2 and thus preventing the oxidizing sites available to As(III). On the other hand, the produced Fe(III) compounds adsorbed more As(III) and the oxidized As(V) on the MnO2 surface with an increasing ratio of Fe(II):As(III) as demonstrated in kinetic and XPS results. TEM and EDX results confirmed the formation of Fe compounds around MnO2 particles or separated in solution in Fe(II) individual oxidation system, Fe(II) pre-treated and simultaneous oxidation processes, and schwertmannite was detected in Fe(II) individual and Fe pre-treated oxidation processes, while a new kind of mineral, probably amorphous FeOHAs or FeAsO4 particles were detected in Fe(II)-As(III) simultaneous oxidation process. This suggests that the mechanisms are different in Fe pre-treated and simultaneous oxidation processes. In the Fe pre-treated and MnO2-mediated oxidation pathway, As(III) diffused through a schwertmannite coating formed around MnO2 particles to be oxidized. The newly formed As(V) was adsorbed onto the schwertmannite coating until its sorption capacity was exceeded. Arsenic(V) then diffused out of the coating and was released into the bulk solution. The diffusion into the schwertmannite coating and the oxidation of As(III) and sorption of both As(V) and As(III) onto the coating contributed to the removal of total As from the solution phase. In the simultaneous oxidation pathway, the competitive oxidation of Fe(II) and As(III) on MnO2 occurred first, followed by the formation of FeOHAs or FeAsO4 around MnO2 particles, and these poorly crystalline particles of FeOHAs and FeAsO4 remained suspended in the bulk solution to adsorb As(III) and As(V). The present study reveals that the formation of Fe(III) compounds on mineral surfaces play an important role in the sorption and oxidation of As(III) by MnO2 under acidic conditions in natural environments, and the mechanisms involved in the oxidation of As(III) depend upon how Fe(II) is introduced into the As(III)-MnO2 system.  相似文献   

10.
11.
The sorption of 57Fe(II) onto an Fe-free, mineralogically pure and Ca-saturated synthetic montmorillonite sample (structural formula: Ca0.15(Al1.4Mg0.6)(Si4)O10(OH,F)2), was studied as a function of pH under strictly anoxic conditions (N2 glove box atmosphere, O2 content <1 ppm), using wet chemistry and cryogenic (T = 77 K) 57Fe Mössbauer spectrometry. No Fe(III) was detected in solution at any pH. However, in pH conditions where Fe(II) is removed from solution, a significant amount of surface-bound Fe(III) was produced, which increased with pH from 0% to 3% of total Fe in a pre-sorption edge region (i.e. at pH < 7.5 where about 15% of total Fe is sorbed) to 7% of total Fe when all Fe is sorbed. At low pH, where the pre-sorption edge plateau occurs (2 < pH < 7.5), the total sorbed-Fe amount remained constant but, within this sorbed-Fe pool, the Fe(III)/Fe(II) ratio increased with pH, from 0.14 at pH 2 up to 0.74 at pH 7. The pre-sorption edge plateau is interpreted as cation exchange on interlayer surfaces together with a sorption phenomenon occurring on highly reactive (i.e. high affinity) surface sites. As pH increases and protons are removed from the clay edge surface, we propose that more and more of these highly reactive sites acquire a steric configuration that stabilizes Fe(III) relative to Fe(II), thereby inducing a Fe to clay particle electron transfer. A sorption model based on cation exchange combined with surface complexation and electron transfers reproduces both wet chemical as well as the Mössbauer spectrometric results. The mechanism is fully reversible: sorbed-Fe is reduced as pH decreases (Mössbauer solid-state analyses) and all Fe returned to solution is returned as Fe(II) (solution analyses). This would not be the case if the observed oxidations were due to contaminant oxidizing agents in solution. The present work shows that alternating pH may induce surface redox phenomena in the absence of an electron acceptor in solution other than H2O.  相似文献   

12.
Bays, lagoons, and estuaries are sites where normal physicochemical processes result in accumulations of sediment and certain chemicals. Changes in water velocity and chemistry, and chemical interactions of sediment, biota, and water are factors that contribute to concentrating trace metals in coastal and lake sediments. To evaluate whether lead concentration is affected by mineralogy, kaolinite, illite, montmorillonite, and a zeolitic tuff were suspended in 10 and 20 mg/l concentrations of lead solutions [Pb(NO3)2] which were pH-adjusted incrementally through a range of 2.5 to 11.0. Samples were centrifuged after 24 hours to separate liquid from suspended sediment. Sediment-free solutions were run as controls. Lead concentrations were determined by atomic adsorption spectrophotometry. Results indicate that montmorillonite (Wyoming Bentonite) particles serve as lead adsorption nuclei over a broad pH range. Maximum sorption occurs as the solution reaches a pH of about 7.5. The kaolinite clay from Georgia strongly adsorbs trace amounts of lead at pH ranging from 3.0 to 4.5, where up to 95 percent of the lead is adsorbed by the clay. Little adsorption difference was found between the Fithian illite clay and zeolitic tuff from the Nevada Test Site in comparison to sediment-free solutions which were pH-adjusted. In concentrations of 10 to 20 mg/l montmorillonite and kaolinite clays serve as nucleation sites capable of adsorbing up to 95 percent of trace concentrations of lead within 24 hours. It appears that accumulations of lead in coastal lake and estuarine sediments are significantly influenced by:
  1. pH changes which occur as river and coastal waters mix resulting in precipitation of lead, and
  2. sorption of lead by suspended clays.
  相似文献   

13.
《Applied Geochemistry》2002,17(4):399-408
The sorption of U(VI) onto the surface of olivine has been experimentally investigated at 25 °C under an air atmosphere as a function of pH, solid surface to volume ratio and total U concentration. Sorption has been observed to decrease as the extent of carbonate complexation of U(VI) in solution increases, which is attributed to the competition between aqueous and solid ligands for the coordination of U. The experimental results have been interpreted by means of two different approaches: (1)a semi-empirical model, exemplified by the application of a Langmuir isotherm and (2) a non-electrostatic thermodynamic surface complexation model which includes the formation of the surface species: >SO–UO2+ and >SO–UO2(OH). The following stability constants for these species have been determined from the thermodynamic analysis: K(>SO–UO2+)=289±71 and K(>SO–UO2(OH))=(3.4±0.4)×10−6. The comparison of the sorption of U onto olivine with granites of different origin indicate that the use of this mineral as additive to the backfill of deep high level nuclear waste repositories could retard the migration of U from the repository to the geosphere.  相似文献   

14.
This study describes the development of scallop shell synthesized ceramic biomaterial for phosphorus removal from water. The synthesized biomaterial was characterized by scanning electron microscope, Brunauer–Emmett–Teller and X-ray diffractometer methods. The influences of contact time, initial phosphate concentration, initial solution pH, co-existing ions and temperature for phosphorus removal were investigated by batch experiments. The results indicated that the equilibrium data can be fitted by the Langmuir isotherm model at temperatures ranging from 15 to 55 °C, with the maximum sorption capacity of 13.6 mg/g. Sorption kinetics followed a pseudo-second-order kinetic equation model. The sorption process was optimal at a wide range of solution pH (above 2.4), with a relatively high sorption capacity level. Phosphorus sorption was slightly impeded by the presence of F?, HCO3 ? and NH4 + ions, and significantly inhibited by Cl?, SO4 2? and NO3 ? ions. Sorption process appeared to be controlled by a chemical precipitation processes. The mechanism may be attributed to ion complexation during subsequent sorption of phosphorus on scallop shell synthesized ceramic biomaterial.  相似文献   

15.
The adsorption of phosphate onto calcite was studied in a series of batch experiments. To avoid the precipitation of phosphate-containing minerals the experiments were conducted using a short reaction time (3 h) and low concentrations of phosphate (?50 μM). Sorption of phosphate on calcite was studied in 11 different calcite-equilibrated solutions that varied in pH, PCO2, ionic strength and activity of Ca2+, and . Our results show strong sorption of phosphate onto calcite. The kinetics of phosphate sorption onto calcite are fast; adsorption is complete within 2-3 h while desorption is complete in less than 0.5 h. The reversibility of the sorption process indicates that phosphate is not incorporated into the calcite crystal lattice under our experimental conditions. Precipitation of phosphate-containing phases does not seem to take place in systems with ?50 μM total phosphate, in spite of a high degree of super-saturation with respect to hydroxyapatite (SIHAP ? 7.83). The amount of phosphate adsorbed varied with the solution composition, in particular, adsorption increases as the activity decreases (at constant pH) and as pH increases (at constant activity). The primary effect of ionic strength on phosphate sorption onto calcite is its influence on the activity of the different aqueous phosphate species. The experimental results were modeled satisfactorily using the constant capacitance model with >CaPO4Ca0 and either >CaHPO4Ca+ or > as the adsorbed surface species. Generally the model captures the variation in phosphate adsorption onto calcite as a function of solution composition, though it was necessary to include two types of sorption sites (strong and weak) in the model to reproduce the convex shape of the sorption isotherms.  相似文献   

16.
Arsenic(V), as the arsenate (AsO4 3?) ion and its conjugate acids, has a strong affinity on Fe, Mn, and Al (oxyhydr)oxides and clay minerals. Removal of arsenate from aqueous solution by poorly crystalline ferrihydrite (hydrous ferric oxide) via a combination of macroscopic (equilibria and kinetics of sorption) and X-ray absorption spectroscopic studies was investigated. The removal of arsenate significantly decreased with increasing pH and sorption maxima of approximately 1.994 mmol/g (0.192 molAs/molFe) were achieved at pH 2.0. The Langmuir isotherm is most appropriate for arsenate sorption over the wide range of pH, indicating that arsenate sorption preferentially takes place at relatively homogenous and monolayer sites rather than heterogeneous and multilayer surfaces. The kinetic study demonstrated that arsenate sorption onto 2-line ferrihydrite is considerably fast, and sorption equilibrium was achieved within the reaction time of 2 h. X-ray absorption near-edge structure spectroscopy indicates no change in oxidation state of arsenate following interaction with the ferrihydrite surfaces. Extended X-ray absorption fine structure spectroscopy supports the efficient removal of arsenate by the 2-line ferrihydrite through the formation of highly stable inner-sphere surface complexes, such as bidentate binuclear corner-sharing (2C) and bidentate mononuclear edge-sharing (2E) complexes.  相似文献   

17.
18.
Sorption interactions with montmorillonite and other clay minerals in soils, sediments, and rocks are potentially important mechanisms for attenuating the mobility of U(6+) and other radionuclides through the subsurface environment. Batch experiments were conducted (in equilibrium with atmospheric % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% acbiGaiWiG-bfadaWgaaWcbaacbaGaa43qaiaa+9eadaWgaaqaaiaa% +jdaaWqabaaaleqaaaaa!400D!\[P_{CO_2 } \])to determine the effects of varying pH (2 to 9), solid-mass to solution-volume ratio (M/V = 0.028 to 3.2 g/L), and solution concentration (2 × 10–7 and 2 × 10–6 M 233U) on U(6+) sorption on SAz-1 montmorillonite. The study focused on U(6+) surface complexation on hydroxylated edge sites as the sorption mechanism of interest because it is expected to be the predominant sorption mechanism at pHs typical of natural waters (pH 6 to 9). Thus, the experiments were conducted with a 0.1 M NaNO3 matrix to suppress ion-exchange between U(6+) in solution and interlayer cations. The results show that U(6+) sorption on montmorillonite is a strong function of pH, reaching a maximum at near-neutral pH (6 to 6.5) and decreasing sharply towards more acidic or more alkaline conditions. A comparison of the pH-dependence of U(6+) sorption with that of U(6+) aqueous speciation indicates a close correspondence between U(6+) sorption and the predominance field of U(6+)-hydroxy complexes. At high pH, sorption is inhibited due to formation of aqueous U(6+)-carbonate complexes. At low pH, the low sorption values indicate that the 0.1 M NaNO3 matrix was effective in suppressing ion-exchange between the uranyl (UO2 2+) species and interlayer cations in montmorillonite. At pH and carbonate concentrations typical of natural waters, sorption of U(6+) on montmorillonite can vary by four orders of magnitude and can become negligible at high pH.The experimental results were used to develop a thermodynamic model based on a surface complexation approach to permit predictions of U(6+) sorption at differing physicochemical conditions. A Diffuse-Layer model (DLM) assuming aluminol (>AlOH) and silanol (>SiOH) edge sites and two U(6+) surface complexation reactions per site effectively simulates the complex sorption behavior observed in the U(6+)-H2O-CO2-montmorillonite system at an ionic strength of 0.1 M and pH > 3.5. A comparison of model predictions with data from this study and from published literature shows good agreement and suggests that surface complexation models based on parameters derived from a limited set of data could be useful in extrapolating radionuclide sorption over a range of geochemical conditions. Such an approach could be used to support transport modeling by providing a better alternative to the use of constant K d s in transport calculations.  相似文献   

19.
Sorption of Ni(II) onto chlorite surfaces was studied as a function of pH (5–10), ionic strength (0.01–0.5 M) and Ni concentration (10−8–10−6 M) in an Ar atmosphere using batch sorption with radioactive 63Ni as tracer. Such studies are important since Ni(II) is one of the major activation products in spent nuclear fuel and sorption data on minerals such as chlorite are lacking. The sorption of Ni(II) onto chlorite was dependent on pH but not ionic strength, which indicates that the process primarily comprises sorption by surface complexation. The maximum sorption was at pH ∼ 8 (Kd = ∼10−3 cm3/g). Desorption studies over a period of 1–2 weeks involving replacement of the aqueous solution indicated a low degree of desorption. The acid–base properties of the chlorite mineral were determined by titration and described using a non-electrostatic surface complexation model in FITEQL. A 2-pK NEM model and three surface complexes, Chl_OHNi2+, Chl_OHNi(OH)+ and Chl_OHNi(OH)2, gave the best fit to the sorption results using FITEQL. The high Kd values and low degree of desorption observed indicate that under expected groundwater conditions, a large fraction of Ni(II) that is potentially leachable from spent nuclear fuel may be prevented from migrating by sorption onto chlorite surfaces.  相似文献   

20.
Complete sorption isotherm characteristics of methane and CO2 were studied on fourteen sub-bituminous to high-volatile bituminous Indian Gondwana coals. The mean vitrinite reflectance values of the coal samples are within the range of 0.64% to 1.30% with varying maceral composition. All isotherms were conducted at 30 °C on dry, powdered coal samples up to a maximum experimental pressure of ~ 7.8 MPa and 5.8 MPa for methane and CO2, respectively.The nature of the isotherms varied widely within the experimental pressure range with some of the samples remained under-saturated while the others attained saturation. The CO2 to methane adsorption ratios decreased with the increase in experimental pressure and the overall variation was between 4:1 and 1.5:1 for most of the coals. For both methane and CO2, the lower-ranked coal samples generally exhibited higher sorption affinity compared to the higher-ranked coals. However, sorption capacity indicates a U-shaped trend with rank. Significant hysteresis was observed between the ad/desorption isotherms for CO2. However, with methane, hysteresis was either absent or insignificant. It was also observed that the coal maceral compositions had a significant impact on the sorption capacities for both methane and CO2. Coals with higher vitrinite contents showed higher capacities while internite content indicated a negative impact on the sorption capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号