首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The Yellow River basin is well known for its high sediment yield. However, this sediment yield has clearly decreased since the 1980 s, especially after the year 2000. The annual average sediment yield was 1.2 billion tons before 2000, but has significantly decreased to 0.3 billion tons over the last 10 years. Changes in discharge and sediment yield for the Yellow River have attracted the attention of both the Central Government and local communities. This study aimed to identify the individual contributions of changes in precipitation and human activities(e.g. water conservancy projects, terracing, silt dams, socio-economic and needs, and soil and water conservation measures) to the decrease in discharge and sediment yield of the Yellow River. The study used both improved the hydrological method and the soil and water conservation method. The study focused on discharge analysis for the upper reaches and the investigation of sediments for the middle reaches of the river. The results showed that discharge and sediment yield have both presented significant decreasing trends over the past 50 years. Precipitation showed an insignificant decreasing trend over the same period. The annual average discharge decreased by 5.68 billion m3 above Lanzhou reach of the Yellow River from 2000 to 2012; human activities(e.g. socio-economic water use) contributed 43.4% of the total reduction, whereas natural factors(e.g. evaporation from lakes, wetlands and reservoirs) accounted for 56.6%. The decrease in annual discharge and sediment yield of the section between Hekouzhen station and Tongguan station were 12.4 billion m3 and 1.24 billion tons, respectively. Human activities contributed 76.5% and 72.2% of the total reduction in discharge and sediment yield, respectively, and were therefore the dominant factors in the changes in discharge and sediment yield of the Yellow River.  相似文献   

2.
近60年黄河水沙变化及其对三角洲沉积的影响   总被引:1,自引:1,他引:0  
In order to find out the variation process of water-sediment and its effect on the Yellow River Delta, the water discharge and sediment load at Lijin from 1950 to 2007 and the decrease of water discharge and sediment load in the Yellow River Basin caused by human disturbances were analyzed by means of statistics. It was shown that the water discharge and sediment load into the sea were decreasing from 1950 to 2007 with serious fluctuation. The human activities were the main cause for decrease of water discharge and sediment load into the sea. From 1950 to 2005, the average annual reduction of water discharge and sediment load by means of water-soil conservation practices were 2.02×109 m3 and 3.41×108 t respectively, and the average annual volume by water abstraction for industry and agriculture were 2.52×1010 m3 and 2.42×108 t respectively. The average sediment trapped by Sanmenxia Reservoir was 1.45×108 t from 1960 to 2007, and the average sediment retention of Xiaolangdi Reservoir was 2.398×108 t from 1997 to 2007. Compared to the data records at Huanyuankou, the water discharge and sediment load into the sea decreased with siltation in the lower reaches and increased with scouring in the lower reaches. The coastline near river mouth extended and the delta area increased when the ratio of accumulative sediment load and accumulative water discharge into the sea (SSCT) is 25.4–26.0 kg/m3 in different time periods. However, the sharp decrease of water discharge and sediment load into the sea in recent years, especially the Yellow River into the sea at Qing 8, the entire Yellow River Delta has turned into erosion from siltation, and the time for a reversal of the state was about 1997.  相似文献   

3.
白涛  麻蓉  马旭  哈燕萍  黄强 《中国沙漠》2018,38(3):645-650
围绕黄河上游沙漠宽谷河段“多大流量能冲动多大含沙量的泥沙”、“不同流量能冲走多少泥沙”两个关键问题,对沙漠宽谷河段的水沙阈值展开深入研究。通过分析各断面历年水量、沙量变化过程,揭示了沙漠宽谷河段各区间河段的冲淤规律,得到不同区间河段、不同含沙量情况下的水沙阈值系列。基于水量平衡原理与输沙量平衡原理,分析各断面冲沙输沙流量、含沙量与输沙量之间的关系,建立场次洪水的河道输沙量计算模型,量化水量与沙量的转化效果。通过实例计算,不考虑沙漠宽谷河段水沙调控时,头道拐站的输沙量为0.124×108 t,沙漠宽谷河段的冲刷量为0.0527×108 t,考虑水沙调控时,输沙量增加近4倍。水沙调控显著改善了沙漠宽谷河道的水沙关系,冲刷了河槽,验证了水沙阈值及输沙量计算的准确性和可靠性。  相似文献   

4.
黄河中游多沙粗沙区水沙变化趋势及其主控因素的贡献率   总被引:5,自引:0,他引:5  
随着气候变化和人类活动影响加剧,黄河中游多沙粗沙区的水沙变化剧烈,因此研究影响黄河中游多沙粗沙区径流量和输沙量的驱动因素对预测未来水沙变化具有重要意义。本文选取Mann-Kendall趋势检验法,Pettitt突变点检验法,位置、尺度、形状的广义可加模型以及累积量斜率变化率比较法对黄河中游多沙粗沙区15个水文站控制流域1956-2010年的年降水量、年径流量以及年输沙量变化特征及其贡献率进行分析,确定影响黄河中游多沙粗沙区径流量和输沙量变化的主要原因。结果表明:① Mann-Kendall趋势检验在5%的显著性水平下,表明降水量虽呈减少趋势但并不显著,径流量和输沙量则有显著的减少趋势;② Pettitt突变点检验得出所研究区域径流量和输沙量的突变年份在1972年、1985年以及1996年左右;③ GAMLSS模型分析结果同样表明降水的均值不随时间发生变化,但降水的方差有减小的趋势;④ 通过累积量斜率变化率比较法得出,人类活动对窟野河流域径流输沙的影响大于无定河流域。通过分析黄河中游多沙粗沙区径流量和输沙量变化的原因,可为黄河中游多沙粗沙区水资源合理分配提供一定的理论支持。  相似文献   

5.
In order to find out the variation process of water-sediment and its effect on the Yellow River Delta, the water discharge and sediment load at Lijin from 1950 to 2007 and the decrease of water discharge and sediment load in the Yellow River Basin caused by human disturbances were analyzed by means of statistics. It was shown that the water discharge and sediment load into the sea were decreasing from 1950 to 2007 with serious fluctuation. The human activities were the main cause for decrease of water discharge and sediment load into the sea. From 1950 to 2005, the average annual reduction of water discharge and sediment load by means of water-soil conservation practices were 2.02×109 m3 and 3.41×108 t respectively, and the average annual volume by water abstraction for industry and agriculture were 2.52×1010 m3 and 2.42×108 t respectively. The average sediment trapped by Sanmenxia Reservoir was 1.45×108 t from 1960 to 2007, and the average sediment retention of Xiaolangdi Reservoir was 2.398×108 t from 1997 to 2007. Compared to the data records at Huanyuankou, the water discharge and sediment load into the sea decreased with siltation in the lower reaches and increased with scouring in the lower reaches. The coastline near river mouth extended and the delta area increased when the ratio of accumulative sediment load and accumulative water discharge into the sea (SSCT) is 25.4–26.0 kg/m3 in different time periods. However, the sharp decrease of water discharge and sediment load into the sea in recent years, especially the Yellow River into the sea at Qing 8, the entire Yellow River Delta has turned into erosion from siltation, and the time for a reversal of the state was about 1997.  相似文献   

6.
黄河流域环境对水资源开发承受力的思考   总被引:8,自引:0,他引:8  
尹国康 《地理学报》2002,57(2):224-231
根据黄河1919-1999年系列水沙资料,系统分析了其下游水沙变化时空过程,揭示了其发生断流原因及由此引发的环境问题,模拟了不同历史时期水情条件下环境用水需求量,并对如何提高黄河水资源开发承受能力,如何满足其环境用水提出看法。  相似文献   

7.
泥沙是影响河流健康和水环境的重要因素之一,受气候变化和人类活动的影响,流域水文要素和下垫面条件发生了较大变化,尤其是实施大规模的水土保持措施后,部分河流的泥沙含量大幅减少,但在河西内陆河流域发源于祁连山西端的疏勒河流域,受降水条件和人类活动的影响,河流泥沙呈增加趋势。本文应用疏勒河流域实测长系列水文资料,采用水文统计法、差积曲线法、趋势检验法、突变检验法、非线性复相关模型法等方法,分析了流域泥沙时空分布规律及水沙关系,结果表明:疏勒河干流昌马堡站年输沙量为333.5×104 t,至下游潘家庄站减少到223.5×104 t;党河党城湾站年输沙量为76.56×104 t,至下游沙枣园站增加到121.3×104 t;疏勒河干流输沙量主要集中在汛期7~8月,占全年的81.9 %~84.0 %,党河流域输沙量主要集中在4-8月,占全年的92.3 %;流域泥沙变化总体呈增加趋势,突变点1998年以后,年输沙量增加了86.3 %~148.2 %。建立了潘家庄站降水~泥沙、径流~泥沙以及年输沙量~年径流量~年最大洪峰流量关系模型,相关关系较好,相关系数达到0.717~0.858。流域出山口以上对泥沙的影响因素主要是降水,出山口以下主要是修建水库、水电站、引水工程、河道采砂等人类活动影响。随着国家对内陆河流域祁连山和河西走廊的日益关注,以及全国河长制的推行,河流生态健康已经提上日程,研究疏勒河流域泥沙分布规律及水沙关系,对国家实施西部生态安全战略、区域生态环境修复治理、水资源可持续利用等具有重要意义。  相似文献   

8.
1950-2008年黄河入海水沙变化(英文)   总被引:1,自引:0,他引:1  
Based on hydrological data observed at Lijin gauging station from 1950 to 2008, the temporal changes of water discharge and sediment load of the Yellow River into the sea were analyzed by the wavelet analysis, and their impacts on the estuary were investigated in different periods based on the measured coastline and bathymetry data. The results show that: (1) there were three significant periodicities, i.e. annual (0.5-1.0-year), internnual (3.0-6.5-year) and decadal (10.1-14.2-year), in the variations of w...  相似文献   

9.
Based on hydrological data observed at Lijin gauging station from 1950 to 2008, the temporal changes of water discharge and sediment load of the Yellow River into the sea were analyzed by the wavelet analysis, and their impacts on the estuary were investigated in different periods based on the measured coastline and bathymetry data. The results show that: (1) there were three significant periodicities, i.e. annual (0.5-1.0-year), internnual (3.0-6.5-year) and decadal (10.1-14.2-year), in the variations of water discharge and sedi- ment load into the sea, which might be related to the periodic variations of El Nino and Southern Oscillation at long-term timescales. Variations of water discharge and sediment load were varying in various timescales, and their periodic variations were not significant during the 1970s-2000s due to strong human disturbances. (2) The long-term variation of water discharge and sediment load into the sea has shown a stepwise decrease since the 1950s due to the combined influences of human activities and precipitation decrease in the Yellow River Basin, and the human activities were the main cause for the decrease of water discharge and sediment load. (3) The water discharge and sediment load into the sea greatly influenced the evolution of the Yellow River Estuary, especially the stretch rate of coastline and the deposition rate of the sub-aqueous topography off the estuary which deposited since 1976.  相似文献   

10.
Over the past decades, > 50,000 dams and reforestation on the Yangtze River (Changjiang) have had little impact on water discharge but have drastically altered annual and particularly seasonal sediment discharge. Before impoundment of the Three Gorges Dam (TGD) in June 2003, annual sediment discharge had decreased by 60%, and the hysteresis of seasonal rating curves in the upper reaches at Yichang station had shifted from clockwise to counterclockwise. In addition, the river channel in middle-lower reaches had changed from depositional to erosional in 2002.During the four years (2003–2006) after TGD impoundment, ~ 60% of sediment entering the Three Gorges Reservoir was trapped, primarily during the high-discharge months (June–September). Although periodic sediment deposition continues downstream of the TGD, during most months substantial erosion has occurred, supplying ~ 70 million tons per year (Mt/y) of channel-derived sediment to the lower reaches of the river. If sand extraction (~ 40 Mt/y) is taken into consideration, the river channel loses a total of 110 Mt/y. During the extreme drought year 2006, sediment discharge in the upper reaches drastically decreased to 9 Mt (only 2% of its 1950–1960s level) because of decreased water discharge and TGD trapping. In addition, Dongting Lake in the middle reaches, for the first time, changed from trapping net sediment from the mainstem to supplying 14 Mt net sediment to the mainstem. Severe channel erosion and drastic sediment decline have put considerable pressure on the Yangtze coastal areas and East China Sea.  相似文献   

11.
随着气候的变化以及人类活动的加剧,世界上一些河流的径流和输沙量发生了明显的改变。查明流域的水沙特征、变化趋势及驱动因素是流域治理和管理中面临的重要问题。以黄河上游的十大孔兑为研究对象,利用1958-2015年的实测资料,采用线性趋势法、非参数Mann-Kendall趋势检验法对典型孔兑毛不拉、西柳沟、罕台川的年降雨、径流、泥沙、洪水过程进行了系统分析。结果表明:毛不拉和西柳沟年水沙序列下降趋势显著,罕台川下降趋势不显著,但近10 a比之前水沙明显减少;三个孔兑21世纪和20世纪观测到的2次洪水过程相比,产生洪水的降雨差别不大,但后一次洪峰流量和含沙量都显著降低;与1990年之前相比,1991-2015年各孔兑高强度降雨变化程度相对水沙变化不大。通过遥感影像解译,发现自20世纪90年代以来,随着退耕还林还草、封禁、休牧等水土保持工程陆续实施,十大孔兑土地利用变化显著,植被盖度明显增加,由此改变了该区域降雨-产流-产沙过程,引起1990年以后产水产沙的剧烈减少。  相似文献   

12.
长江上游重点产沙区产沙量对人类活动的响应   总被引:13,自引:2,他引:11  
许炯心  孙季 《地理科学》2007,27(2):211-218
对金沙江屏山站、嘉陵江北碚站、宜昌站20世纪50年代以来的输沙量和含沙量进行分析。结果表明,在年径流量相同的情况下,由于大规模矿山、钢铁工业、交通建设增加水土流失,屏山站1976~1996年年产沙量要高于1954~1976年。与此相反,由于修筑水库、塘坝拦沙,修建梯田、恢复植被减少侵蚀,北碚站1983~1996年年产沙量要大大低于1954~1982年;宜昌站1985~1996年年产沙量也低于1954~1984年。北碚、宜昌两站都存在一个使水利、水土保持减沙量为0的年径流量临界值,北碚站和宜昌站这一临界值分别为1142×108m3和4800×108m3。  相似文献   

13.
黄河沙漠宽谷段水沙变化特征及驱动因素   总被引:1,自引:1,他引:0  
根据定位观测、第一次全国水利普查、遥感影像解译的数据,利用MWP、双累计曲线、水土保持分析法、数学模拟等方法,分析了黄河上游水沙变化特征,评估了多元驱动因素对2000-2012年黄河下河沿-头道拐沙漠宽谷段水沙变化的贡献率。结果表明:与20世纪70年代以前的基准期相比,2000年以来径流量、输沙量同步减少,水沙关系也发生变化,单位径流量的输沙量明显减少;沙漠宽谷段径流量减幅沿程不断增加而输沙量减幅沿程变化不大,水沙年内分配较基准期发生倒置,来沙系数不断减小;灌区引水引沙、水土保持措施、水库拦沙、支流来水来沙、水库调蓄及河道冲淤是沙漠宽谷段水沙变化的主要影响因子;经济社会发展用水对沙漠宽谷段径流量减少的作用最大,贡献率为81%,其次是水库蓄泄量,占15%以上;水库拦沙对头道拐输沙量减少的贡献率最大,占41%,其次是支流水土保持措施,贡献率约占13%,入黄风沙减少的贡献率并不大,约为6%,而河道淤积量、灌区引沙量较基准期都是减少的,贡献率分别约为-41%和-8%;近10多年来降雨等自然因素对水沙变化的作用相对不大,起主要作用的是水库运用、水土保持、经济社会发展等人类活动因素。  相似文献   

14.
2000-2017年河龙区间输沙量锐减归因分析   总被引:3,自引:0,他引:3  
高海东  刘晗  贾莲莲  庞国伟  王杰 《地理学报》2019,74(9):1745-1757
2000年以来,黄河输沙量锐减。科学认识黄河输沙量变化原因,具有重要意义。以河龙区间为研究对象,分析了河龙区间输沙量变化趋势,构建了梯田、淤地坝以及植被等大规模生态建设措施的减沙贡献率计算方法,阐述了2000-2017年河龙区间输沙量锐减原因,针对河龙区间输沙量变化趋势和治理格局,提出了河龙区间治理对策。主要结论为:① 1952-2017年,河龙区间年降水量无显著变化趋势,研究区年输沙量呈现极显著减少趋势(p < 0.001);② 1979年和1999年为研究区输沙量发生突变的两个时间节点(p < 0.05),1952-1979年区间年均输沙量为9.30亿t,1980-1999年区间年均输沙量为4.20亿t,2000-2017年均输沙量大幅降至1.03亿t,降幅达89%;③ 受植被和梯田共同影响,2000-2015年研究区坡面土壤侵蚀量变化介于1.90亿~5.13亿t之间,且呈下降趋势;2000-2011年河龙区间淤地坝年均拦沙量为1.38亿t;④ 植被恢复是河龙区间输沙量减少的主要原因,贡献率为54%,梯田和淤地坝合计贡献了34%,水库拦沙和引水取沙贡献了12%;⑤ 植被恢复主要导致径流含沙量降低,而淤地坝建设主要降低了流域泥沙输移比。  相似文献   

15.
This paper examines the changes in the time series of water discharge and sediment load of the Yellow River into the Bohai Sea. To determine the characteristics of abrupt changes and multi-scale periods of water discharge and sediment load, data from Lijin station were analyzed, and the resonance periods were then calculated. The Mann-Kendall test, order clustering, power-spectrum, and wavelet analysis were used to observe water discharge and sediment load into the sea over the last 62 years. The most significant abrupt change in water discharge into the sea occurred in 1985, and an abrupt change in sediment load happened in the same year. Significant decreases of 64.6% and 73.8% were observed in water discharge and sediment load, respectively, before 1985. More significant abrupt changes in water discharge and sediment load were observed in 1968 and 1996. The characteristics of water discharge and sediment load into the Bohai Sea show periodic oscillation at inter-annual and decadal scales. The main periods of water discharge are 9.14 years and 3.05 years, whereas the main periods of sediment load are 10.67 years, 4.27 years, and 2.78 years. The significant resonance periods between water discharge and sediment load are observed at the following temporal scales: 2.86 years, 4.44 years, and 13.33 years. Water discharge and sediment load started to decrease after 1970 and has decreased significantly since 1985 for several reasons. Firstly, the precipitation of the Yellow River drainage area has reduced since 1970. Secondly, large-scale human activities, such as the building of reservoirs and floodgates, have increased. Thirdly, water and soil conservation have taken effect since 1985.  相似文献   

16.
The Inner Mongolia reaches of the Yellow River face problems of severe sedimentation caused by a variety of complex factors. The sedimentation process in those reaches has been characterized using the sediment balance method, and the key factors affecting the process have been analyzed using the correlation analysis method. The results show that during the period 1952–2012 the Bayangaole (Bayan Gol) to Toudaoguai reaches in Inner Mongolia have undergone successive processes of accumulative sedimentation, then relative balance, and then accumulative sedimentation once again. The total annual sedimentation is 12.0341×108 m3, of which accumulations from July to October account for 95.1% and the reaches from Sanhuhekou to Toudaoguai account for 98.5%. The main factor affecting scouring and sedimentation of the Bayangaole to Sanhuhekou reaches is the combined water and sediment condition. The critical conditions for equilibrium are an incoming sediment coefficient < 0.007 kg·s·m–6 and a flow discharge > 700 m3·s–1. The main factor affecting scouring and sedimentation of the Sanhuhekou to Toudaoguai reaches is the incoming sediment from the tributaries on the south bank and the combined water and sediment condition of the main stream. The critical conditions of the main stream for maintaining equilibrium status are a flow discharge of the main stream exceeding 800 m3·s–1 and a comprehensive incoming sediment coefficient < 0.005 kg·s·m–6. The incoming sediment from the tributaries has little impact on the main stream when the annual sediment load is less than 0.1×108 t. The incoming sediment coefficient of the main stream and the incoming sediment from the tributaries both play vital roles in the riverbed evolution of the Inner Mongolia reaches, but the latter contributes the most.  相似文献   

17.
滑动平均差检测法的提出及验证   总被引:1,自引:1,他引:0  
包为民  沈丹丹  倪鹏  周俊伟  孙逸群 《地理学报》2018,73(11):2075-2085
时间序列突变点的检测研究是当前气候变化问题的关键环节,其方法和成果也较多,传统的检测方法因统计量结构不合理、假设条件不符合实际以及受主观因素影响等,结果常常缺乏可信度。本文提出一种新的时间序列突变点的检测方法——滑动平均差检测法,将该方法分别用理想时间序列和实际观测序列进行应用检验,并与现有常用的4种突变检验方法比较,发现滑动平均差法具有:① 结构简单、物理意义明确;② 检测突变点更精确;③ 能同时检测出所有突变点的突变位置和其突变强度3个明显的优势。综合利用滑动平均差检测法和传统的4种方法,对黄河流域几个重点水文控制站实测输沙量资料进行突变分析,结果表明:黄河上游输沙量在1986年发生突变,黄河中游输沙量在1979年和1996年发生突变,华县站和潼关站输沙量在1979年、1996年和2003年发生突变,造成输沙量突变的主要因素为水利工程建设和大规模水土保持措施等人类活动。  相似文献   

18.
This study investigates the sediment fluxes through the Yellow River sediment routing system, which are among the largest in the world, by constructing a sediment budget of the system over the period from 1855 to 1968. The framework of the sediment budget includes four functional units with the upper and middle reaches of the river as the sediment source and its lower reaches, its delta, and the deep sea as the sediment sinks. Sediment yield from the source and amounts of deposition in the lower Yellow River and the modern Yellow River delta were estimated for completing the sediment budget. The sediment budget produced for the period from 1855 to 1968 was characterized by a sediment input of 1.837 × 1011 tonnes and a distribution of the sediment between the lower Yellow River, the delta, and the deep sea of 64%, 33%, and 3%, respectively. The details of the sediment budget show that the importance of sedimentation in the lower Yellow River changed greatly with variations in the condition of the dykes and other human activities. A comparison of the sediment budgets of the delta for different timescales shows that the proportion of sediment dispersed to the deep sea decreases as the timescale over which the sediment fluxes are investigated increases.  相似文献   

19.
黄河中上游河道生态水短缺价值损失探讨   总被引:1,自引:0,他引:1  
作为生态系统中最为关键和重要的因素,黄河中上游的水资源十分短缺,而如何定量计算由于水短缺而导致的生态价值损失是一个复杂的问题。本文首先对生态价值进行分类,并对国内常用的评估方法进行介绍。根据黄河中上游的特点将生态需水分为输沙需水、基本生态需水和蒸发需水三个部分,在此基础上,利用市场价值法和影子工程法对短缺水量引起的生态价值损失进行了计算。结果显示2002年黄河中上游生态价值损失中由泥沙淤积引起的部分最大,达到了35.3亿元,其次是水质污染和渔业损失,分别为15.5亿和8.0亿元。由于数据的限制,本文未对水土保持、净化空气、科学文化功能等其他生态价值损失进行计算。最后提出跨流域调水是弥补生态损失的有效方法。  相似文献   

20.
黄河下游河床萎缩典型地表现为平滩水位下河床断面面积的趋势性减小,本文根据黄河下游实测断面和水沙资料采用相关分析方法研究了游荡段河床萎缩的主要影响因素。1960~1997年游荡段河床平滩水位下断面面积经历了1960~1964年和1974~1985年的扩张时期及1965~1973年和1986~1997年的萎缩时期,这种变化是多种因素共同作用的结果。在来水来沙中,年径流量是主要因素,洪峰流量和年平均含沙量是较次要的因素;本文所讨论的其它4个因素中,花园口以上引水量影响最大,降雨量影响次之,兰州以上水库的调节作用对河床断面面积的变化也有较明显的影响;三门峡水库三种不同的使用方式对下游河床有不同的影响,采取"蓄清排浊"方式后对下游河床的影响较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号