首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on data for 102 OB3 stars with known proper motions and radial velocities, we have tested the distances derived by Megier et al. from interstellar Ca II spectral lines. The internal reconciliation of the distance scales using the first derivative of the angular velocity of Galactic rotation Ω′0 and the external reconciliation with Humphreys’s distance scale for OB associations refined by Mel’nik and Dambis show that the initial distances should be reduced by ≈20%. Given this correction, the heliocentric distances of these stars lie within the range 0.6–2.6 kpc. A kinematic analysis of these stars at a fixed Galactocentric distance of the Sun, R 0 = 8 kpc, has allowed the following parameters to be determined: (1) the solar peculiar velocity components (u , v , ω ) = (8.9, 10.3, 6.8) ± (0.6, 1.0, 0.4) km s−1; (2) the Galactic rotation parameters Ω0 = −31.5 ± 0.9 km s−1 kpc−1, Ω′0 = +4.49 ± 0.12 km s−1 kpc−2, Ω″0 = −1.05 ± 0.38 km s−1 kpc−3 (the corresponding Oort constants are A = 17.9 ± 0.5 km s−1 kpc−1, B = −13.6 ± 1.0 km s−1 kpc−1 and the circular rotation velocity of the solar neighborhood is |V 0| = 252 ± 14 km s−1); (3) the spiral density wave parameters, namely: the perturbation amplitudes for the radial and azimuthal velocity components, respectively, f R = −12.5±1.1 km s−1 and f ϑ = 2.0 ± 1.6 km s−1; the pitch angle for the two-armed spiral pattern i = −5.3° ± 0.3°, with the wavelength of the spiral density wave at the solar distance being λ = 2.3 ± 0.2 kpc; the Sun’s phase in the spiral wave x = −91° ± 4°.  相似文献   

2.
Summary In this paper the results of the research of the stars proper motions Trapezium components are reported. They are: the galactic coordinates of the solar aprx and the Sun velocity (L =43±18°,B =+28±13°,V =13±4 km s−1), the dispersion of peculiar velocities in the direction of the galactic coordinates for the above mentioned stars (σ l =±11 km s−1, σ b =±7 km s−1).The attained accuracy of the proper motions (±0.005″ yr−1) is shown to be insufficient to the study of internal space motions in these systems. At present the work to increase the relative proper motions accuracy for multiple system components and to improve reductions from the relative to absolute proper motions, is being carried out in the Main Astronomical Observatory (Academy of Sciences of the Ukrainian SSR). The new catalogue of the AGK3 stars is composed now in the vicinity of the galactic equator in order to improve reductions from the relative to absolute proper motions. The r.m.s. errors of the proper motions, obtained in the AGK3 system, are ±0.005″ yr−1.  相似文献   

3.
Based on currently available observations of 28 maser sources in 25 star-forming regions with measured trigonometric parallaxes, proper motions, and radial velocities, we have constructed the rotation curve of the Galaxy. Taking different distances to the Galactic center R 0, we have estimated the peculiar velocity of the Sun, the angular velocity of Galactic rotation, and its three derivatives. For R 0 = 8 kpc, we have found the circular velocity of the Sun to be V 0 = 243 ± 16 km s−1, which corresponds to a revolution period of 202 ± 10 Myr. We have obtained the Oort constants A = 16.9 ± 1.2 km s−1 kpc−1 and B = −13.5 ± 1.4 km s−1 kpc−1. Our simulation of the influence of a spiral density wave has shown that the peculiar velocity of the Sun with respect to the local standard of rest and the component (V )LSR depend significantly on the Sun’s phase in the spiral wave.  相似文献   

4.
The distribution of radial (U) and rotational (V) velocities of red clump giants was studied as a function of their heights above the galactic plane. The stars of this type were selected from the compiled catalogue of stellar proper motions and infrared photometry at the north galactic pole with the use of the diagram “color-reduced proper motion.” According to the data on 1800 red clump giants located at heights from 1 to 3 kpc (mostly thick disk stars), mean kinematic parameters of the thick disk were determined: U 0 = −18 ± 2 km/s, V 0 = −56 ± 1 km/s, σ U = 72 ± 2 km/s, and σ V = 58 ± 1 km/s. The velocity of asymmetric drift V 0 and velocity variances σ U , σ V are shown to depend on heights above the galactic plane.  相似文献   

5.
We studied the evolution of a small eruptive flare (GOES class C1) from its onset phase using multi-wavelength observations that sample the flare atmosphere from the chromosphere to the corona. The main instruments involved were the Coronal Diagnostic Spectrometer (CDS) aboard SOHO and facilities at the Dunn Solar Tower of the National Solar Observatory/Sacramento Peak. Transition Region and Coronal Explorer (TRACE) together with Ramaty High-Energy Spectroscopic Imager (RHESSI) also provided images and spectra for this flare. Hα and TRACE images display two loop systems that outline the pre-reconnection and post-reconnection magnetic field lines and their topological changes revealing that we are dealing with an eruptive confined flare. RHESSI data do not record any detectable emission at energies ≥25 keV, and the observed count spectrum can be well fitted with a thermal plus a non-thermal model of the photon spectrum. A non-thermal electron flux F ≈ 5 × 1010 erg cm−2 s−1 is determined. The reconstructed images show a very compact source whose peak emission moves along the photospheric magnetic inversion line during the flare. This is probably related to the motion of the reconnection site, hinting at an arcade of small loops that brightens successively. The analysis of the chromospheric spectra (Ca II K, He I D3 and Hγ, acquired with a four-second temporal cadence) shows the presence of a downward velocity (between 10 and 20 km s−1) in a small region intersected by the spectrograph slit. The region is included in an area that, at the time of the maximum X-ray emission, shows upward motions at transition region (TR) and coronal levels. For the He I 58.4 and O v 62.97 lines, we determine a velocity of ≈−40 km s−1 while for the Fe XIX 59.22 line a velocity of ≈−80 km s−1 is determined with a two-component fitting. The observations are discussed in the framework of available hydrodynamic simulations and they are consistent with the scenario outlined by Fisher (1989). No explosive evaporation is expected for a non-thermal electron beam of the observed characteristics, and no gentle evaporation is allowed without upward chromospheric motion. It is suggested that the energy of non-thermal electrons can be dissipated to heat the high-density plasma, where possibly the reconnection occurs. The consequent conductive flux drives the evaporation process in a regime that we can call sub-explosive.  相似文献   

6.
The status of the Galactic thick disk is reviewed. Consideration of the recent literature suggests that its vertical scale height and normalisation with respect to the thin disk remain uncertain to within a factor two, with values reported in the ranges 750–1500 pc, and 0.02–0.13, respectively. The bulk of the thick disk has kinematics (σU, σV, σW) = (65, 54, 38 km s-1), and lags the thin disk by some 40 km s-1; differences of opinion exists as to whether kinematics change with distance from the Galactic plane. The bulk of the thick disk has [Fe/H] ∼ −0.6, with little or no evidence for a vertical gradient. The question of gradients is critical for an understanding of thick disk cosmogony and needs closer attention. The reality of the so-called metal-weak thick disk (material having disklike kinematics and [Fe/H] ≤ −1.0) is also considered. The case for such material seems to be steadily growing: in the range −1.6 ≤ [Fe/H] ≤ −1.0, recent estimates suggest ρMWTDHalo ∼ 0.1-0.3. While many workers regard the thick disk as a discrete entity, the caveat is made that this is a sufficient condition, but not one necessarily required by the observations. Best practice requires that both the discrete model and the alternative extended configuration be compared with observational data to examine the relative likelihood of their relevance. Recent theoretical advances are also discussed, together with the need for in situ measurements of the thick disk away from the Galactic plane. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The redshift c caused by the scattering of photons in the chromosphere of Canopus and in the interstellar matter is obtained from the measurements of wavelength, intensity and equivalent width of 191 spectral lines published in 1942. The result is c with a new radial velocityV r =–3.3±2.4 km s–1. The reliability of the results is briefly discussed.  相似文献   

8.
Li abundance is determined for 23 halo subdwarfs. About half of the stars show [Fe/H] < −1.4 and a space velocityV > 160 km s−1 Li appears to be present in all our halo stars, with an abundance within about ± 0.2 dex of the value logn (Li) = 2.0 found by Spite & Spite (1982). Thus our results provide confirmation of the main conclusion of Spite & Spite.  相似文献   

9.
We have carried out a sensitive high-latitude (|b| > 15°) HI 21 cm-line absorption survey towards 102 sources using the GMRT. With a 3σ detection limit in optical depth of ∼ 0.01, this is the most sensitive HI absorption survey. We detected 126 absorption features most of which also have corresponding HI emission features in the Leiden Dwingeloo Survey of Galactic neutral Hydrogen. The histogram of random velocities of the absorption features is well-fit by two Gaussians centered at V1sr ∼ 0 km s−1 with velocity dispersions of 7.6 ± 0.3 km s−1 and 21 ± 4 km s−1 respectively. About 20% of the HI absorption features form the larger velocity dispersion component. The HI absorption features forming the narrow Gaussian have a mean optical depth of 0.20 ± 0.19, a mean HI column density of (1.46 ± 1.03) × 1020 cm−2, and a mean spin temperature of 121 ± 69 K. These HI concentrations can be identified with the standard HI clouds in the cold neutral medium of the Galaxy. The HI absorption features forming the wider Gaussian have a mean optical depth of 0.04 ± 0.02, a mean HI column density of (4.3 ± 3.4) × 1019 cm−2, and a mean spin temperature of 125 ± 82 K. The HI column densities of these fast clouds decrease with their increasing random velocities. These fast clouds can be identified with a population of clouds detected so far only in optical absorption and in HI emission lines with a similar velocity dispersion. This population of fast clouds is likely to be in the lower Galactic Halo.  相似文献   

10.
We analyze the three-dimensional kinematics of about 82 000 Tycho-2 stars belonging to the red giant clump (RGC). First, based on all of the currently available data, we have determined new, most probable components of the residual rotation vector of the optical realization of the ICRS/HIPPARCOS system relative to an inertial frame of reference, (ω x , ω y , ω z ) = (−0.11, 0.24, −0.52) ± (0.14, 0.10, 0.16) mas yr−1. The stellar proper motions in the form μα cos δ have then be corrected by applying the correction ω z = −0.52 mas yr−1. We show that, apart from their involvement in the general Galactic rotation described by the Oort constants A = 15.82 ± 0.21 km s−1 kpc−1 and B = −10.87 ± 0.15 km s−1 kpc−1, the RGC stars have kinematic peculiarities in the Galactic yz plane related to the kinematics of the warped stellar-gaseous Galactic disk. We show that the parameters of the linear Ogorodnikov-Milne model that describe the kinematics of RGC stars in the zx plane do not differ significantly from zero. The situation in the yz plane is different. For example, the component of the solid-body rotation vector of the local solar neighborhood around the Galactic x axis is M 32 = −2.6 ± 0.2 km s−1 kpc−1. Two parameters of the deformation tensor in this plane, namely M 23+ = 1.0 ± 0.2 km s−1 kpc−1 and M 33M 22 = −1.3 ± 0.4 km s−1 kpc−1, also differ significantly from zero. On the whole, the kinematics of the warped stellar-gaseous Galactic disk in the local solar neighborhood can be described as a rotation around the Galactic x axis (close to the line of nodes of this structure) with an angular velocity −3.1 ± 0.5 km s−1 kpc−1 ≤ ΩW ≤ −4.4 ± 0.5 km s−1 kpc−1.  相似文献   

11.
Counterstreaming in a Large Polar Crown Filament   总被引:1,自引:0,他引:1  
Lin  Yong  Engvold  OddbjØ rn  Wiik  Jun Elin 《Solar physics》2003,216(1-2):109-120
The motion of small-scale structures is well resolved in high-resolution filament images that were observed on 19 June 1998 with the Swedish Vacuum Solar Telescope, La Palma. The filament was between 80 000 and 100 000 km high. The study is based on two hours of narrow-band observations at three wavelength positions in Hα. Velocities along the line of sight and in the transverse direction, respectively, V los and V tr, were measured for a large number of individual small-scale filament structures. Small features are all moving along nearly parallel threads, some in one direction along the threads and the remainder in the other direction, a pattern of motion known as counterstreaming. The net flow velocities in the two directions are about 8 km s−1 and both are tilted by an angle δ≃16° relative to the plane of the sky. This angle is less than expected, by factors between 2.0 and 2.5, relative to the local horizontal plane. We believe that V los is underestimated by these factors due to a line-shift reducing effect by the underlying Hα absorption line of the chromosphere. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1026150809598  相似文献   

12.
Any calibration of the present value of the Hubble constant (H 0) requires recession velocities and distances of galaxies. While the conversion of observed velocities into true recession velocities has only a small effect on the result, the derivation of unbiased distances which rest on a solid zero point and cover a useful range of about 4–30 Mpc is crucial. A list of 279 such galaxy distances within v < 2,000 km s−1 is given which are derived from the tip of the red-giant branch (TRGB), from Cepheids, and/or from supernovae of type Ia (SNe Ia). Their random errors are not more than 0.15 mag as shown by intercomparison. They trace a linear expansion field within narrow margins, supported also by external evidence, from v = 250 to at least 2,000 km s−1. Additional 62 distant SNe Ia confirm the linearity to at least 20,000 km s−1. The dispersion about the Hubble line is dominated by random peculiar velocities, amounting locally to <100 km s−1 but increasing outwards. Due to the linearity of the expansion field the Hubble constant H 0 can be found at any distance >4.5 Mpc. RR Lyr star-calibrated TRGB distances of 78 galaxies above this limit give H 0 = 63.0 ± 1.6 at an effective distance of 6 Mpc. They compensate the effect of peculiar motions by their large number. Support for this result comes from 28 independently calibrated Cepheids that give H 0 = 63.4 ± 1.7 at 15 Mpc. This agrees also with the large-scale value of H 0 = 61.2 ± 0.5 from the distant, Cepheid-calibrated SNe Ia. A mean value of H 0 = 62.3 ± 1.3 is adopted. Because the value depends on two independent zero points of the distance scale its systematic error is estimated to be 6%. Other determinations of H 0 are discussed. They either conform with the quoted value (e.g. line width data of spirals or the D n σ method of E galaxies) or are judged to be inconclusive. Typical errors of H 0 come from the use of a universal, yet unjustified P–L relation of Cepheids, the neglect of selection bias in magnitude-limited samples, or they are inherent to the adopted models.  相似文献   

13.
Combining Hipparcos proper motions and the radial velocity data, we have studied the Cepheid kinematics on the basis of the three-dimensional Ogorodnikov-Milne model. The results seem to show a slight contracting motion of the Galaxy in the solar neighbourhood, ∂ V θ / ∂θ / R = −2.60 ± 1.07 km s-1 kpc-1, which is along the solar circle. Under the hypothesis of a circular stream model, we have determined the galactic rotation V θ = −240.5 ± 10.2 km s-1 for the classical Cepheids. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
In the region of the formation of weak and medium-strong lines, the microturbulence increases with height (V ver=0.7–0.9 km s-1, V hor= 1.1–1.5 km s-1), the macroturbulence decreases (V ver=1.6–1.4 km s-1, V hor= 2.4–1.5 km s-1), and the total velocity field (vertical component) is depth-independent (1.7 km s-1). The empirical damping constants for Fe, Ti, Cr, Ni lines are equal 1.36, 1.76, 1.66, 1.66, respectively. The correlation length (the Kubo-Anderson process has been used) in the solar photosphere is 520–550 km.  相似文献   

15.
The integrated magnitudes of 221 Galactic open clusters have been used to derive the luminosity function. The completeness of the data has also been discussed. In the luminosity distribution the maximum frequency of clusters occurs nearI (Mv) = −3 m . 5, and some plausible reasons for a sharp cut-off atI (Mv) = −2m. 0 have been discussed. It is concluded that the paucity of the clusters fainter thanI (M v) = −2 m .0 is not purely due to selection effects. The surface density of the clusters for different magnitude intervals has. been obtained using the completeness radius estimated from the logN- logd plots. A relation betweenI (Mv) and surface density has been obtained which yields a steeper slope than that obtained by van den Bergh & Lafontaine (1984).  相似文献   

16.
We present the results of spectroscopic and photometric observations for the B star StHα62 with an IR excess, a post-AGB candidate identified with the IR source IRAS 07171+1823. High-resolution spectroscopy has allowed the λ4330–7340 Å spectrum of the star to be identified: it contains absorption lines of an early B star and emission lines of a gaseous shell. The residual line intensities have been measured. The heliocentric radial velocities measured from absorption lines of the star and emission lines of the shell are 〈V r 〉 = +45 ± 1 and +52 ± 1 km s?1, respectively. The line-of-sight velocities of gas-dust clouds determined from the interstellar Na I lines are 12 and 33 km s?1. The He I λ5876 Å line exhibits a P Cyg profile, which is indicative of an ongoing mass loss by the star. The expansion velocity of the outer shell estimated from forbidden lines is 12–13 km s?1. Quantitative classification gives the spectral type B0.51 for the star. The parameters of the gaseous shell have been determined: N e = 3.1 × 103 cm?3 and T e ~ 21 000 K. Over 4 years of its observations, the star showed rapid irregular light variations with the amplitudes ΔV = We present the results of spectroscopic and photometric observations for the B star StHα62 with an IR excess, a post-AGB candidate identified with the IR source IRAS 07171+1823. High-resolution spectroscopy has allowed the λ4330–7340 ? spectrum of the star to be identified: it contains absorption lines of an early B star and emission lines of a gaseous shell. The residual line intensities have been measured. The heliocentric radial velocities measured from absorption lines of the star and emission lines of the shell are 〈V r 〉 = +45 ± 1 and +52 ± 1 km s−1, respectively. The line-of-sight velocities of gas-dust clouds determined from the interstellar Na I lines are 12 and 33 km s−1. The He I λ5876 ? line exhibits a P Cyg profile, which is indicative of an ongoing mass loss by the star. The expansion velocity of the outer shell estimated from forbidden lines is 12–13 km s−1. Quantitative classification gives the spectral type B0.51 for the star. The parameters of the gaseous shell have been determined: N e = 3.1 × 103 cm−3 and T e ∼ 21 000 K. Over 4 years of its observations, the star showed rapid irregular light variations with the amplitudes ΔV = , ΔB = , and ΔU = and no color-magnitude correlation. We estimate the total extinction for the star from our photometric observations as A v = . Near-IR observations have revealed dust radiation with a temperature of ∼1300 K. We estimate the distance to StHα62 to be r = 5.2 ± 1.2 kpc by assuming that the star is a low-mass (M = 0.55 ± 0.05 M ) protoplanetary nebula. Original Russian Text ? V.P. Arkhipova, V.G. Klochkova, E.L. Chentsov, V.F. Esipov, N.P. Ikonnikova, G.V. Komissarova, 2006, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2006, Vol. 32, No. 10, pp. 737–747.  相似文献   

17.
The shell spectrum of CH Cyg observed in 1981 has been analyzed by the curve of growth method and using the equivalent widths of Balmer lines. The following parameters for the region of the shell where the absorption spectrum is formed have been obtained: excitation temperatureT ex=9000 K, microturbulent velocityv t =16 km s–1, electron densityn e=6.3×1012, number of active hydrogen atoms in the second excited stateN 0.2=5.8×1015, and the effective height of the absorption spectrum formation regionH=105 km.  相似文献   

18.
A method for analysing line profiles by means of a transform using Bessel functions is described. This yields the stellar rotational velocityv sini, to an accuracy of about ±1 km s–1 for rotational velocities greater than about 5 km s–1, provided that rotation is the major source of line broadening. The theory of the method is a special case of a general theory of linear transforms in data analysis, which is outlined in an appendix.  相似文献   

19.
The coherent 5-min photospheric pressure oscillations with spherical harmonic degrees in the range 100 <l< 1000 were directly imaged over the photosphere with the monochromatic solar telescope FPSS at Meudon Observatory. Movie films were obtained with images spatially filtered to select sizes of increasing wave numbers (or l). Areas with ephemeral concentrations of coherent waves evolve in shape and may move horizontally with velocities of several tenths of km s–1. When a large number of waves are interacting, the maximum vertical velocity V max of the pulsation reaches around 1000 m s–1, irrespective of the size. Extrapolation to the ideal case of a single isolated wave gives V max proportional to size. For the areas of the smallest scale measured (l = 1000), when about 100 waves are interacting, V max is found to be 260 + 25 m s–1 at an altitude of 210 km above the reference level 5000 = 1 and increases vertically with a scale height of 750 ± 400 km.  相似文献   

20.
Based on spectra taken with a 6-m telescope, we analyzed the abundances of chemical elements in the He-weak stars HD 21699 and HD 217833, estimated their surface magnetic fields (Bs = 4000 and 4500 G, respectively) from the magnetic intensification of spectral lines, and determined their microturbulences (V t = 0.80 and 0.75 km s−1, respectively). The low values of V t show that the stellar atmospheres are stabilized by a magnetic field, which explains the presence of diffusion processes that lead to chemical anomalies. Helium is strongly underabundant, and its deficiency is −1.50 and −1.81 dex in HD 21699 and HD 217833, respectively. We used model atmospheres to determine the effective temperatures, T eff = 16 000 and 15 450 K, and surface gravities, log g = 4.15 and 3.88, for the stars from the Hδ line, implying that they lie on the main sequence near the stars of luminosity class V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号