首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper investigates the possibility that ultra-compact dwarf (UCD) galaxies in the Fornax cluster are formed by the threshing of nucleated, early-type dwarf galaxies (hereafter dwarf galaxies).
Similar to the results of Côté et al. for the Virgo cluster, we show that the Fornax cluster observations are consistent with a single population in which all dwarfs are nucleated, with a ratio of nuclear to total magnitude that varies slowly with magnitude. Importantly, the magnitude distribution of the UCD population is similar to that of the dwarf nuclei in the Fornax cluster.
The joint population of UCDs and the dwarfs from which they may originate is modelled and shown to be consistent with a Navarro, Frenk & White (NFW) profile with a characteristic radius of 5 kpc. Furthermore, a steady-state dynamical model reproduces the known mass profile of Fornax. However, there are a number of peculiarities in the velocity dispersion data that remain unexplained.
The simplest possible threshing model is tested, in which dwarf galaxies move on orbits in a static cluster potential and are threshed if they pass within a radius at which the tidal force from the cluster exceeds the internal gravity at the core of their dark matter halo. This fails to reproduce the observed fraction of UCDs at radii greater than 30 kpc from the core of Fornax.  相似文献   

2.
We present BVI photometry of 190 galaxies in the central 4 ×3 deg2 region of the Fornax cluster observed with the Michigan Curtis Schmidt Telescope. Results from the Fornax Cluster Spectroscopic Survey (FCSS) and the Flair-II Fornax Surveys have been used to confirm the membership status of galaxies in the Fornax Cluster Catalogue (FCC). In our catalogue of 213 member galaxies, 92 (43 per cent) have confirmed radial velocities.
In this paper, we investigate the surface brightness–magnitude relation for Fornax cluster galaxies. Particular attention is given to the sample of cluster dwarfs and the newly discovered ultracompact dwarf galaxies (UCDs) from the FCSS. We examine the reliability of the surface brightness–magnitude relation as a method for determining cluster membership and find that at surface brightnesses fainter than 22 mag arcsec−2, it fails in its ability to distinguish between cluster members and barely resolved background galaxies. Cluster members exhibit a strong surface brightness–magnitude relation. Both elliptical (E) galaxies and dwarf elliptical (dE) galaxies increase in surface brightness as luminosity decreases. The UCDs lie off the locus of the relation.
  B − V   and   V − I   colours are determined for a sample of 113 cluster galaxies and the colour–magnitude relation is explored for each morphological type. The UCDs lie off the locus of the colour–magnitude relation. Their mean   V − I   colours (∼1.09) are similar to those of globular clusters associated with NGC 1399. The location of the UCDs on both surface brightness and colour–magnitude plots supports the 'galaxy threshing' model for infalling nucleated dwarf elliptical (dE, N) galaxies.  相似文献   

3.
We present the results of a study of the morphology of the dwarf galaxy population in Abell 868, a rich, intermediate-redshift     cluster which has a galaxy luminosity function (LF) with a steep faint-end slope     . A statistical background subtraction method is employed to study the     colour distribution of the cluster galaxies. This distribution suggests that the galaxies contributing to the faint-end of the measured cluster LF can be split into three populations: dwarf irregular galaxies (dIrrs) with     dwarf elliptical galaxies (dEs) with     and contaminating background giant ellipticals (gEs) with     . The removal of the contribution of the background gEs from the counts only marginally lessens the faint-end slope     . However, the removal of the contribution of the dIrrs from the counts produces a flat LF     . The dEs and the dIrrs have similar spatial distributions within the cluster, except that the dIrrs appear to be totally absent within a central projected radius of about 0.2 Mpc     . The number densities of both dEs and dIrrs appear to fall off beyond a projected radius of ≃ 0.35 Mpc. We suggest that the dE and dIrr populations of A868 have been associated with the cluster for similar time-scales, but evolutionary processes such as 'galaxy harassment' tend to fade the dIrr galaxies while having a much smaller effect on the dE galaxies. The harassment would be expected to have the greatest effect on dwarfs residing in the central parts of the cluster.  相似文献   

4.
We have discovered a new type of galaxy in the Fornax Cluster: `ultra-compact' dwarfs (UCDs). The UCDs are unresolved in ground-based imaging and have spectra typical of old stellar systems. Although the UCDs resemble overgrown globular clusters, based on VLT UVES echelle spectroscopy, they appear to be dynamically distinct systems with higher internal velocity dispersions and M/L ratios for a given luminosity than Milky Way or M31 globulars. Our preferred explanation for their origin is that they are the remnant nuclei of dwarf elliptical galaxies which have been tidally stripped, or `threshed' by repeated encounters with the central cluster galaxy, NGC1399. If correct, then tidal stripping of nucleated dwarfs to form UCDs may, over a Hubble time, be an important source of the plentiful globular cluster population in the halo of NGC1399, and, by implication, other cD galaxies. In this picture, the dwarf elliptical halo contents, up to 99% of the original dwarf luminosity, contribute a significant fraction of the populations of intergalactic stars, globulars, and gas in galaxy clusters. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Understanding the origin and evolution of dwarf early-type galaxies remains an important open issue in modern astrophysics. Internal kinematics of a galaxy contains signatures of violent phenomena which may have occurred, e.g. mergers or tidal interactions, while stellar population keeps a fossil record of the star formation history; therefore studying connection between them becomes crucial for understanding galaxy evolution. Here, in the first paper of the series, we present the data on spatially resolved stellar populations and internal kinematics for a large sample of dwarf elliptical (dE) and lenticular (dS0) galaxies in the Virgo cluster. We obtained radial velocities, velocity dispersions, stellar ages and metallicities out to 1–2 half-light radii by reanalysing already published long-slit and integral-field spectroscopic data sets using the nbursts full spectral fitting technique. Surprisingly, bright representatives of the dE/dS0 class (   MB =−18.0  to −16.0 mag) look very similar to intermediate-mass and giant lenticulars and ellipticals: (1) their nuclear regions often harbour young metal-rich stellar populations always associated with the drops in the velocity dispersion profiles; (2) metallicity gradients in the main discs/spheroids vary significantly from nearly flat profiles to −0.9 dex   r −1e  , i.e. somewhat three times steeper than for typical bulges; (3) kinematically decoupled cores were discovered in four galaxies, including two with very little, if any, large-scale rotation. These results suggest similarities in the evolutionary paths of dwarf and giant early-type galaxies and call for reconsidering the role of major mergers in the dE/dS0 evolution.  相似文献   

6.
In order to investigate the nature of dwarf low surface brightness (LSB) galaxies we have undertaken a deep B - and I -band CCD survey of a 14-deg2 strip in the Virgo Cluster and applied a Fourier convolution technique to explore its dwarf galaxy population down to a central surface brightness of ∼26 B mag arcsec−2 and a total absolute B mag of  ∼−10  . In this paper we carry out an analysis of their morphology, ( B − I ) colours and atomic hydrogen content. We compare these properties with those of dwarf galaxies in other environments to try and assess how the cluster environment has influenced their evolution. Field dwarfs are generally of a more irregular morphology, are bluer and contain relatively more gas. We assess the importance that various physical processes have on the evolution of cluster dwarf galaxies (ram-pressure stripping, tidal interactions, supernova-driven gas loss). We suggest that enhanced star formation triggered by tidal interactions is the major reason for the very different general properties of cluster dwarfs: they have undergone accelerated evolution.  相似文献   

7.
A multivariate classification has been performed for a large sample of dynamically hot stellar systems comprising globular clusters to giant ellipticals, in quest of the formation theory of ultra compact dwarf galaxies (UCDs). For this K means cluster analysis is carried out together with the optimum criterion (Sugar et al., 2003) with respect to three parameters, logarithm of stellar mass, logarithm of effective radius and stellar mass to light ratio. The present data set has been taken from Misgeld and Hilker (2011). We found five groups MK1–MK5. These are predominated by giant ellipticals (gEs), faint dwarf ellipticals (dEs), globular clusters (GCs), massive compact objects (UCDs and nuclei of dE,Ns) and bright dwarf ellipticals respectively. Almost all UCDs are found either in MK3 or MK4. The fraction is roughly 50%–50% between MK3 and MK4. Comparable fraction of UCDs share properties either with normal GCs or with nuclei of dE,N. This adds a quantitative constraint to the long discussed hypothesis that UCDs may be formed either as massive globular clusters or have an origin similar to nuclei of dwarf galaxies. We finally find that for our clustering test in mass-size-stellar M/L ratios, ultra faint dwarf galaxies are attributed to globular cluster group (MK3) and not to the dwarf galaxy group (MK2). This highlights that there is no clear cut morphological distinction between extended star clusters and ultra faint dwarfs. These groups are highly consistent with the groups found in a previous classification for a smaller sample and completely different set of parameters.  相似文献   

8.
We present an analysis of the density profile in the central region of the Sagittarius dwarf spheroidal galaxy. A strong density enhancement of Sgr stars is observed. The position of the peak of the detected cusp is indistinguishable from the centre of M54. The photometric properties of the cusp are fully compatible with those observed in the nuclei of dwarf elliptical galaxies, indicating that the Sgr dSph would appear as a nucleated galaxy independently of the presence of M54 at its centre.  相似文献   

9.
We present the first 3D observations of a diffuse elliptical galaxy (dE). The good quality data (S/N up to 40) reveal the kinematical signature of an embedded stellar disc, reminiscent of what is commonly observed in elliptical galaxies, though similarity of their origins is questionable. Colour map built from Hubble Space Telescope Advanced Camera for Surveys (ACS) images confirms the presence of this disc. Its characteristic scale (about 3 arcsec =250 pc) is about a half of galaxy's effective radius, and its metallicity is 0.1–0.2 dex larger than the underlying population. Fitting the spectra with synthetic single stellar populations (SSP), we found an SSP-equivalent age of 5 Gyr and nearly solar metallicity [Fe/H]  =−0.06  dex. We checked that these determinations are consistent with those based on Lick indices, but have smaller error bars. The kinematical discovery of a stellar disc in dE gives additional support to an evolutionary link from dwarf irregular galaxies due to stripping of the gas against the intracluster medium.  相似文献   

10.
A detailed photometry of spheroidal dwarf galaxies in the M81 group has been carried out. The integral characteristics and the structural parameters of the spheroidal dwarfs has been determined. Their luminosity profiles are well fitted to a King law. The investigated spheroidal dwarfs together with the prototypes of the Local Group form a common sequence according to their main parameters. The observational data presented show that dSphs are not linked evolutionary with normal E and dE galaxies, but probably form a separate branch together with irregular low surface brightness dwarfs.  相似文献   

11.
We present results for a galaxy formation model that includes a simple treatment for the disruption of dwarf galaxies by gravitational forces and galaxy encounters within galaxy clusters. This is implemented a posteriori in a semi-analytic model by considering the stability of cluster dark matter subhaloes at   z = 0  . We assume that a galaxy whose dark matter substructure has been disrupted will itself disperse, while its stars become part of the population of intracluster stars responsible for the observed intracluster light. Despite the simplicity of this assumption, our results show a substantial improvement over previous models and indicate that the inclusion of galaxy disruption is indeed a necessary ingredient of galaxy formation models. We find that galaxy disruption suppresses the number density of dwarf galaxies by about a factor of 2. This makes the slope of the faint end of the galaxy luminosity function shallower, in agreement with observations. In particular, the abundance of faint, red galaxies is strongly suppressed. As a result, the luminosity function of red galaxies and the distinction between the red and the blue galaxy populations in colour–magnitude relationships are correctly predicted. Finally, we estimate a fraction of intracluster light comparable to that found in clusters of galaxies.  相似文献   

12.
The Hubble Space Telescope /Advanced Camera for Surveys ( HST /ACS) Coma Cluster Treasury Survey is a deep two-passband imaging survey of the nearest very rich cluster of galaxies, covering a range of galaxy density environments. The imaging is complemented by a recent wide field redshift survey of the cluster conducted with Hectospec on the 6.5-m Monolithic Mirror Telescope (MMT). Among the many scientific applications for these data is the search for compact galaxies. In this paper, we present the discovery of seven compact (but quite luminous) stellar systems, ranging from M32-like galaxies down to ultra-compact dwarfs (UCDs)/dwarf to globular transition objects (DGTOs).
We find that all seven compact galaxies require a two-component fit to their light profile and have measured velocity dispersions that exceed those expected for typical early-type galaxies at their luminosity. From our structural parameter analysis, we conclude that three of the samples should be classified as compact ellipticals or M32-like galaxies, and the remaining four being less extreme systems. The three compact ellipticals are all found to have old luminosity weighted ages (≳12 Gyr), intermediate metallicities  (−0.6 < [Fe/H] < −0.1)  and high [Mg/Fe] (≳0.25).
Our findings support a tidal stripping scenario as the formation mode of compact galaxies covering the luminosity range studied here. We speculate that at least two early-type morphologies may serve as the progenitor of compact galaxies in clusters.  相似文献   

13.
We recover the luminosity distributions over a wide range of absolute magnitude (−24.5 <  M R  < −16.5) for a sample of seven rich southern galaxy clusters. We find a large variation in the ratio of dwarf to giant galaxies, DGR: 0.8 ≤ DGR ≤ 3.1. This variation is shown to be inconsistent with a ubiquitous cluster luminosity function. The DGR shows a smaller variation from cluster to cluster in the inner regions ( r  ≲ 0.56 Mpc). Outside these regions we find the DGR to be strongly anticorrelated with the mean local projected galaxy density, with the DGR increasing towards lower densities. In addition, the DGR in the outer regions shows some correlation with Bautz–Morgan type. Radial analysis of the clusters indicates that the dwarf galaxies are less centrally clustered than the giants, and they form a significant halo around clusters. We conclude that measurements of the total cluster luminosity distribution based on the inner core alone are likely to be severe underestimates of the dwarf component, the integrated cluster luminosity and the contribution of galaxy masses to the cluster's total mass. Further work is required to quantify this. The observational evidence that the unrelaxed, lower density outer regions of clusters are dwarf-rich adds credence to the recent evidence and conjecture that the field is a predominantly dwarf-rich environment, and that the dwarf galaxies are under-represented in measures of the local field luminosity function.  相似文献   

14.
We present optical and infrared broad-band images, radio maps, and optical spectroscopy for the nuclear region of a sample of nearby galaxies. The galaxies have been drawn from a complete volume-limited sample for which we have already presented X-ray imaging. We modelled the stellar component of the spectroscopic observations to determine the star formation history of our targets. Diagnostic diagrams were used to classify the emission-line spectra and determine the ionizing mechanism driving the nuclear regions. All those sources classified as active galactic nuclei present small Eddington ratios  (∼10−3–10−6)  , implying a very slow growth rate of their black holes. We finally investigate the relative numbers of active and normal nuclei as a function of host galaxy luminosity and find that the fraction of active galaxies slowly rises as a function of host absolute magnitude in the   M B ∼−12  to −22 range.  相似文献   

15.
We simulate the assembly of a massive rich cluster and the formation of its constituent galaxies in a flat, low-density universe. Our most accurate model follows the collapse, the star formation history and the orbital motion of all galaxies more luminous than the Fornax dwarf spheroidal, while dark halo structure is tracked consistently throughout the cluster for all galaxies more luminous than the SMC. Within its virial radius this model contains about     dark matter particles and almost 5000 distinct dynamically resolved galaxies. Simulations of this same cluster at a variety of resolutions allow us to check explicitly for numerical convergence both of the dark matter structures produced by our new parallel N -body and substructure identification codes, and of the galaxy populations produced by the phenomenological models we use to follow cooling, star formation, feedback and stellar aging. This baryonic modelling is tuned so that our simulations reproduce the observed properties of isolated spirals outside clusters. Without further parameter adjustment our simulations then produce a luminosity function, a mass-to-light ratio, luminosity, number and velocity dispersion profiles, and a morphology–radius relation which are similar to those observed in real clusters. In particular, since our simulations follow galaxy merging explicitly, we can demonstrate that it accounts quantitatively for the observed cluster population of bulges and elliptical galaxies.  相似文献   

16.
We present the results of Giant Metrewave Radio Telescope H  i 21-cm line observations of the extremely metal deficient (XMD) blue compact galaxy (BCG) HS 0822+3542. HS 0822+3542 is the smallest known XMD galaxy; from Hubble Space Telescope ( HST ) imaging, it has been suggested that it actually consists of two still smaller (∼100 pc sized) ultra-compact dwarfs that are in the process of merging. The brighter of these two putative ultra-compact dwarfs has an ocular appearance, similar to that seen in galaxies that have suffered a penetrating encounter with a smaller companion. From our H  i imaging, we find that the gas distribution and kinematics in this object are similar to that of other low-mass galaxies, albeit with some evidence for tidal disturbance. On the other hand, the H  i emission has an angular size ∼25 times larger than that of the putative ultra-compact dwarfs. The optical emission is also offset from the centre of the H  i emission. HS 0822+3542 is located in the nearby Lynx–Cancer void, but has a nearby companion low surface brightness dwarf galaxy SAO 0822+3545. In light of all this, we also consider a scenario where the optical emission from HS 0822+3542 comes not from two merging ultra-compact dwarfs but from multiple star-forming regions in a tidally disturbed galaxy. In this model, the ocular appearance of the brighter star-forming region could be the result of triggered star formation.  相似文献   

17.
There is growing evidence that the active galactic nuclei (AGN) associated with the central elliptical galaxy in clusters of galaxies are playing an important role in the evolution of the intracluster medium (ICM) and clusters themselves. We use high-resolution three-dimensional simulations to study the interaction of the cavities created by AGN outflows (bubbles) with the ambient ICM. The gravitational potential of the cluster is modelled using the observed temperature and density profiles of the Virgo cluster. We demonstrate the importance of the hydrodynamical Kutta–Zhukovsky forces associated with the vortex ring structure of the bubbles, and discuss possible effects of diffusive processes on their evolution.  相似文献   

18.
We present N -body simulations of galaxy groups embedded in a common halo of matter. We study the influence of the different initial conditions upon the evolution of the group and show that denser configurations evolve faster, as expected. We then concentrate on the influence of the initial radial density profile of the common halo and of the galaxy distribution. We select two kinds of density distributions, a singular profile (modelled by a Hernquist distribution) and a profile with a flat core (modelled by a Plummer sphere). In all cases we witness the formation of a central massive object owing to mergings of individual galaxies and to accretion of stripped material, but both its formation history and its properties depend heavily on the initial distribution. In Hernquist models the formation is caused by a 'burst' of mergings in the inner parts, owing to the large initial concentration of galaxies in the centre. The merging rate is much slower in the initial phases of the evolution of a Plummer distribution, where the contribution of accretion to the formation of the central object is much more important. The central objects formed within Plummer distributions have projected density profiles which are not in agreement with the radial profiles of observed brightest cluster members, unless the percentage of mass in the common halo is small. In contrast, the central object formed in initially cusped models has projected radial profiles in very good agreement with those of brightest cluster members, sometimes also showing luminosity excess over the r 1/4 law in the outer parts, as is observed in cD galaxies.  相似文献   

19.
We conduct high-resolution collisionless N -body simulations to investigate the tidal evolution of dwarf galaxies on an eccentric orbit in the Milky Way (MW) potential. The dwarfs originally consist of a low surface brightness stellar disc embedded in a cosmologically motivated dark matter halo. During 10 Gyr of dynamical evolution and after five pericentre passages, the dwarfs suffer substantial mass loss and their stellar component undergoes a major morphological transformation from a disc to a bar and finally to a spheroid. The bar is preserved for most of the time as the angular momentum is transferred outside the galaxy. A dwarf spheroidal (dSph) galaxy is formed via gradual shortening of the bar. This work thus provides a comprehensive quantitative explanation of a potentially crucial morphological transformation mechanism for dwarf galaxies that operates in groups as well as in clusters. We compare three cases with different initial inclinations of the disc and find that the evolution is fastest when the disc is coplanar with the orbit. Despite the strong tidal perturbations and mass loss, the dwarfs remain dark matter dominated. For most of the time, the one-dimensional stellar velocity dispersion, σ, follows the maximum circular velocity, V max, and they are both good tracers of the bound mass. Specifically, we find that   M bound∝ V 3.5max  and     in agreement with earlier studies based on pure dark matter simulations. The latter relation is based on directly measuring the stellar kinematics of the simulated dwarf, and may thus be reliably used to map the observed stellar velocity dispersions of dSphs to halo circular velocities when addressing the missing satellites problem.  相似文献   

20.
Galaxy harassment has been proposed as a physical process that morphologically transforms low surface density disc galaxies into dwarf elliptical galaxies in clusters. It has been used to link the observed very different morphology of distant cluster galaxies (relatively more blue galaxies with 'disturbed' morphologies) with the relatively large numbers of dwarf elliptical galaxies found in nearby clusters. One prediction of the harassment model is that the remnant galaxies should lie on low surface brightness tidal streams or arcs. We demonstrate in this paper that we have an analysis method that is sensitive to the detection of arcs down to a surface brightness of 29 B μ and we then use this method to search for arcs around 46 Virgo cluster dwarf elliptical galaxies. We find no evidence for tidal streams or arcs and consequently no evidence for galaxy harassment as a viable explanation for the relatively large numbers of dwarf galaxies found in the Virgo cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号