首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The solubility of sulfur as S2– has been experimentallydetermined for 19 silicate melt compositions in the system CaO–MgO–Al2O3–SiO2(CMAS)± TiO2 ± FeO, at 1400°C and 1 bar, using CO–CO2–SO2gas mixtures to vary oxygen fugacity (fO2) and sulfur fugacity(fS2). For all compositions, the S solubility is confirmed tobe proportional to (fS2/fO2)1/2, allowing the definition ofthe sulfide capacity (CS) of a silicate melt as CS = [S](fO2/fS2)1/2.Additional experiments covering over 150 melt compositions,including some with Na and K, were then used to determine CSas a function of melt composition at 1400°C. The resultswere fitted to the equation  相似文献   

2.
The 2·63 Ga Louis Lake batholith, a calc-alkalic plutonexposed in Wind River Range of western Wyoming, consists ofminor diorite, quartz diorite, granodiorite, and granite. Atshallow structural levels the batholith is pyroxene free, butat deeper levels, all units of the batholith contain pyroxenes.On its northern margin the batholith was emplaced at P = 5–6kbar, T = 775–800°C, fO2 at FMQ (fayalite–magnetite–quartz)+ 1·5 to FMQ + 1·8, and aH2O  相似文献   

3.
Phase Relations of Peralkaline Silicic Magmas and Petrogenetic Implications   总被引:16,自引:5,他引:16  
The phase relationships of three peralkaline rhyolites fromthe Kenya Rift have been established at 150 and 50 MPa, at oxygenfugacities of NNO - 1·6 and NNO + 3·6 (log fO2relative to the Ni–NiO solid buffer), between 800 and660°C and for melt H2O contents ranging between saturationand nominally anhydrous. The stability fields of fayalite, sodicamphiboles, chevkinite and fluorite in natural hydrous silicicmagmas are established. Additional phases include quartz, alkalifeldspar, ferrohedenbergite, biotite, aegirine, titanite, montdoriteand oxides. Ferrohedenbergite crystallization is restrictedto the least peralkaline rock, together with fayalite; it isreplaced at low melt water contents by ferrorichterite. Riebeckite–arfvedsoniteappears only in the more peralkaline rocks, at temperaturesbelow 750°C (dry) and below 670°C at H2O saturation.Under oxidizing conditions, it breaks down to aegirine. In themore peralkaline rocks, biotite is restricted to temperaturesbelow 700°C and conditions close to H2O saturation. At 50MPa, the tectosilicate liquidus temperatures are raised by 50–60°C,and that of amphibole by 30°C. Riebeckite–arfvedsonitestability extends down nearly to atmospheric pressure, as aresult of its F-rich character. The solidi of all three rocksare depressed by 40–100°C compared with the solidusof the metaluminous granite system, as a result of the abundanceof F and Cl. Low fO2 lowers solidus temperatures by at least30°C. Comparison with studies of metaluminous and peraluminousfelsic magmas shows that plagioclase crystallization is suppressedas soon as the melt becomes peralkaline, whatever its CaO orvolatile contents. In contrast, at 100 MPa and H2O saturation,the liquidus temperatures of quartz and alkali feldspar arenot significantly affected by changes in rock peralkalinity,showing that the incorporation of water in peralkaline meltsdiminishes the depression of liquidus temperatures in dry peralkalinesilicic melts compared with dry metaluminous or peraluminousvarieties. At 150 MPa, pre-eruptive melt H2O contents rangefrom 4 wt % in the least peralkaline rock to nearly 6 wt % inthe two more peralkaline compositions, in broad agreement withprevious melt inclusion data. The experimental results implymagmatic fO2 at or below the fayalite–quartz–magnetitesolid buffer, temperatures between 740 and 660°C, and meltevolution under near H2O saturation conditions. KEY WORDS: peralkaline; rhyolite; phase equilibria  相似文献   

4.
Dehydration melting experiments of alkali basalt associatedwith the Kenya Rift were performed at 0·7 and 1·0GPa, 850–1100°C, 3–5 wt % H2O, and fO2 nearnickel–nickel oxide. Carbon dioxide [XCO2 = molar CO2/(H2O+ CO2) = 0·2–0·9] was added to experimentsat 1025 and 1050°C. Dehydration melting in the system alkalibasalt–H2O produces quartz- and corundum-normative trachyandesite(6–7·5 wt % total alkalis) at 1000 and 1025°Cby the incongruent melting of amphibole (pargasite–magnesiohastingsite).Dehydration melting in the system alkali basalt–H2O–CO2produces nepheline-normative tephriphonolite, trachyandesite,and trachyte (10·5–12 wt % total alkalis). In thelatter case, the solidus is raised relative to the hydrous system,less melt is produced, and the incongruent melting reactioninvolves kaersutite. The role of carbon dioxide in alkalinemagma genesis is well documented for mantle systems. This studyshows that carbon dioxide is also important to the petrogenesisof alkaline magmas at the lower pressures of crustal systems.Select suites of continental alkaline rocks, including thosecontaining phonolite, may be derived by low-pressure dehydrationmelting of an alkali basalt–carbon dioxide crustal system. KEY WORDS: alkali basalt; alkaline rocks; carbon dioxide; dehydration melting; phonolite  相似文献   

5.
SEIFERT  F. 《Journal of Petrology》1970,11(1):73-100
The equilibrium temperatures of the reaction muscovite+chlorite+quartz= cordierite+phlogopite+H2O (1) in the pure system K2O—MgO—Al2O2—SiO2—H2Owere found to be 495±10°C at 1 kb PH2O; 525±10°Cat 2 kb; 610±15°C at 5 kb; 635±10°C at6 kb. From intersection of this curve with the lower temperaturestability limit of cordierite close to 645°C, 6.5 kb PH2O,a reaction cordieritc+muscovite = phlogopite+aluminum silicate+quartz+H2O(2) is generated which has a negative slope and passes throughthe points 645°C, 6.5 kb PH2O and 700°C, 5 kb PH2O.On the high-pressure side of this reaction curve cordieriteis restricted to K2O—poor bulk compositions. Application of the experimentally determined phase relationsto more complex natural pelitic rocks suggests that reaction(1) represents maximum temperatures for the disappearance ofchlorite from pelitic assemblages containing muscovite and quartz,whereas reaction (2) gives maximum water pressures for the disappearanceof cordierite from these rocks.  相似文献   

6.
We have investigated the stability and composition of potassiumamphibole and its high-pressure breakdown product phase X insynthetic peralkaline and subalkaline KNCMASH (K2O–Na2O–CaO–MgO–Al2O3–SiO2–H2O)and natural KLB-1 peridotite bulk compositions between 10 and23 GPa at 800–1800°C. In the KNCMASH system, potassiumamphibole reaches its upper pressure stability limit at 13–15GPa at  相似文献   

7.
A simple thermodynamic model is developed for silicate meltsin the system CaO–Na2O–K2O–Al2O3–SiO2–H2O(CNKASH). The Holland & Powell (Journal of Metamorphic Geology,16, 289–302, 1998) internally consistent thermodynamicdataset is extended via the incorporation of the experimentallydetermined melting relationships in unary and binary subsystemsof CNKASH. The predictive capability of the model is evaluatedvia the experimental data in ternary and quaternary subsystems.The resulting dataset, with the software THERMOCALC, is thenused to calculate melting relationships for haplogranitic compositions.Predictions of the P–T stabilities of assemblages in water-saturatedand -undersaturated bulk compositions are illustrated. It isnow possible to make useful calculations of the melting behaviourof appropriate composition rocks under crustal conditions. KEY WORDS: thermodynamics; melts; granite; dataset  相似文献   

8.
The Proterozoic (950 Ma) Lyngdal granodiorite of southern Norwaybelongs to a series of hornblende–biotite metaluminousferroan granitoids (HBG suite) coeval with the post-collisionalRogaland Anorthosite–Mangerite–Charnockite (AMC)suite. This granitoid massif shares many geochemical characteristicswith rapakivi granitoids, yet granodiorites dominate over granites.To constrain both crystallization (P, T, fO2, H2O in melt) andmagma generation conditions, we performed crystallization experimentson two samples of the Lyngdal granodiorite (with 60 and 65 wt% SiO2) at 4–2 kbar, mainly at fO2 of NNO (nickel–nickeloxide) to NNO + 1, and under fluid-saturated conditions withvarious H2O–CO2 ratios for each temperature. Comparisonbetween experimental phase equilibria and the mineral assemblagein the Lyngdal granodiorite indicates that it crystallized between4 and 2 kbar, from a magma with 5–6 wt % H2O at an fO2of NNO to NNO + 1. These oxidized and wet conditions sharplycontrast with the dry and reduced conditions inferred for thepetrogenesis of the AMC suite and many other rapakivi granitesworldwide. The high liquidus temperature and H2O content ofthe Lyngdal granodiorite imply that it is not a primary magmaproduced by the partial melting of the crust but is derivedby the fractionation of a mafic magma. Lyngdal-type magmas appearto have volcanic equivalents in the geological record. In particular,our results show that oxidized high-silica rhyolites, such asthe Bishop Tuff, could be derived via fractionation of oxidizedintermediate magmas and do not necessarily represent primarycrustal melts. This study underlines the great variability ofcrystallization conditions (from anhydrous to hydrous and reducedto oxidized) and petrogenetic processes among the metaluminousferroan magmas of intermediate compositions (granodiorites,quartz mangerites, quartz latites), suggesting that there isnot a single model to explain these rocks. KEY WORDS: ferroan granitoids; crystallization conditions; experiments; Norway; Sveconorwegian; Bishop Tuff  相似文献   

9.
FREY  MARTIN 《Journal of Petrology》1978,19(1):95-135
The unmetamorphosed equivalents of the regionally metamorphosedclays and marls that make up the Alpine Liassic black shaleformation consist of illite, irregular mixed-layer illite/montmorillonite,chlorite, kaolinite, quartz, calcite, and dolomite, with accessoryfeldspars and organic material. At higher grade, in the anchizonalslates, pyrophyllite is present and is thought to have formedat the expense of kaolinite; paragonite and a mixed-layer paragonite/muscovitepresumably formed from the mixed-layer illite/montmorillonite.Anchimetamorphic illite is poorer in Fe and Mg than at the diageneticstage, having lost these elements during the formation of chlorite.Detrital feldspar has disappeared. In epimetamorphic phyllites, chloritoid and margarite appearby the reactions pyrophyllite + chlorite = chloritoid + quartz+ H2O and pyrophyllite + calcite ± paragonite = margarite+ quartz + H2O + CO2, respectively. At the epi-mesozone transition,paragonite and chloritoid seem to become incompatible in thepresence of carbonates and yield the following breakdown products:plagioclase, margarite, clinozoisite (and minor zoisite), andbiotite. The maximum distribution of margarite is at the epizone-mesozoneboundary; at higher metamorphic grade margarite is consumedby a continuous reaction producing plagioclase. Most of the observed assemblages in the anchi-and epizone canbe treated in the two subsystems MgO (or FeO)-Na2O–CaO–Al2O3–(KAl3O5–SiO2–H2O–CO2).Chemographic analyses show that the variance of assemblagesdecreases with increasing metamorphic grade. Physical conditions are estimated from calibrated mineral reactionsand other petrographic data. The composition of the fluid phasewas low in XCO2 throughout the metamorphic profile, whereasXCH4 was very high, particularly in the anchizone where aH2Owas probably as low as 0.2. P-T conditions along the metamorphicprofile are 1–2 kb/200–300 °C in the anchizone(Glarus Alps), and 5 kb/500–550 °C at the epi-mesozonetransition (Lukmanier area). Calculated geothermal gradientsdecrease from 50 °C/km in the anchimetamorphic Glarus Alpsto 30 °C/km at the epi-mesozone transition of the Lukmanierarea.  相似文献   

10.
Using an internally consistent thermodynamic dataset and updatedmodels of activity–composition relation for solid solutions,petrogenetic grids in the system NKFMASH (Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O)and the subsystems NKMASH and NKFASH have been calculated withthe software THERMOCALC 3.1 in the PT range 5–36kbar and 400–810°C, involving garnet, chloritoid,biotite, carpholite, talc, chlorite, kyanite/sillimanite, staurolite,phengite, paragonite, albite, glaucophane, jadeite, with quartz/coesiteand H2O in excess. These grids, together with calculated AFMcompatibility diagrams and PT pseudosections, are shownto be powerful tools for delineating the phase equilibria andPT conditions of Na-bearing pelitic assemblages for avariety of bulk compositions from high-P terranes around theworld. These calculated equilibria are in good agreement withpetrological studies. Moreover, contours of the calculated phengiteSi isopleths in PT pseudosections for different bulkcompositions confirm that phengite barometry is highly dependenton mineral assemblage. KEY WORDS: phase relations; HP metapelite; NKFMASH; THERMOCALC; phengite geobarometry  相似文献   

11.
We document experiments on a natural metapelite in the range650–775°C, 6–14 kbar, 10 wt % of added water,and 700–850°C, 4–10 kbar, no added water. Staurolitesystematically formed in the fluid-present melting experimentsabove 675°C, but formed only sporadically in the fluid-absentmelting experiments. The analysis of textures, phase assemblages,and variation of phase composition and Fe–Mg partitioningwith P and T suggests that supersolidus staurolite formed at(near-) equilibrium during fluid-present melting reactions.The experimental results are used to work out the phase relationsin the system K2O–Na2O–FeO–MgO–Al2O3–SiO2–H2Oappropriate for initial melting of metapelites at the upperamphibolite facies. The PT grid developed predicts theexistence of a stable PT field for supersolidus staurolitethat should be encountered by aluminous Fe-rich metapelitesduring fluid-present melting at relatively low temperature andintermediate pressures (675–700°C, 6–10 kbarfor XH2O = 1, in the KNFMASH system), but not during fluid-absentmelting. The implications of these findings for the scarcityof staurolite in migmatites are discussed. KEY WORDS: metapelites; migmatites; partial melting; PT grid; staurolite  相似文献   

12.
The mineral assemblages of greenschist to amphibolite faciesmetabasites may usually be represented in a system of principalcomponents: CaO–Al2O3–(Fe2O3)–FeO–MgO–Na2O–SiO2–CO2–H2O Assemblages co-existing with quartz, ‘albite’, ‘epidote’and a fluid of restricted composition, may be shown by projectionin a CAFM subsystem from ‘epidote’ onto an extendedAFM plane. This projection is analogous to the Thompson projectionfor pelites and is particularly useful in displaying the effectsof Fe/Mg and Al substitution in the silicates as well as incorporatingCaO; it is illustrated by plotting assemblages from the SouthernAlps of New Zealand and the Scottish Highlands and demonstrateschanges occurring with grade in the assemblages. Some commonisograds and facies boundaries are seen to be strongly dependenton bulk rock composition. In some cases MnO must be consideredas an additional component. A model of Psolids=Pfluid, where the fluid is composed of CO2+H2Ois consistent with many greenschist to amphibolite facies metabasicassemblages. Natural assemblages indicate this fluid phase tohave restricted mobility. Theoretical consideration of mineralreactions resulting from increasing Xco2, in conjunction withdata from natural mineral assemblages, leads to the distinctionof five principal types of assemblage which may be expectedas a function of varying XCo2. Recognition of these assemblagetypes provides a useful guide to relative XCo2 during metamorphism. * Present Address: Department of Geology, University of California, 405 Hilgard Avenue, Los Angeles, California 90024.  相似文献   

13.
Petrogenetic grids in the system NCKFMASH (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O)and the subsystems NCKMASH and NCKFASH calculated with the softwareTHERMOCALC 3.1 are presented for the PT range 7–30kbar and 450–680°C, for assemblages involving garnet,chloritoid, biotite, carpholite, talc, chlorite, kyanite, staurolite,paragonite, glaucophane, jadeite, omphacite, diopsidic pyroxene,plagioclase, zoisite and lawsonite, with phengite, quartz/coesiteand H2O in excess. These grids, together with calculated compatibilitydiagrams and PT and TXCa and PXCa pseudosectionsfor different bulk-rock compositions, show that incorporationof Ca into the NKFMASH system leads to many of the NKFMASH invariantequilibria moving to lower pressure and/or lower temperature,which results, in most cases, in the stability of jadeite andgarnet being enlarged, but in the reduction of stability ofglaucophane, plagioclase and AFM phases. The effect of Ca onthe stability of paragonite is dependent on mineral assemblageat different PT conditions. The calculated NCKFMASH diagramsare powerful in delineating the phase equilibria and PTconditions of natural pelitic assemblages. Moreover, contoursof the calculated phengite Si isopleths in PT and PXCapseudosections confirm that phengite barometry in NCKFMASH isstrongly dependent on mineral assemblage. KEY WORDS: phase relations; metapelites; NCKFMASH; THERMOCALC; phengite geobarometry  相似文献   

14.
Macquarie Island is an exposure above sea-level of part of thecrest of the Macquarie Ridge. The ridge marks the Australia–Pacificplate boundary south of New Zealand, where the plate boundaryhas evolved progressively since Eocene times from an oceanicspreading system into a system of long transform faults linkedby short spreading segments, and currently into a right-lateralstrike-slip plate boundary. The rocks of Macquarie Island wereformed during spreading at this plate boundary in Miocene times,and include intrusive rocks (mantle and cumulate peridotites,gabbros, sheeted dolerite dyke complexes), volcanic rocks (N-to E-MORB pillow lavas, picrites, breccias, hyaloclastites),and associated sediments. A set of Macquarie Island basalticglasses has been analysed by electron microprobe for major elements,S, Cl and F; by Fourier transform infrared spectroscopy forH2O; by laser ablation–inductively coupled plasma massspectrometry for trace elements; and by secondary ion mass spectrometryfor Sr, Nd and Pb isotopes. An outstanding compositional featureof the data set (47·4–51·1 wt % SiO2, 5·65–8·75wt % MgO) is the broad range of K2O (0·1–1·8wt %) and the strong positive covariation of K2O with otherincompatible minor and trace elements (e.g. TiO2 0·97–2·1%;Na2O 2·4–4·3%; P2O5 0·08–0·7%;H2O 0·25–1·5%; La 4·3–46·6ppm). The extent of enrichment in incompatible elements in glassescorrelates positively with isotopic ratios of Sr (87Sr/86Sr= 0·70255–0·70275) and Pb (206Pb/204Pb =18·951–19·493; 207Pb/204Pb = 15·528–15·589;208Pb/204Pb = 38·523–38·979), and negativelywith Nd (143Nd/144Nd = 0·51310–0·51304).Macquarie Island basaltic glasses are divided into two compositionalgroups according to their mg-number–K2O relationships.Near-primitive basaltic glasses (Group I) have the highest mg-number(63–69), and high Al2O3 and CaO contents at a given K2Ocontent, and carry microphenocrysts of primitive olivine (Fo86–89·5).Their bulk compositions are used to calculate primary melt compositionsin equilibrium with the most magnesian Macquarie Island olivines(Fo90·5). Fractionated, Group II, basaltic glasses aresaturated with olivine + plagioclase ± clinopyroxene,and have lower mg-number (57–67), and relatively low Al2O3and CaO contents. Group I glasses define a seriate variationwithin the compositional spectrum of MORB, and extend the compositionalrange from N-MORB compositions to enriched compositions thatrepresent a new primitive enriched MORB end-member. Comparedwith N-MORB, this new end-member is characterized by relativelylow contents of MgO, FeO, SiO2 and CaO, coupled with high contentsof Al2O3, TiO2, Na2O, P2O5, K2O and incompatible trace elements,and has the most radiogenic Sr and Pb regional isotope composition.These unusual melt compositions could have been generated bylow-degree partial melting of an enriched mantle peridotitesource, and were erupted without significant mixing with commonN-MORB magmas. The mantle in the Macquarie Island region musthave been enriched and heterogeneous on a very fine scale. Wesuggest that the mantle enrichment implicated in this studyis more likely to be a regional signature that is shared bythe Balleny Islands magmatism than directly related to the hypotheticalBalleny plume itself. KEY WORDS: mid-ocean ridge basalts; Macquarie Island; glass; petrology; geochemistry  相似文献   

15.
The sulfur content in basaltic melts coexisting with eithersulfide or sulfate melts was determined experimentally. Theexperimental conditions were in the range of 1300–1355°Cand 1·0–1·6 GPa, conditions appropriatefor the melting of the upper mantle above subduction zones.Under these conditions, both sulfide and sulfate were presentas immiscible liquids, as inferred from the round geometriesof the quenched sulfide and sulfate phases. The measured S contentin basaltic melts saturated with sulfate liquids ([S] = 1·5± 0·2 wt %) was 10 times higher than the S contentin basaltic melts saturated with sulfide liquids ([S] = 0·14± 0·02 wt %). In our experiments, sulfate liquidswere stable at fO2 as low as FMQ = +1·85 [FMQ = log (fO2)sample– log (fO2)FMQ, where FMQ is the fayalite–magnetite–quartzoxygen buffer], and evidence from other sources indicates thatsulfates will be stable at lower fO2 in melts with lower activitiesof silica. Because chalcophile and highly siderophile elements,such as Cu, Ni, Au, and Pd, are partitioned preferentially intosulfide phases, melting of sufficiently oxidized sources, inwhich sulfides are not stable, would favor incorporation ofthese elements into the silicate melt produced. Such melts wouldhave a higher potential to generate ore deposits. This studyshows that the high sulfur contents of such oxidized basaltsalso means that relatively small amounts of such magmas canprovide significant amounts of sulfur to exsolving volatilephases and account for the bulk of the sulfur expelled in somevolcanic eruptions, such the 1991 eruption of Mount Pinatubo. KEY WORDS: basalt; mantle; oxidation state; sulfate; sulfur  相似文献   

16.
Experiments were conducted to determine the solubilities ofH2O and CO2 and the nature of their mixing behavior in basalticliquid at pressures and temperature relevant to seqfloor eruption.Mid-ocean ridge basaltic (MORB) liquid was equilibrated at 1200°Cwith pure H2O at pressures of 176–717 bar and H2O—CO2vapor at pressures up to 980 bar. Concentrations and speciationof H2O and CO2 dissolved in the quenched glasses were measuredusing IR spectroscopy. Molar absorptivities for the 4500 cm–1band of hydroxyl groups and the 5200 and 1630 cm–1 bandsof molecular water are 0•67±0•03, 0•62±0•07,and 25±3 l/mol-cm, respectively. These and previouslydetermined molar absorptivities for a range of silicate meltcompositions correlate positively and linearly with the concentrationof tetrahedral cations (Si+Al). The speciation of water in glass quenched from vapor-saturatedbasaltic melt is similar to that determined by Silver &Stolper (Journal of Petrology 30, 667–709, 1989) in albiticglass and can be fitted by their regular ternary solution modelusing the coefficients for albitic glasses. Concentrations ofmolecular water measured in the quenched basaltic glasses areproportional to f H2O in all samples regardless of the compositionof the vapor, demonstrating that the activity of molecular waterin basaltic melts follows Henry's law at these pressures. Abest fit to our data and existing higher-pressure water solubilitydata (Khitarov et al., Geochemistry 5, 479–492, 1959;Hamilton et al., Journal of Petrology 5, 21–39, 1964),assuming Henrian behavior for molecular water and that the dependenceof molecular water content on total water content can be describedby the regular solution model, gives estimates for the Vo, mH2Oof 12±1 cm3/mol and for the 1-bar water solubility of0•11 wt%. Concentrations of CO2 dissolved as carbonate in the melt forpure CO2-saturated and mixed H2O-CO2-saturated experiments area simple function of fCO2 These results suggest Henrian behaviorfor the activity of carbonate in basaltic melt and do not supportthe widely held view that water significantly enhances the solutionof carbon dioxide in basaltic melts. Using a Vo, mr of 23 cm3/mol(Pan et al., Geochimica et Cosmochimica Acta 55, 1587–1595,1991), the solubility of carbonate in the melt at 1 bar and1200°C is 0•5 p.p.m. Our revised determination of CO2solubility is 20% higher than that reported by Stolper &Holloway (Earth and Planetary Science Letters 87, 397–408,1988). KEY WORDS: mid-ocean ridge basalts; water and carbon dioxide solubility; experimental petrology  相似文献   

17.
Anhydrite solubility in H2O–NaCl solutions was measuredat 6–14 kbar, 600–800°C and NaCl mole fractions(XNaCl) of 0–0·3 in piston–cylinder apparatus.Solubilities were determined by weight changes of natural anhydritein perforated Pt envelopes confined with fluid in larger Ptcapsules. In initially pure H2O at 10 kbar and 800°C, CaSO4concentration is low (0·03 molal), though much largerthan at the same temperature and 1 kbar. Hematite-buffered experimentsshowed slightly lower solubilities than unbuffered runs. CaSO4solubility increases enormously with NaCl activity: at 800°Cand 10 kbar and XNaCl of 0·3, CaSO4 molality is 200 timeshigher than with pure H2O. Whereas CaSO4 solubility in pureH2O decreases with rising T at low T and P, the high-P resultsshow that anhydrite solubility increases with T at constantP at all XNaCl investigated. The effects of salinity and temperatureare so great at 10 kbar that critical mixing between sulfate-richhydrosaline melts and aqueous salt solutions is probable at900°C at XNaCl 0·3. Recent experimental evidencethat volatile-laden magmas crystallizing in the deep crust mayevolve concentrated salt solutions could, in light of the presentwork, have important implications regarding such diverse processesas Mount Pinatubo-type S-rich volcanism, high-f O2 regionalmetamorphism, and emplacement of porphyry Cu–Mo ore bodies,where anhydrite–hematite alteration and fluid inclusionsreveal the action of very oxidized saline solutions rich insulfur. KEY WORDS: anhydrite; sulfur; solubility; metamorphic brines; granulites  相似文献   

18.
Alpine-type peridotites and associated pyroxenites are foundas lenses in the continental crust in many different orogens.The reconstruction of the pressure–temperature (P–T)evolution of these rocks is, however, difficult or even impossible.With geothermobarometry, usually one point on the overall P–Tpath can be obtained. To use the different mineral assemblagesobserved in ultramafic rocks as P–T indicators, quantitativeP–T phase diagrams are required. This study presents newcalculated phase diagrams for peridotitic and pyroxenitic rocksin the model systems CaO–MgO–Al2O3–SiO2–H2O(CMASH) and Na2O–CaO–MgO–Al2O3–SiO2–H2O(NCMASH), which include the respective solid solutions as continuousexchange vectors. These phase diagrams represent applicablepetrogenetic grids for peridotite and pyroxenite. On the basisof these general petrogenetic grids, phase diagrams for particularperidotite and pyroxenite bulk compositions are constructed.In an example of pyroxenite from the Shackleton Range, Antarctica,the different observed mineral assemblages are reflected bythe phase diagrams. For these rocks, a high-pressure metamorphicstage around 18 kbar and an anticlockwise P–T evolution,not recognized previously, can be inferred. KEY WORDS: Antarctic; high-pressure metamorphism; peridotite; phase diagrams; pyroxenite  相似文献   

19.
Mineral assemblages in pegmatite samples from Kolsva, Swedenand Marikov, Czechoslovakia show that chrysoberyl is alwaysaccompanied by quartz, and is a breakdown product of primarypegmatitic beryl. Textures and the mineral-forming process forthe Kolsva pegmatite are explained by the reactions beryl +K-feldspar + H+ = chrysoberyl + quartz + SiO2, aq + K+ + H2Oor alternatively beryl —K—feldspar + H2O = chrysoberyl+ quartz + melt. Mineral assemblages from mica-rich parts ofthe pegmatite include sillimanite—K—feldspar, muscovite—K—feldspar—sillimanite,and annite—magnetite—spinel—sillimanite—garnet.Details about the composition and the textural relationshipsof these minerals are given; they indicate a post-pegmatiticmetamorphic event at P—T conditions near to the anatecticregime. The samples from Marikov show textures, which are explainedby the reactions beryl + albite + H+ = chrysoberyl + quartz+ Na+ + H2O or alternatively beryl + albite + H2O = chrysoberyl+ quartz + melt. Breakdown of muscovite produces sillimaniteaccording to the reactions beryl + albite + muscovite + H+ =chrysoberyl + quartz + sillimanite + Na+ + K+ + H2O or alternativelyberyl + albite + muscovite + H2O = chrysoberyl + quartz + sillimanite+ melt. Similar reaction textures and mineral assemblages were foundin other chrysoberyl-bearing pegmatites (Maroankora, Madagascar;Helsinki, Finland; Haddam, Greenfield, Greenwood, U.S.A.). Hydrothermal experiments located the reaction beryl + alkalifeldspar + H2O = chrysoberyl + phenakite + melt at P—Tconditions between the K—feldspar—quartz—H2Osolidus and the K—feldspar—albite—quartz-H2Osolidus. It is concluded that the formation of Al-rich minerals likechrysoberyl and sillimanite in pegmatites is due to a post-pegmatiticevent at high P—T conditions. The question as to whichof the alternative set of reactions is more likely, the ionicequilibria or the anatectic chrysoberyl formation, must be leftopen. The previous hypothesis of a desilification of a pegmatitewhich intruded into SiO2-poor country rocks, or of the assimilationof Al2O3-rich country rocks, cannot explain the mineral assemblagesof the two pegmatites.  相似文献   

20.
In a global examination of mid-ocean ridge basalt (MORB) glasscompositions, we find that Na8–Fe8–depth variationsdo not support modeling of MORBs as aggregates of melt compositionsgenerated over a large range of temperature and pressure. However,the Na8–Fe8 variations are consistent with the compositionalsystematics of solidus melts in the plagioclase–spinellherzolite transition in the CaO–MgO–Al2O3–SiO2–Na2O–FeO(CMASNF) system. For natural compositions, the P–T rangefor melt extraction is estimated to be 1·2–1·5GPa and 1250–1280°C. This PT range is a closematch with the maximum PT conditions for explosive pressure-releasevaporization of carbonate-bearing melts. It is proposed thatfracturing of the lithosphere induces explosive formation andescape of CO2 vapor. This provides the vehicle for extractionof MORBs at a relatively uniform T and P. The upper portionof the CO2-bearing and slightly melted seismic low-velocityzone flows toward the ridge, rises at the ridge axis to lower-lithospheredepths, melts much more extensively during this rise, and releasesMORB melts to the surface driven by explosively escaping CO2vapor. The residue and overlying crust produced by this meltingthen migrate away from the ridge axis as new oceanic lithosphere.The entire process of oceanic lithosphere creation involvesonly the upper 140 km. When lithospheric stresses shift fractureformation to other localities, escape of CO2 ceases, the vehiclefor transporting melt to the surface disappears, and ridgesdie. Inverse correlations of Na8 vs Fe8 for MORB glasses areexplained by mantle heterogeneity, and positive variations superimposedon the inverse variations are consistent with progressive extractionof melts from short, ascending melting columns. The uniformlylow temperatures of MORB extraction are not consistent withthe existence of hot plumes on or close to ocean ridges. Inthis modeling, the southern Atlantic mantle from Bouvet to about26°N is relatively homogeneous, whereas the Atlantic mantlenorth of about 26°N shows significant long-range heterogeneity.The mantle between the Charlie Gibbs and Jan Mayen fracturezones is strongly enriched in FeO/MgO, perhaps by a trappedfragment of basaltic crust. Iceland is explained as the productof this enrichment, not a hot plume. The East Pacific Rise,Galapagos Ridge, Gorda Ridge, and Juan de Fuca Ridge samplemantle that is heterogeneous over short distances. The mantlebeneath the Red Sea is enriched in FeO/MgO relative to the mantlebeneath the northern Indian Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号