首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we analyze the relations between photospheric vector magnetic fields, chromospheric longitudinal magnetic fields and velocity fields in a solar active region. Agreements between the photospheric and chromospheric magnetograms can be found in large-scale structures or in the stronger magnetic structures, but differences also can be found in the fine structures or in other places, which reflect the variation of the magnetic force lines from the photosphere to the chromosphere. The chromospheric superpenumbral magnetic field, measured by the Hline, presents a spoke-like structure. It consists of thick magnetic fibrils which are different from photospheric penumbral magnetic fibrils. The outer superpenumbral magnetic field is almost horizontal. The direction of the chromospheric magnetic fibrils is generally parallel to the transverse components of the photospheric vector magnetic fields. The chromospheric material flow is coupled with the magnetic field structure. The structures of the H chromospheric magnetic fibrils in the network are similar to H dark fibrils, and the feet of the magnetic fibrils are located at the photospheric magnetic elements.  相似文献   

2.
Fine structure of solar magnetic fields   总被引:2,自引:0,他引:2  
The deduction of magnetic fields from chromospheric structure is extended to active regions and transverse fields. Fields independently predicted by these rules from a high resolution H filtergram are compared with a high resolution magnetogram. The H method has the advantage over conventional magnetograms that it shows transverse fields and relates the fields to the real Sun. It has the disadvantage that higher spatial resolution is required and that it is difficult and time consuming in very complicated regions.The response of the chromosphere to magnetic fields is most consistent. Vertical field is invariably marked by bright plage, with brightness roughly proportional to the field strength (except for sunspots). All dark fibrils mark transverse fields and are parallel to field lines. All polarity changes are marked by dark fibrils, which may be transverse fibrils perpendicular to the field boundary, or filaments (prominences) which connect more distant points, and in which the field lines run nearly parallel to the boundary. The asymmetry between preceding and following polarity found by Veeder and Zirin (1970) does not exist; it was due to the low resolution of the Mount Wilson magnetograms.The complexity of active region field structure depends on the history of the region; all flux erupts in simple bipolar form, and lines of force remain connected to sibling spots until reconnection takes place. Thus the complex structure only occurs after eruption of several dipoles which reconnect. The phenomenon of inverted polarity turns out to be due to the emergence of satellite bipolar fields, where the p spot merges with the rest of the p field and the f spot appears as an included f field. Flares usually occur when the field lines from f spot reconnect from its sibling to the main spot.  相似文献   

3.
Reversed-polarity structures of chromospheric magnetic fields are magnetic gulfs and islands of opposite polarity relative to the underlying photospheric fields. In this paper data measured with the Solar Magnetic Field Telescope of the Huairou Solar Observing Station in Beijing were analyzed. From more than 300 pairs of photospheric magnetograms (in FeI λ5324.19 Å) and relevant chromospheric magnetograms (Hβ λ4861.34 Å), the reality of the reversed-polarity structures is demonstrated. According to an analysis of the fine structure of the magnetic field in the two layers of active regions, we found that there are probably four different types as follows: Type A: magnetic islands of opposite polarity corresponding to photospheric fields appear in the chromospheric magnetogram. Type B: magnetic gulfs of opposite polarity corresponding to photospheric fields appear in the chromospheric magnetogram. Type C is the reverse of type B. That is, a magnetic gulf of opposite polarity corresponding to the chromospheric field appears in the photospheric magnetogram. Type D is the reverse of type A.  相似文献   

4.
In this paper, the chromospheric magnetic structures and their relation to the photospheric vector magnetic field in the vicinity of a dark filament in active region 5669 have been demonstrated. Structural variations are shown in chromospheric magnetograms after a solar flare. Filament-like structures in the chromospheric magnetograms occurred after a solar flare. They correspond to the reformation of the chromospheric dark filament, but there is no obvious variation of the photospheric magnetic field. We conclude that (a) some of the obvious changes of the chromospheric magnetic fields occurred after the flare, and (b) a part of these changes is perhaps due to flare brightening in the chromospheric H line.During the reforming process of the dark filament, a part of its chromospheric velocity field shows downward flow, and it later shows upward flow.  相似文献   

5.
A case of cancellation of magnetic fields is observed during the decay of a small active region. Three different sources of information were simultaneously used: high resolution magnetograms, chromospheric Caii filtergrams and transverse velocity fields.A magnetic structure is apparently dragged to the network by the supergranular velocity field while it splits into two. There, they meet another structure with opposite magnetic polarity. After a period of coexistence, the magnetic pairs vanish, leaving no trace of either magnetic or chromospheric structures.Visiting astronomer, Sacramento Peak Observatory, operated by the Association of Universities for Research in Astronomy, Inc. under contract AST-78-17292 with the National Science Foundation.  相似文献   

6.
A continuous relationship is proposed between the basic elements of the dark fine structure of the quiet and active chromosphere. A progression from chromospheric bushes to fibrils, then to chromospheric threads and active region filaments, and finally to diffuse quiescent filaments, is described. It is shown that the horizontal component of the field on opposite sides of an active region quiescent filament can be in the same direction and closely parallel to the filament axis. Consequently, it is unnecessary to postulate twisted or otherwise complex field configurations to reconcile the support mechanism of filaments with the observed motion along their axis.  相似文献   

7.
Zhang  Hongqi  Zhang  Mei 《Solar physics》2000,196(2):269-277
Simultaneous observations of chromospheric (H) and photospheric (Fei 5324.19 Å) magnetograms in quiet solar regions enable us to study the spatial configuration of the magnetic field in the solar atmosphere. With the typical spatial resolution of the Huairou magnetograph, the photospheric and chromospheric magnetic structures of the quiet Sun maintain a very similar pattern. Moreover, the vertical magnetic flux is almost the same from the photosphere to the chromosphere. As an intermediate step, we analyze the formation of the working lines used by the Huairou video magnetograph of the Beijing Astronomical Observatory. The Stokes V contribution function of H and Fei 5324.19 Å are calculated. It is found that our H magnetograms provide the distribution of the chromospheric magnetic field at a height some 1000–1500 km above the photosphere.  相似文献   

8.
Some theoretical models are given which illustrate the structure of chromospheric magnetic fields associated with supergranulation. It is found that the chromospheric fields depend critically on whether or not there are large-scale vertical motions at the level where the horizontal supergranule motions are observed. In the absence of such motions, the concentration of field produced in the photosphere does not persist more than a few scale heights into the chromosphere; however, the chromospheric mass density is increased above the supergranule boundaries in this case. Completely different results-such as a chromospheric potential field-may be obtained by the inclusion of vertical motions. It is concluded that a rather wide range of chromospheric-field structures is consistent with present observational knowledge of the supergranulation.  相似文献   

9.
The nonmagnetic interior of supergranulation cells has been thought since the 1940s to be heated by the dissipation of acoustic waves. But all attempts to measure the acoustic flux have failed to show sufficient energy for chromospheric heating. Recent space observations with TRACE, for example, have found 10% or less of the necessary flux. To explain the missing energy it has been speculated that the nonmagnetic chromosphere is heated mainly by waves related to the magnetic field. If that were correct, the whole chromosphere, magnetic as well as nonmagnetic, would be heated mainly by waves related to the magnetic field. But contrary to expectation, the radiation emerging from the nonmagnetic chromosphere shows none of the signatures of magnetic waves, only those of acoustic waves. Nearly all the heating of the nonmagnetic chromosphere must therefore be due to acoustic waves. In the magnetic network on the boundary of supergranulation cells, on the other hand, the small filling factor of the magnetic field in the photosphere implies that only a small fraction of the wave flux that travels upward to heat the chromosphere can be channeled by the magnetic field. Hence, while some of the energy that is dissipated in the magnetic network is in the form of magnetic waves, most of it must be in the form of acoustic waves. Thus, the quiet solar chromosphere, instead of being heated mainly by magnetic waves throughout, must be heated mainly by acoustic waves throughout. The full wave flux heating the quiet chromosphere must travel through the photosphere. In the nonmagnetic medium, this flux is essentially all in the form of acoustic waves; TRACE registers at most 10% of it, perhaps because of limited spatial resolution.  相似文献   

10.
Zhang  Mei  Zhang  Hongqi 《Solar physics》2000,194(1):19-28
Photospheric (Fei 5324.19 Å line) and chromospheric (H line) magnetic fields in quiet-Sun regions have been observed in the solar disk center by using the vector video magnetograph at Huairou Solar Observing Station of Beijing Astronomical Observatory. Observational results show that the quiet-Sun magnetic elements in the solar photosphere and chromosphere present similar magnetic structures. Photospheric and chromospheric magnetograms show corresponding time variations. This suggests that the magnetic fields in quiet-Sun regions present different 3-D magnetic configurations compared to those in solar active regions.  相似文献   

11.
We analyse data from Hinode spacecraft taken over two 54-minute periods during the emergence of AR 11024. We focus on small-scale portions within the observed solar active region and discover the appearance of very distinctive small-scale and short-lived dark features in Ca ii H chromospheric filtergrams and Stokes I images. The features appear in regions with close-to-zero longitudinal magnetic field, and are observed to increase in length before they eventually disappear. Energy release in the low chromospheric line is detected while the dark features are fading. Three complete series of these events are detected with remarkably similar properties, i.e. lifetime of ≈ 12 min, maximum length and area of 2 – 4 Mm and 1.6 – 4 Mm2, respectively, and all with associated brightenings. In time series of magnetograms a diverging bipolar configuration is observed accompanying the appearance of the dark features and the brightenings. The observed phenomena are explained as evidencing elementary flux emergence in the solar atmosphere, i.e. small-scale arch filament systems rising up from the photosphere to the lower chromosphere with a length scale of a few solar granules. Brightenings are explained as being the signatures of chromospheric heating triggered by reconnection of the rising loops (once they have reached chromospheric heights) with pre-existing magnetic fields, as well as being due to reconnection/cancellation events in U-loop segments of emerging serpentine fields. The characteristic length scale, area and lifetime of these elementary flux emergence events agree well with those of the serpentine field observed in emerging active regions. We study the temporal evolution and dynamics of the events and compare them with the emergence of magnetic loops detected in quiet Sun regions and serpentine flux emergence signatures in active regions. The physical processes of the emergence of granular-scale magnetic loops seem to be the same in the quiet Sun and active regions. The difference is the reduced chromospheric emission in the quiet Sun attributed to the fact that loops are emerging in a region of lower ambient magnetic field density, making interactions and reconnection less likely to occur. Incorporating the novel features of granular-scale flux emergence presented in this study, we advance the scenario for serpentine flux emergence.  相似文献   

12.
The physical properties of the quiet solar chromosphere–corona transition region are studied. Here the structure of the solar atmosphere is governed by the interaction of magnetic fields above the photosphere. Magnetic fields are concentrated into thin tubes inside which the field strength is great. We have studied how the plasma temperature, density, and velocity distributions change along a magnetic tube with one end in the chromosphere and the other one in the corona, depend on the plasma velocity at the chromospheric boundary of the transition region. Two limiting cases are considered: horizontally and vertically oriented magnetic tubes. For various plasma densities we have determined the ranges of plasma velocities at the chromospheric boundary of the transition region for which no shock waves arise in the transition region. The downward plasma flows at the base of the transition region are shown to be most favorable for the excitation of shock waves in it. For all the considered variants of the transition region we show that the thermal energy transfer along magnetic tubes can be well described in the approximation of classical collisional electron heat conduction up to very high velocities at its base. The calculated extreme ultraviolet (EUV) emission agrees well with the present-day space observations of the Sun.  相似文献   

13.
We observed the line-of-sight magnetic field in the chromosphereand photosphere of a large quiescent filament on the solar disk on September 6, 2001 using the Solar Magnetic Field Telescope in Huairou Solar Observing Station. The chromospheric and photospheric magnetograms together with Hβ filtergrams of the filament were examined. The filament was located on the neutral line of the large scale longitudinal magnetic field in the photosphere and the chromosphere. The lateral feet of the filament were found to be related to magnetic structures with opposite polarities. Two small lateral feet are linked to weak parasitic polarity. There is a negative magnetic structure in the photosphere under a break of the filament. At the location corresponding to the filament in the chromospheric magnetograms, the magnetic strength is found to be about 40-70 Gauss (measuring error about 39 Gauss). The magnetic signal indicates the amplitude and orientation of the internal magnetic field in the filament. We discuss several possible causes which may produce such a measured signal. A twisted magnetic configuration inside the filament is suggested .  相似文献   

14.
Observations of reversed-polarity features in the chromosphere as well as in the photosphere in the form of magnetic gulfs or islands of opposite polarity have been reported recently. In this paper, we present a possible explanation for the appearance of reversed-polarity features observed in the chromospheric magnetograms of the NOAA AR 7321 observed during October 25–27, 1992. It is suggested that the large-scale reversed-polarity features may occur due to the twisting of the smaller-scale magnetic flux tubes in the layer between the photosphere and the chromosphere.  相似文献   

15.
Woodard  M.F.  Chae  Jongchul 《Solar physics》1999,184(2):239-247
A comparison of BBSO H centerline filtergrams and videomagnetograms was made to investigate the existence of non- potential magnetic fields in the quiet Sun near magnetic network. We use the fibril structure in the H images as a proxy for the horizontal chromospheric magnetic field which we compare with the horizontal field obtained by potential extrapolation of the observed, line-of-sight photospheric field. The quiet-Sun field was found to be consistently and significantly non-potential in each of the three fields of view studied. A transient extreme ultraviolet (EUV) brightening, known as a blinker, occurred during the observations of a region where the field is highly non-potential, suggesting a connection between magnetic reconnection and non-potentiality.  相似文献   

16.
Hongqi Zhang 《Solar physics》1994,154(2):207-214
A set of H chromospheric magnetograms at various wavelengths near the line center, chromospheric Dopplergrams, and photospheric vector magnetograms of a unipolar sunspot region near the solar limb were obtained with the vector video magnetograph at the Huairou Solar Observing Station. The superpenumbral chromospheric magnetic field is almost parallel to the surface at the outside of the sunspot penumbra, where the magnetic lines of force are mainly concentrated in the superpenumbral filaments. In the gaps between the filaments the chromospheric horizontal field is weak.  相似文献   

17.
The magnetic structure of arch filament systems   总被引:1,自引:0,他引:1  
Photographic-type magnetograms are used in conjunction with H filtergrams to study the structure and evolution of magnetic fields associated with arch filament systems. The magnetograms show that the opposite ends of the arch filaments are indeed rooted in photospheric magnetic fields of opposite polarity. Furthermore, these magnetic field systems are in every case new magnetic flux appearing at the solar surface. Time lapse studies show the detailed process by which the flux tubes emerge through the surface. First, supergranules bring individual strands of magnetic flux to the surface and sweep the two feet of the flux tube to opposite sides of the supergranule. Then, the flux tube rises through the chromosphere, creating a visible arch filament. It is also shown that the observed rotation of the axis of an arch filament system in the plane of the solar surface is caused by the emergence of successive flux loops, each possessing different axial tilts.  相似文献   

18.
We use synchronous movies from the Dutch Open Telescope sampling the G band, Ca?ii?H, and Hα with five-wavelength profile sampling to study the response of the chromosphere to acoustic events in the underlying photosphere. We first compare the visibility of the chromosphere in Ca?ii?H and Hα, demonstrate that studying the chromosphere requires Hα data, and summarize recent developments in understanding why this is so. We construct divergence and vorticity maps of the photospheric flow field from the G-band images and locate specific events through the appearance of bright Ca?ii?H grains. The reaction of the Hα chromosphere is diagnosed in terms of brightness and Doppler shift. We show and discuss three particular cases in detail: a regular acoustic grain marking shock excitation by granular dynamics, a persistent flasher, which probably marks magnetic-field concentration, and an exploding granule. All three appear to buffet overlying fibrils, most clearly in Dopplergrams. Although our diagnostic displays to dissect these phenomena are unprecedentedly comprehensive, adding even more information (photospheric Doppler tomography and magnetograms along with chromospheric imaging and Doppler mapping in the ultraviolet) is warranted.  相似文献   

19.
A series of H chromospheric magnetograms was obtained at various wavelengths near the line center with the vector video magnetograph at Huairou Solar Observing Station as a diagnostic of chromospheric magnetic structures. The two-dimensional distribution of the circular polarization light of the H line with its blended lines at various wavelength in active regions was obtained, which consists of the analyses of Stokes' profileV of this line. Due to the disturbance of the photospheric blended line Fei 4860.98 for the measurement of the chromospheric magnetic field, a reversal in the chromospheric magnetograms relative to the photospheric ones occurs in the sunspot umbrae. But in the quiet, plage regions, even penumbrae, the influence of the photospheric blended Fei 4860.98 line is not obvious. As regards the observation of the H chromospheric magnetograms, we can select the working wavelength between -0.20 and -0.24 from the line core of H to avoid the wavelengths of the photospheric blended lines in the wing of H.After the spectral analysis of chromospheric magnetograms, we conclude that the distribution of the chromospheric magnetic field is similar to the photospheric field, especially in the umbrae of the sunspots. The chromospheric magnetic field is the result of the extension of the photospheric field.  相似文献   

20.
The convective stability of a simple model chromosphere is investigated. The model chromosphere consists of protons, electrons, and hydrogen atoms in the ground state; ionization is collisional and recombination is radiative. The analysis indicates stability when the kinetic temperature (T) is less than 17 500K (assuming T increases with height). However, for T > 17 500K, the model chromosphere is overstable in the absence of magnetic fields provided the temperature inversion is sufficiently steep. For smaller values of the temperature gradient, field-free regions are stable if the density is small and monotonically unstable if it is large. In the presence of a magnetic field, the model chromosphere is monotonically unstable for T > 17 500K, regardless of the temperature gradient.The convective instability of the model chromosphere results from the fact that the plasma is thermally unstable for T > 17 500K. Thermally unstable regions of the solar atmosphere, although not represented in detail by the model, should behave in a similar fashion.Field-free regions of the solar chromosphere are probably not monotonically unstable, but overstability is possible and may explain the origin of chromospheric oscillations with periods less than 200 sec. It is suggested that spicules result from the monotonic instability of magnetic regions. A similar instability in the corona may be responsible for the large Doppler spreading of radar echoes.Elementary considerations of thermal balance predict that the temperature gradient should diverge at levels of marginal stability. The chromospheric region of spicule formation and the corona should therefore both be bounded below by abrupt temperature jumps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号