共查询到20条相似文献,搜索用时 15 毫秒
1.
As debris‐covered glaciers become a more prominent feature of a shrinking mountain cryosphere, there is increasing need to successfully model the surface energy and mass balance of debris‐covered glaciers, yet measurements of the processes operating in natural supraglacial debris covers are sparse. We report measurements of vertical temperature profiles in debris on the Ngozumpa glacier in Nepal, that show: (i) conductive processes dominate during the ablation season in matrix‐supported diamict; (ii) ventilation may be possible in coarse surface layers; (iii) phase changes associated with seasonal change have a marked effect on the effective thermal diffusivity of the debris. Effective thermal conductivity determined from vertical temperature profiles in the debris is generally ~30% higher in summer than in winter, but values depend on the volume and phase of water in the debris. Surface albedo can vary widely over small spatial scales, as does the debris thickness. Measurements indicate that debris thickness is best represented as a probability density function with the peak debris thickness increasing down‐glacier. The findings from Ngozumpa glacier indicate that the probability distribution of debris thickness changes from positively skewed in the upper glacier towards a more normal distribution nearer the terminus. Although many of these effects remain to be quantified, our observations highlight aspects of spatial and temporal variability in supraglacial debris that may require consideration in annual or multi‐annual distributed modelling of debris‐covered glacier surface energy and mass balance. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
2.
Biswajit Mukhopadhyay 《水文科学杂志》2013,58(12):2062-2085
AbstractField observations and geodetic measurements suggest that in the Karakoram Mountains, glaciers are either stable or have expanded since 1990, in sharp contrast to glacier retreats that are prevalently observed in the Himalayas and adjoining high-altitude terrains of central Asia. Decreased discharge in the rivers originating from this region is cited as a supporting evidence for this somewhat anomalous phenomenon. Here, we show that river discharge during the melting season of the glaciers in the eastern and western Karakoram, respectively, exhibits rising and falling trends. We have implemented a statistical procedure involving non-parametric tests combined with a benchmark smoothing technique that has proven to be a powerful method for separating the stochastic component from the trend component in a time series. Precipitation patterns determined from ERA-40 and GPCP data indicate that summer-monsoonal precipitation has increased over the Karakoram Mountains in recent decades. Increasing flows in June and July in the eastern Karakoram are due to an increase in summer-monsoonal precipitation. The rising trend of August discharge is due to an increase in the loss of glacier storage at an approximate average rate of 0.186–0.217 mm d-1 year-1 during the period 1973–2010. Moreover, this rate is higher than the rate of increase in monsoonal snowfall during the months of August and September. Therefore, most plausibly, glacier mass balance in the eastern Karakoram is negative. In the western Karakoram, river flows show declining trends for all summer months for the period 1966–2010, corresponding to a rate of increase of glacier storage by approximately 0.552–0.644 mm d-1 year-1, which is also higher than the rate of increase in summer-monsoonal precipitation. The gain of the cryospheric mass in the western Karakoram is in the form of increased thickness of the glaciers and perennial snowpacks instead of areal expansion. This investigation shows two contrasting patterns of trends of river flows that signify both negative and positive mass balance of the Karakoram glaciers. Trends of river flows are spatially and temporally integrated responses of a watershed to changing climate and thereby are important signals of the conditions of the cryospheric component of a watershed where it is highly significant. However, they cannot unequivocally provide indications of the state and fate of the glaciers in the complex hydrometeorological setting of the Karakoram. Extreme caution and care must be exercised in interpreting trends of river discharge in conjunction with climatic data. 相似文献
3.
Cameron Scott Watson Duncan J. Quincey Jonathan L. Carrivick Mark W. Smith Ann V. Rowan Robert Richardson 《地球表面变化过程与地形》2018,43(1):229-241
The water storage and energy transfer roles of supraglacial ponds are poorly constrained, yet they are thought to be important components of debris‐covered glacier ablation budgets. We used an unmanned surface vessel (USV) to collect sonar depth measurements for 24 ponds to derive the first empirical relationship between their area and volume applicable to the size distribution of ponds commonly encountered on debris‐covered glaciers. Additionally, we instrumented nine ponds with thermistors and three with pressure transducers, characterizing their thermal regime and capturing three pond drainage events. The deepest and most irregularly‐shaped ponds were those associated with ice cliffs, which were connected to the surface or englacial hydrology network (maximum depth = 45.6 m), whereas hydrologically‐isolated ponds without ice cliffs were both more circular and shallower (maximum depth = 9.9 m). The englacial drainage of three ponds had the potential to melt ~100 ± 20 × 103 kg to ~470 ± 90 × 103 kg of glacier ice owing to the large volumes of stored water. Our observations of seasonal pond growth and drainage with their associated calculations of stored thermal energy have implications for glacier ice flow, the progressive enlargement and sudden collapse of englacial conduits, and the location of glacier ablation hot‐spots where ponds and ice cliffs interact. Additionally, the evolutionary trajectory of these ponds controls large proglacial lake formation in deglaciating environments. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
4.
Catriona L. Fyffe Amy S. Woodget Martin P. Kirkbride Philip Deline Matthew J. Westoby Ben W. Brock 《地球表面变化过程与地形》2020,45(10):2272-2290
Current glacier ablation models have difficulty simulating the high-melt transition zone between clean and debris-covered ice. In this zone, thin debris cover is thought to increase ablation compared to clean ice, but often this cover is patchy rather than continuous. There is a need to understand ablation and debris dynamics in this transition zone to improve the accuracy of ablation models and the predictions of future debris cover extent. To quantify the ablation of partially debris-covered ice (or ‘dirty ice’), a high-resolution, spatially continuous ablation map was created from repeat unmanned aerial systems surveys, corrected for glacier flow in a novel way using on-glacier ablation stakes. Surprisingly, ablation is similar (range ~ 5 mm w.e. per day) across a wide range of percentage debris covers (~ 30–80%) due to the opposing effects of a positive correlation between percentage debris cover and clast size, countered by a negative correlation with albedo. Once debris cover becomes continuous, ablation is significantly reduced (by 61.6% compared to a partial debris cover), and there is some evidence that the cleanest ice (<~ 15% debris cover) has a lower ablation than dirty ice (by 3.7%). High-resolution feature tracking of clast movement revealed a strong modal clast velocity where debris was continuous, indicating that debris moves by creep down moraine slopes, in turn promoting debris cover growth at the slope toe. However, not all slope margins gain debris due to the removal of clasts by supraglacial streams. Clast velocities in the dirty ice area were twice as fast as clasts within the continuously debris-covered area, as clasts moved by sliding off their boulder tables. These new quantitative insights into the interplay between debris cover characteristics and ablation can be used to improve the treatment of dirty ice in ablation models, in turn improving estimates of glacial meltwater production. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd 相似文献
5.
P.D. Hughes 《地球表面变化过程与地形》2010,35(2):229-241
Moraine ridges are present in the highest cirques of the Durmitor massif in Montenegro and post‐date the widespread Pleistocene moraines of this area. Lichenometry suggests that at least eight glaciers were present in the 19th century and correlate with the culmination of the Little Ice Age in the European Alps. Cooler temperatures combined with local topoclimatic controls, including windblown and avalanching snow as well as shading, were crucial for the formation and survival of these glaciers below the regional equilibrium–line altitude. The resultant regional equilibrium line altitude (ELA) was positioned close to the highest peaks between 2400 and 2500 m, with local controls such as avalanche, windblown snow and shading depressing the ELA in the northern cirques to 2130–2210 m. This ELA position was very low for this latitude and lower than for most glaciers in the European Alps at any time during the Holocene, and even equivalent to many Alpine glaciers during the Younger Dryas. Today, one glacier still survives in Montenegro, in a deep northeast‐facing cirque characterized by the largest combined areas of potential avalanche and windblown snow. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
6.
Colin J. Gleason Laurence C. Smith Vena W. Chu Carl J. Legleiter Lincoln H. Pitcher Brandon T. Overstreet Asa K. Rennermalm Richard R. Forster Kang Yang 《地球表面变化过程与地形》2016,41(14):2111-2122
Supraglacial rivers on the Greenland Ice Sheet (GrIS) transport large volumes of surface meltwater toward the ocean, yet have received relatively little direct research. This study presents field observations of channel width, depth, velocity, and water surface slope for nine supraglacial channels on the south‐western GrIS collected between July 23 and August 20, 2012. Field sites are located up to 74 km inland and span 494–1485 m elevation, and contain measured discharges larger than any previous in situ study: from 0.006 to 23.12 m3/s in channels 0.20 to 20.62 m wide. All channels were deeply incised with near vertical banks, and hydraulic geometry results indicate that supraglacial channels primarily accommodate greater discharges by increasing velocity. Smaller streams had steeper water surface slopes (0.74–8.83%) than typical in terrestrial settings, yielding correspondingly high velocities (0.40–2.60 m/s) and Froude numbers (0.45–3.11) with supercritical flow observed in 54% of measurements. Derived Manning's n values were larger and more variable than anticipated from channels of uniform substrate, ranging from 0.009 to 0.154 with a mean value of 0.035 ± 0.027 despite the absence of sediment, debris, or other roughness elements. Ubiquitous micro‐depressions in shallow sections of the channel bed may explain some of these roughness values. However, we find that other, unobserved sources of flow resistance likely contributed to these elevated Manning's n values: future work should explicitly consider additional sources of flow resistance beyond bed roughness in supraglacial channels. We conclude that hydraulic modeling for these channels must allow for both subcritical and supercritical flow, and most importantly must refrain from assuming that all ice‐substrate channels exhibit similar hydraulic behavior, especially for Froude numbers and Manning's n. Finally, this study highlights that further theoretical and empirical work on supraglacial channel hydraulics is necessary before broad scale understanding of ice sheet hydrology can be achieved. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
7.
In extensively glaciarized permafrost areas such as Northern Victoria Land, rock glaciers are quite common and are considered postglacial cryotic landforms. This paper reveals that two rock glaciers in Northern Victoria Land (at Adélie Cove and Strandline) that are located close to the Italian Antarctic Station (Mario Zucchelli Station) should have the same origin, although they were previously mapped as Holocene periglacial landforms and subsequently considered ice‐cored and ice‐cemented rock glaciers, respectively. In fact, by integrating different geophysical investigations and borehole stratigraphy, we show that both landforms have similar internal structures and cores of buried glacier ice. Therefore, this kind of rock glacier is possibly related to the long‐term creep of buried ice rather than to permafrost creep alone. This interpretation can be extended to the larger part of the features mapped as rock glaciers in Antarctica. In addition, a high‐reflective horizon sub‐parallel to the topographic surface was detected in Ground Probing Radar (GPR) data over a large part of the study area. Combining all the available information, we conclude that it cannot be straightforwardly interpreted as the base of the active layer but rather represents the top of a cryo‐lithological unit characterized by ice lenses within sediments that could be interpreted as the transition zone between the active layer and the long‐term permafrost table. More generally, knowledge of the subsurface ice content and, in particular, the occurrence of massive ice and its depth is crucial to make realistic and affordable forecasts regarding thermokarst development and related feedbacks involving GHG emissions, especially in the case of cryosoils rich in carbon content. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
8.
Harold Lovell Stephen J. Livingstone Clare M. Boston Adam D. Booth Robert D. Storrar Iestyn D. Barr 《地球表面变化过程与地形》2019,44(13):2685-2702
The development of glacier karst at the margins of melting ice sheets produces complex glaciofluvial sediment-landform assemblages that provide information on ice sheet downwasting processes. We present the first combined geomorphological, sedimentological and geophysical investigation of the Brampton Kame Belt, an important glaciofluvial depositional zone at the centre of the last British-Irish Ice Sheet. Ground-penetrating radar (GPR) data allow the broad scale internal architecture of ridges (eskers) and flat-topped hills (ice-walled lake plains) to be determined at four sites. In combination with sediment exposures, these provide information on lateral and vertical variations in accretion styles, depositional boundaries, and grain size changes. Building on existing work on the subject, we propose a refined model for the formation of ice-walled lake plains resulting from the evolution and collapse of major drainage axes into lakes as stable glacier karst develops during deglaciation. The internal structure of esker ridges demonstrates variations in sedimentation that can be linked to differences in ridge morphologies across the kame belt. This includes low energy flow conditions and multiple accretion phases identified within large S-N oriented esker ridges; and fluctuating water pressures, hyperconcentrated flows, and significant deformation within a fragmented SW–NE oriented esker ridge. In combination with updated geomorphological mapping, this work allows us to identify two main styles of drainage within the kame belt: (1) major drainage axes aligned broadly S-N that extend through the entire kame belt and collapsed into a chain of ice-walled lakes; and (2) a series of smaller, fragmented SW–NE aligned esker ridges that represent ice-marginal drainage as the ice sheet receded south-eastwards up the Vale of Eden. Our study demonstrates the importance of integrated geomorphological, sedimentological and geophysical investigations in order to understand complex and polyphase glaciofluvial sediment-landform assemblages. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd. 相似文献
9.
Exploitation of Landsat data for snow zonation mapping in the Hindukush,Karakoram and Himalaya (HKH) region of Pakistan 总被引:1,自引:0,他引:1
Mohsin Jamil Butt 《水文科学杂志》2013,58(5):1088-1096
Abstract In the Hindukush, Karakoram and Himalaya (HKH) region of Pakistan, many glaciological variables are still not known due to the remoteness and harsh weather conditions of the area. A remote sensing technique is therefore applied to map the snow zonation in the HKH region. Landsat 7 ETM+ data for the year 2003 are used in this study. Image classification and image processing techniques are applied to map, for the first time, the major snow zones in the HKH region. Six classes are identified: the results show that the area covered by the highest-altitude snow (Snow I), lower-altitude snow (Snow II), bare ice, debris-covered ice, wet snow and shadow is 21 529.42, 22 472.58, 8696.41, 8038.75, 12 159.37 and 7322.30 km2, respectively. The study also indicates that the equilibrium line altitude (ELA) lies between 5000 and 5500 m above sea level, with an accumulation area ratio (AAR) of 0.60. Citation Butt, M.J., 2013. Exploitation of Landsat data for snow zonation mapping in the Hindukush, Karakoram and Himalaya (HKH) region of Pakistan. Hydrological Sciences Journal, 58 (5), 1088–1096. 相似文献
10.
Water levels in cryoconite holes were monitored at high resolution over a 3‐week period on Austre Brøggerbreen (Svalbard). These data were combined with melt and energy balance modelling, providing insights into the evolution of the glacier's near‐surface hydrology and confirming that the hydrology of the near‐surface, porous ice known as the ‘weathering crust’ is dynamic and analogous to a shallow‐perched aquifer. A positive correlation between radiative forcing of melt and drainage efficiency was found within the weathering crust. This likely resulted from diurnal contraction and dilation of interstitial pore spaces driven by variations in radiative and turbulent fluxes in the surface energy balance, occasionally causing ‘sudden drainage events’. A linear decrease in water levels in cryoconite holes was also observed and attributed to cumulative increases in near‐surface ice porosity over the measurement period. The transport of particulate matter and microbes between cryoconite holes through the porous weathering crust is shown to be dependent upon weathering crust hydraulics and particle size. Cryoconite holes therefore yield an indication of the hydrological dynamics of the weathering crust and provide long‐term storage loci for cryoconite at the glacier surface. This study highlights the importance of the weathering crust as a crucial component of the hydrology, ecology and biogeochemistry of the glacier ecosystem and glacierized regions and demonstrates the utility of cryoconite holes as natural piezometers on glacier surfaces. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
11.
Hanna Bremer 《地球表面变化过程与地形》1984,9(3):281-287
In recent decades, German geomorphology has been mainly concerned with climatic and climato-genetic geomorphology. The first is the study of processes, especially of process combinations in different climato-morphological zones. The second is concerned with the way exogenic forces control the evolution of relief in a certain region. This study of relief generations differs fundamentally from denudation chronology. Certain principles developed as knowledge of these fields has grown, such as the variability of rock resistance with climate and discontinuity of processes in both space and time, are considered. In recent years new trends, based mainly on climatic geomorphology, have been towards greater specialization in fields such as quantitative geomorphology, geomorphological mapping, and laboratory analysis of regolith and soil samples. 相似文献
12.
Matthew J. Westoby David R. Rounce Thomas E. Shaw Catriona L. Fyffe Peter L. Moore Rebecca L. Stewart Benjamin W. Brock 《地球表面变化过程与地形》2020,45(14):3431-3448
There exists a need to advance our understanding of debris-covered glacier surfaces over relatively short timescales due to rapid, climatically induced areal expansion of debris cover at the global scale, and the impact debris has on mass balance. We applied unpiloted aerial vehicle structure-from-motion (UAV-SfM) and digital elevation model (DEM) differencing with debris thickness and debris stability modelling to unravel the evolution of a 0.15 km2 region of the debris-covered Miage Glacier, Italy, between June 2015 and July 2018. DEM differencing revealed widespread surface lowering (mean 4.1 ± 1.0 m a-1; maximum 13.3 m a-1). We combined elevation change data with local meteorological data and a sub-debris melt model, and used these relationships to produce high resolution, spatially distributed maps of debris thickness. These maps were differenced to explore patterns and mechanisms of debris redistribution. Median debris thicknesses ranged from 0.12 to 0.17 m and were spatially variable. We observed localized debris thinning across ice cliff faces, except those which were decaying, where debris thickened. We observed pervasive debris thinning across larger, backwasting slopes, including those bordered by supraglacial streams, as well as ingestion of debris by a newly exposed englacial conduit. Debris stability mapping showed that 18.2–26.4% of the survey area was theoretically subject to debris remobilization. By linking changes in stability to changes in debris thickness, we observed that slopes that remain stable, stabilize, or remain unstable between periods almost exclusively show net debris thickening (mean 0.07 m a-1) whilst those which become newly unstable exhibit both debris thinning and thickening. We observe a systematic downslope increase in the rate at which debris cover thickens which can be described as a function of the topographic position index and slope gradient. Our data provide quantifiable insights into mechanisms of debris remobilization on glacier surfaces over sub-decadal timescales, and open avenues for future research to explore glacier-scale spatiotemporal patterns of debris remobilization. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd 相似文献
13.
Meltwaters collected from the proglacial stream escaping from Zongo Glacier (2·1 km2), Bolivia (16°S), have been monitored in order to analyse the internal drainage system of an Andean glacier. Electrical conductivity has been measured sporadically between February 1995 and March 1996, during 16 one-day field surveys, under various meteorological conditions in summer and winter. The mixing-model technique based on the electrical conductivity is used for a quantitative separation of discharge which is derived from continuous water level registration. Tracer experiments (mainly uranine dye and NaCl salt) have been carried out from March to June 1997 to obtain information about the internal drainage system. In the tropical Andes, accumulation only occurs in austral summer, whereas ablation occurs throughout the year and is higher during the accumulation season, between November and March. The assumptions involved in the use of mixing models for analysis of glacial drainage structure are applicable for tropical glaciers because glacial conduits do not suffer complete closure, and are permanently supplied by meltwaters, even in wintertime. Two components of discharge are separated: an englacial flow originating from surface meltwater which is routed without chemical enrichment, and offering low electrical conductivity; and a subglacial one routed in contact with bedrock or sediments showing high ionic concentrations. Electrical conductivity of meltwater varies diurnally, inversely to discharge fluctuations. According to this behaviour, total discharge is mainly formed by the englacial component. The drainage structures for englacial and subglacial flow have to be widely interconnected, as indicated by diurnal variations of the subglacial discharge. Comparison of hydrograph separation based on conductivity and on 18O isotope confirms that the subglacial flow is influenced by surface melting. A hydrograph separation of the subglacial flow is proposed, between a diurnal variable component, composed of water coming from the englacial network, and a base flow, which may vary seasonally. The dye tracing experiments confirm the drainage complexity of Zongo Glacier and demonstrate the interest of identifying three main drainage components. © 1998 John Wiley & Sons, Ltd. 相似文献
14.
Rockwall slope erosion is defined for the upper Bhagirathi catchment using cosmogenic Beryllium-10 (10Be) concentrations in sediment from medial moraines on Gangotri glacier. Beryllium-10 concentrations range from 1.1 ± 0.2 to 2.7 ± 0.3 × 104 at/g SiO2, yielding rockwall slope erosion rates from 2.4 ± 0.4 to 6.9 ± 1.9 mm/a. Slope erosion rates are likely to have varied over space and time and responded to shifts in climate, geomorphic and/or tectonic regime throughout the late Quaternary. Geomorphic and sedimentological analyses confirm that the moraines are predominately composed of rockfall and avalanche debris mobilized from steep relief rockwall slopes via periglacial weathering processes. The glacial rockwall slope erosion affects sediment flux and storage of snow and ice at the catchment head on diurnal to millennial timescales, and more broadly influences catchment configuration and relief, glacier dynamics and microclimates. The slope erosion rates exceed the averaged catchment-wide and exhumation rates of Bhagirathi and the Garhwal region on geomorphic timescales (103−105 years), supporting the view that erosion at the headwaters can outpace the wider catchment. The 10Be concentrations of medial moraine sediment for the upper Bhagirathi catchment and the catchments of Chhota Shigri in Lahul, northern India and Baltoro glacier in Central Karakoram, Pakistan show a tentative relationship between 10Be concentration and precipitation. As such there is more rapid glacial rockwall slope erosion in the monsoon-influenced Lesser and Greater Himalaya compared to the semi-arid interior of the orogen. Rockwall slope erosion in the three study areas, and more broadly across the northwest Himalaya is likely governed by individual catchment dynamics that vary across space and time. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons, Ltd. 相似文献
15.
16.
There is a high degree of uncertainty about the state and fate of Pakistan's Karakoram glaciers due to data scarcity in high altitude regions. They are thought to be less vulnerable to climatic change because they behave differently as compared with eastern Himalayas. This study measures the decadal temporal changes in the glacial ice area of Karakoram's Hunza River Basin, one of the eight subbasins of Upper Indus Basin. An attempt has been made to investigate the relationship between glacial ice area changes and calculated values of precipitation, temperature and run‐off. A combination of satellite and field‐based approach is applied. Output includes maps of glacial ice hypsometries of eight glacial ice subregions of Hunza River Basin for 3 years (i.e., 1989, 2002, and 2010). The results show a decreasing trend in the glacial ice‐covered area signifying a reduction of 20.47% with the largest reduction being in the lower elevation bands. There is presently no conclusive answer as to why glacial ice in the Karakoram is acting differently from the near‐global indication of glacial ice changes. Climate data from high altitudes are needed to find answer for this anomalous behaviour. 相似文献
17.
M. TRANTER M. J. SHARP G. H. BROWN I. C. WILLIS B. P. HUBBARD M. K. NIELSEN C. C. SMART S. GORDON M. TULLEY H. R. LAMB 《水文研究》1997,11(1):59-77
Meltwaters collected from boreholes drilled to the base of the Haut Glacier d'Arolla, Switzerland have chemical compositions that can be classified into three main groups. The first group is dilute, whereas the second group is similar to, though generally less concentrated in major ions, than contemporaneous bulk glacial runoff. The third group is more concentrated than any observed bulk runoff, including periods of flow recession. Waters of the first group are believed to represent supraglacial meltwater and ice melted during drilling. Limited solutes may be derived from interactions with debris in the borehole. The spatial pattern of borehole water levels and borehole water column stratification, combined with the chemical composition of the different groups, suggest that the second group represent samples of subglacial waters that exchange with channel water on a diurnal basis, and that the third group represent samples of water draining through a ‘distributed’ subglacial hydraulic system. High NO−3 concentrations in the third group suggest that snowmelt may provide a significant proportion of the waters and that the residence time of the waters at the bed in this particular section of the distributed system is of the order of a few months. The high NO−3 concentrations also suggest that some snowmelt is routed along different subglacial flowpaths to those used by icemelt. The average SO2−4: (HCO−3 + SO2−4) ratio of the third group of meltwaters is 0.3, suggesting that sulphide oxidation and carbonate dissolution (which gives rise to a ratio of 0.5) cannot provide all the HCO−3 to solution. Hence, carbonate hydrolysis may be occurring before sulphide oxidation, or there may be subglacial sources of CO2, perhaps arising from microbial oxidation of organic C in bedrock, air bubbles in glacier ice or pockets of air trapped in subglacial cavities. The channel marginal zone is identified as an area that may influence the composition of bulk meltwater during periods of recession flow and low diurnal discharge regimes. © 1997 by John Wiley & Sons, Ltd. 相似文献
18.
Glaciological controls on debris cover formation are investigated from the perspective of primary dispersal of supraglacial debris across a melting ice surface. This involves the migration of angled debris septa outcrops across a melting, thinning glacier ablation zone. Three measures of a glacier's ability to evacuate supraglacial debris are outlined: (1) a concentration factor describing the focusing of englacial debris into specific supraglacial mass loads; (2) the rate of migration of a septum outcrop relative to the local ice surface; and (3) a downstream velocity differential between a slower septum outcrop and the faster ice surface velocity. Measures (1) and (2) are inversely related, while measure (3) increases down‐glacier to explain why slow‐moving, thinning ice rapidly becomes debris covered. Data from Glacier d'Estelette (Italian Alps) are used to illustrate these processes, and to explore the potential for debris cover formation and growth in different glaciological environments. The transition from a ‘clean’, transport‐dominated to a debris‐covered ablation‐dominated glacier is explained by the melting out of more closely‐spaced debris septa, in combination with the geometric interactions of angled septa and ice surface in a field of reducing flow and increasing ablation. The growth and shrinkage of debris covers are most sensitive to glaciological changes at glaciers with gently‐dipping debris‐bearing foliation, but less sensitive at high‐compression glaciers whose termini are constrained by moraine dams and other forms of obstruction. These findings show that a variety of debris‐covered glacier types will show a spectrum of response characteristics to negative mass balance. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
19.
Shulamit Gordon Martin Sharp Bryn Hubbard Ian Willis Chris Smart Luke Copland Jon Harbor Bradley Ketterling 《水文研究》2001,15(5):797-813
Studies of glacier hydrology rely increasingly on measurements made in boreholes as a basis for reconstructing the character and behaviour of subglacial drainage systems. In temperate glaciers, in which boreholes remain open to the atmosphere following drilling, the interpretation of such data may be complicated by supraglacial or englacial water flows to and from boreholes. We report on a suite of techniques used to identify borehole water sources and to reconstruct patterns of water circulation within boreholes at Haut Glacier d'Arolla, Switzerland. Results are used to define a number of borehole ‘drainage’ types. Examples of each drainage type are presented, along with the manner in which they influence interpretations of borehole water‐levels, borehole water‐quality data, and borehole dye traces. The analysis indicates that a full understanding of possible borehole drainage modes is required for the correct interpretation of many borehole observations, and that those observations provide an accurate indication of subglacial conditions only under relatively restricted circumstances. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
20.
Climate change, manifested by an increase in mean, minimum, and maximum temperatures and by more intense rainstorms, is becoming more evident in many regions. An important consequence of these changes may be an increase in landslides in high mountains. More research, however, is necessary to detect changes in landslide magnitude and frequency related to contemporary climate, particularly in alpine regions hosting glaciers, permafrost, and snow. These regions not only are sensitive to changes in both temperature and precipitation, but are also areas in which landslides are ubiquitous even under a stable climate. We analyze a series of catastrophic slope failures that occurred in the mountains of Europe, the Americas, and the Caucasus since the end of the 1990s. We distinguish between rock and ice avalanches, debris flows from de‐glaciated areas, and landslides that involve dynamic interactions with glacial and river processes. Analysis of these events indicates several important controls on slope stability in high mountains, including: the non‐linear response of firn and ice to warming; three‐dimensional warming of subsurface bedrock and its relation to site geology; de‐glaciation accompanied by exposure of new sediment; and combined short‐term effects of precipitation and temperature. Based on several case studies, we propose that the following mechanisms can significantly alter landslide magnitude and frequency, and thus hazard, under warming conditions: (1) positive feedbacks acting on mass movement processes that after an initial climatic stimulus may evolve independently of climate change; (2) threshold behavior and tipping points in geomorphic systems; (3) storage of sediment and ice involving important lag‐time effects. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献