首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potential accumulations of gas hydrates in Alaminos Canyon Block 21 (AC21) in the Gulf of Mexico are thought to occur in a shallow sand-rich interval, stratigraphically separated from sources of free gas below the base of the gas hydrate stability zone (BGHSZ), by an intervening thick layer of clay- and silt-rich sediments. Availability of sufficient gas charge from depth, in addition to local biogenic sourcing is considered key to the formation of gas hydrates in the GHSZ. Implicitly, a detailed understanding of geometries associated with fault and fracture networks in relation to potential gas migration pathways can provide additional confidence that seismic amplitude anomalies are related to gas hydrate accumulations. Delineation of fault and fracture systems from high resolution seismic data in and below the gas hydrates stability zone (GHSZ) was performed using an automated algorithm—Ant Tracking. The capturing of small-scale detail has particular significance at AC21, revealing a pervasive network of typically small-extent discontinuities, indicative of fracturing, throughout this intervening clay- and silt-rich layer of mass-transport deposits (MTDs). Ant Tracking features appear to correlate, to some extent, with potential gas hydrate accumulations, supporting the concept that fracturing possibly provides migration pathways albeit via a tortuous, complex path. This study demonstrates that the Ant Tracking attribute, in conjunction with detailed seismic interpretation and analysis, can provide valuable evidence of potential gas migration pathways.  相似文献   

2.
In the deepest parts of Bute and Knight Inlets, British Columbia, unusual blocky mounds of sediment rise abruptly from the otherwise smooth sea floor. The mounds (up to 28 m high, 80 m wide, and 150 m long) display bioturbated surfaces with transverse fractures and elongate depressions. The origin of the mounds and sediment blocks, which contrast with the otherwise flat-lying fjord-bottom strata, remains unknown. Two mechanisms for their formation are considered: (1) subsidence associated with earthquake-induced liquefaction; and (2) uplift driven by the growth of localized gas hydrates in the near-surface sediments.  相似文献   

3.
通过分析天然气水合物在海洋中的6种主要赋存状态类型,总结了每种赋存状态之间的相互转化关系及其物性参数计算方法,并应用到地震波场的正演模拟中.对比研究了声波模型、弹性波模型和双相介质模型对各种水合物赋存地层的响应特征,结果表明:1)当地层中存在孔隙充填型水合物且下伏地层不含游离气时,双相介质模拟的含水合物层底界表现负极性...  相似文献   

4.
In this study we provide evidence for methane hydrates in the Taranaki Basin, occurring a considerable distance from New Zealand's convergent margins, where they are well documented. We describe and reconstruct a unique example of gas migration and leakage at the edge of the continental shelf, linking shallow gas hydrate occurrence to a deeper petroleum system. The Taranaki Basin is a well investigated petroleum province with numerous fields producing oil and gas. Industry standard seismic reflection data show amplitude anomalies that are here interpreted as discontinuous BSRs, locally mimicking the channelized sea-floor and pinching out up-slope. Strong reverse polarity anomalies indicate the presence of gas pockets and gas-charged sediments. PetroMod™ petroleum systems modelling predicts that the gas is sourced from elevated microbial gas generation in the thick slope sediment succession with additional migration of thermogenic gas from buried Cretaceous petroleum source rocks. Cretaceous–Paleogene extensional faults underneath the present-day slope are interpreted to provide pathways for focussed gas migration and leakage, which may explain two dry petroleum wells drilled at the Taranaki shelf margin. PetroMod™ modelling predicts concentrated gas hydrate formation on the Taranaki continental slope consistent with the anomalies observed in the seismic data. We propose that a semi-continuous hydrate layer is present in the down-dip wall of incised canyons. Canyon incision is interpreted to cause the base of gas hydrate stability to bulge downward and thereby trap gas migrating up-slope in permeable beds due to the permeability decrease caused by hydrate formation in the pore space. Elsewhere, hydrate occurrence is likely patchy and may be controlled by focussed leakage of thermogenic gas. The proposed presence of hydrates in slope sediments in Taranaki Basin likely affects the stability of the Taranaki shelf margin. While hydrate presence can be a drilling hazard for oil and gas exploration, the proposed presence of gas hydrates opens up a new frontier for exploration of hydrates as an energy source.  相似文献   

5.
The passive northern continental margin of the South China Sea is rich in gas hydrates, as inferred from the occurrence of bottom-simulating reflectors (BSR) and from well logging data at Ocean Drilling Program (ODP) drill sites. Nonetheless, BSRs on new 2D multichannel seismic reflection data from the area around the Dongsha Islands (the Dongsha Rise) are not ubiquitous. They are confined to complex diapiric structures and active fault zones located between the Dongsha Rise and the surrounding depressions, implying that gas hydrate occurrence is likewise limited to these areas. Most of the BSRs have low amplitude and are therefore not clearly recognizable. Acoustic impedance provides information on rock properties and has been used to estimate gas hydrate concentration. Gas hydrate-bearing sediments have acoustic impedance that is higher than that of the surrounding sediments devoid of hydrates. Based on well logging data, the relationship between acoustic impedance and porosity can be obtained by a linear regression, and the degree of gas hydrate saturation can be determined using Archie’s equation. By applying these methods to multichannel seismic data and well logging data from the northern South China Sea, the gas hydrate concentration is found to be 3–25% of the pore space at ODP Site 1148 depending on sub-surface depth, and is estimated to be less than values of 5% estimated along seismic profile 0101. Our results suggest that saturation of gas hydrate in the northern South China Sea is higher than that estimated from well resistivity log data in the gas hydrate stability zone, but that free gas is scarce beneath this zone. It is probably the scarcity of free gas that is responsible for the low amplitudes of the BSRs.  相似文献   

6.
The hydrate-bearing sediments above the bottom simulating reflector (BSR) are associated with low attenuation or high quality factor (Q), whereas underlying gas-bearing sediments exhibit high attenuation. Hence, estimation of Q can be important for qualifying whether a BSR is related to gas hydrates and free-gas. This property is also useful for identifying gas hydrates where detection of BSR is dubious. Here, we calculate the interval Q for three submarine sedimentary layers bounded by seafloor, BSR, one reflector above and another reflector below the BSR at three locations with moderate, strong and no BSR along a seismic line in the Makran accretionary prism, Arabian Sea for studying attenuation (Q−1) characteristics of sediments. Interval Q for hydrate-bearing sediments (layer B) above the BSR are estimated as 191 ± 11, 223 ± 12, and 117 ± 5, whereas interval Q for the underlying gas-bearing sediments (layer C) are calculated as 112 ± 7, 107 ± 8 and 124 ± 11 at moderate, strong and no BSR locations, respectively. The large variation in Q is observed at strong BSR. Thus Q can be used for ascertaining whether the observed BSR is due to gas hydrates, and for identifying gas hydrates at places where detection of BSR is rather doubtful. Interval Q of 98 ± 4, 108 ± 5, and 102 ± 5, respectively, at moderate, strong and no BSR locations for the layer immediately beneath the seafloor (layer A) show almost uniform attenuation.  相似文献   

7.
The present study is the first to directly address the issue of gas hydrates offshore West Greenland, where numerous occurrences of shallow hydrocarbons have been documented in the vicinity of Disko Bugt (Bay). Furthermore, decomposing gas hydrate has been implied to explain seabed features in this climate-sensitive area. The study is based on archive data and new (2011, 2012) shallow seismic and sediment core data. Archive seismic records crossing an elongated depression (20×35 km large, 575 m deep) on the inner shelf west of Disko Bugt (Bay) show a bottom simulating reflector (BSR) within faulted Mesozoic strata, consistent with the occurrence of gas hydrates. Moreover, the more recently acquired shallow seismic data reveal gas/fluid-related features in the overlying sediments, and geochemical data point to methane migration from a deeper-lying petroleum system. By contrast, hydrocarbon signatures within faulted Mesozoic strata below the strait known as the Vaigat can be inferred on archive seismics, but no BSR was visible. New seismic data provide evidence of various gas/fluid-releasing features in the overlying sediments. Flares were detected by the echo-sounder in July 2012, and cores contained ikaite and showed gas-releasing cracks and bubbles, all pointing to ongoing methane seepage in the strait. Observed seabed mounds also sustain gas seepages. For areas where crystalline bedrock is covered only by Pleistocene–Holocene deposits, methane was found only in the Egedesminde Dyb (Trough). There was a strong increase in methane concentration with depth, but no free gas. This is likely due to the formation of gas hydrate and the limited thickness of the sediment infill. Seabed depressions off Ilulissat Isfjord (Icefjord) previously inferred to express ongoing gas release from decomposing gas hydrate show no evidence of gas seepage, and are more likely a result of neo-tectonism.  相似文献   

8.
南海陆坡天然气水合物饱和度估计   总被引:5,自引:0,他引:5  
基于双相介质理论和热弹性理论,建立了沉积层纵波速度与天然气水合物饱和度、弹性性质及地层孔隙度之间的关系。通过对比饱和水的理论P波速度与实际P波速度,可以得到天然气水合物饱和度。根据ODP184航次的电阻率、声波速度、密度等测井资料以及地质资料,初步推断南海陆坡存在天然气水合物。根据声波测井的纵波速度估算出南海1146和1148井天然气水合物饱和度分别为孔隙空间的25%~30%和10%~20%,1148井个别沉积层天然气水合物饱和度可达40%~50%。沉积层的纵波速度与饱和水速度差值越大,天然气水合物饱和度越高。  相似文献   

9.
天然气水合物的识别标志及研究进展   总被引:9,自引:0,他引:9  
天然气水合物是天然气和水在特定条件下形成的一种透明的冰状结晶体。天然气水合物的发现为寻找清洁高效的新型能源,以取代日益枯竭的传统能源提供了一个广阔的领域和新的思维方式。我国天然气水合物具有广阔的勘探领域和良好的勘探前景。本文对天然气水合物的研究现状进行了综述。在总结前人关于天然气水合物研究的基础上,总结归纳了天然气水台物的地震、地球物理测井、沉积岩石、地球化学、地形地貌等识别标志。企望对加速天然气水合物的勘探提供一些有益的线索。  相似文献   

10.
Previous studies of gas hydrate in the Dongsha area mainly focused on the deep-seated gas hydrates that have a high energy potential, but cared little about the shallow gas hydrates occurrences. Shallow gas hydrates have been confirmed by drill cores at three sites(GMGS2 08, GMGS2 09 and GMGS2 16) during the GMGS2 cruise, which occur as veins, blocky nodules or massive layers, at 8–30 m below the seafloor. Gas chimneys and faults observed on the seismic sections are the two main fluid migration pathways. The deep-seated gas hydrate and the shallow hydrate-bearing sediments are two main seals for the migrating gas. The occurrences of shallow gas hydrates are mainly controlled by the migration of fluid along shallow faults and the presence of deep-seated gas hydrates.Active gas leakage is taking place at a relatively high-flux state through the vent structures identified on the geophysical data at the seafloor, although without resulting in gas plumes easily detectable by acoustic methods.The presence of strong reflections on the high-resolution seismic profiles and dim or chaotic layers in the subbottom profiles are most likely good indicators of shallow gas hydrates in the Dongsha area. Active cold seeps,indicated by either gas plume or seepage vent, can also be used as indicators for neighboring shallow gas hydrates and the gas hydrate system that is highly dynamic in the Dongsha area.  相似文献   

11.
使用重力取样器、渔网、深潜器等手段,已经在海底及以下浅表层的区域采获天然气水合物样品,但关于浅表层水合物的发育机制、分布规律、与海底地形的关系等问题还缺乏基本认识。根据2006年鄂霍次克海天然气水合物调查航次的调查数据,发现萨哈林东北陆坡区,特别是中、下陆坡区发育大量海底凸起。这些凸起一般呈不对称的丘形,宽几百米,高几十米。与海底沙波、沙脊不同,海底凸起为孤立海底地形,在南北方向上并不连续。海底剖面仪结果清楚地显示古陆坡凸起的发育。现今海底陆坡凸起的幅度普遍地要小于古陆坡凸起的幅度,个别地方古今陆坡凸起的形态有所变化,但大部分古、今陆坡凸起是一一对应的,基本形态没有根本变化。在萨哈林陆坡地区存在两个方向的挤压应力场,分别是由德鲁根盆地向萨哈林陆坡方向的挤压应力场和萨哈林陆坡沿萨哈林走滑断裂向南的挤压应力场,海底陆坡凸起是这两大应力场复合作用的结果。浊反射区中的游离气是底辟构造中的超高压多相物质向上迁移形成的,浊反射区上方对应的海底凸起应该是宏观构造挤压和局部底辟发育叠合的结果,浊反射区上方的海底凸起,在形态等方面应该和其他仅由挤压构造原因形成的凸起有所区别,比如顶部发育裂口等。在底辟构造中,由于游离气体的向上迁移,在整个水合物稳定域中从下到上,直至海底都可能形成水合物。  相似文献   

12.
从勘探技术和资源评价的角度综述了甲烷水合物生成和聚集的重要特征, 如地震反射剖面、测井曲线资料、地球化学特点等以及对未知区的地质勘探和选区评价 .甲烷水合物在地震剖面上主要表现为BSR(似海底反射)、振幅变形(空白反射)、速度倒置、速度-振幅结构(VAMPS)等,大规模的甲烷水合物聚集可以通过高电阻率(>100欧姆.米)声波速度、低体积密度等号数进行直接判读.此项研究实例表明,沉积物中典型甲烷水合物具有低渗透性和高毛细管孔隙压力特点,地层孔隙水矿化度也呈异常值,并具有各自独特的地质特征.现场计算巨型甲烷水合物储层中甲烷资源量的方法可分为:测井资料计算法公式为:SW=(abRw/φm.Rt)1/n;地震资料计算法公式为:ρp=(1-φ)ρm+(1-s)φρw+sφρh、VH=λ.φ.S.对全球甲烷水合物总资源量预测的统计达20×1015m3以上.甲烷水合物形成需满足高压、低温条件,要求海水深度>300 m.因此,甲烷水合物的分布严格地局限于两极地区和陆坡以下的深水地区,并具有3种聚集类型:1.永久性冻土带;2.浅水环境;3.深水环境.深海钻探计划(DSDP)和大洋钻探计划(ODP)已在下述10个地区发现大规模的甲烷水合物聚集,他们是:秘鲁、哥斯达黎加、危地马拉、墨西哥、美国东南大西洋海域、美国西部太平洋海域、日本海域的两个地区、阿拉斯加和墨西哥湾地区.在较浅水沉积物岩心样中发现甲烷水合物的地区,包括黑海、里海、加拿大北部、美国加里福尼亚岸外、墨西哥湾北部、鄂霍茨克海的两个地区.在垂向上,甲烷水合物主要分布于海底以下2 000 m以浅的沉积层中.最新统计表明又主要分布于二个深度区间:200~450 m和700~920 m,前者是由ODP995~997站位发现的;后者在加拿大麦肯齐河三角洲马立克2L-38号井中897~922 m处发现.中国海域已发现多处甲烷水合物可能赋存地区,包括东沙群岛南部、西沙海槽北部、西沙群岛南部以及东海海域地区.姚伯初报道了南海地区9处地震剖面速度异常值的发现,海水深度为420~3 920 m,海洋地质研究所则在东海海域解释了典型BSR反射的剖面,具有速度异常、弱振幅、空白反射、与下伏反射波组具不整合接触关系(VAMPS)等,大致圈定了它们的分布范围,表明在中国海域寻找甲烷水合物具有光明的前景.  相似文献   

13.
管道中天然气水合物的形成对"西气东输"的影响   总被引:1,自引:0,他引:1  
"西气东输"是我国距离最长、口径最大的输气管线,将成为贯穿我国腹地的大动脉.管线位处北纬的寒冷环境,温度低、压力大,形成的天然气水合物对管线的堵塞及其分解引起的危害是不容忽视的问题.本文从天然气水合物的结构出发,对它产生条件和分解方法进行了研究,给出了管线中天然气水合物的抑制方法,并提出了实施过程中可能出现的环境问题.  相似文献   

14.
Supplies of conventional natural gas and oil are declining fast worldwide, and therefore new, unconventional forms of energy resources are needed to meet the ever-increasing demand. Amongst the many different unconventional natural resources are gas hydrates, a solid, ice-like crystalline compound of methane and water formed under specific low temperature and high pressure conditions. Gas hydrates are believed to exist in large quantities worldwide in oceanic regions of continental margins, as well as associated with permafrost regions in the Arctic. Some studies to estimate the global abundance of gas hydrate suggest that the total volume of natural gas locked up in form of gas hydrates may exceed all known conventional natural gas reserves, although large uncertainties exist in these assessments. Gas hydrates have been intensively studied in the last two decades also due to connections between climate forcing (natural and/or anthropogenic) and the potential large volumes of methane trapped in gas hydrate accumulations. The presence of gas hydrate within unconsolidated sediments of the upper few hundred meters below seafloor may also pose a geo-hazard to conventional oil and gas production. Additionally, climate variability and associated changes in pressure-temperature regimes and thus shifts in the gas hydrate stability zone may cause the occurrence of submarine slope failures.Several large-scale national gas hydrate programs exist especially in countries such as Japan, Korea, Taiwan, China, India, and New Zealand, where large demands of energy cannot be met by domestic supplies from natural resources. The past five years have seen several dedicated deep drilling expeditions and other scientific studies conducted throughout Asia and Oceania to understand gas hydrates off India, China, and Korea. This thematic set of publications is dedicated to summarize the most recent findings and results of geo-scientific studies of gas hydrates in the marginal seas and continental margin of the Asia, and Oceania region.  相似文献   

15.
The methane gas production potential from its hydrates, which are solid clathrates, with methane gas entrapped inside the water molecules, is primarily dependent on permeability characteristics of their bearing sediments. Moreover, the dissociation of gas hydrates, which results in a multi-phase fluid migration through these sediments, becomes mandatory to determine the relative permeability of both gaseous and aqueous fluids corresponding to different hydrate saturations. However, in this context, the major challenges are: (1) obtaining undisturbed in-situ samples bearing gas hydrates; and (2) maintenance of the thermodynamic conditions to counter hydrate dissociation. One of the ways to overcome this situation is synthesis of gas hydrates in laboratory conditions, followed by conducting permeability tests on them. In addition, empirical relationships that relate permeability of the gas hydrate bearing sediments to pore-structure characteristics (viz., pore size distribution and interconnectivity) can also be conceived. With this in view, a comprehensive review of the literature dealing with different techniques adopted by researchers for synthesis of gas hydrates, permeability tests conducted on the sediments bearing them, and analytical and empirical correlations employed for determination of permeability of these sediments was conducted and a brief account of the same is presented in this article.  相似文献   

16.
During the summer seasons of 2002 and 2004, the total alkalinity (TA) and dissolved calcium (Ca) were studied at 41 stations in different areas of the Sea of Okhotsk: the Kuril depression, Deryugin Basin, the slopes of the Kamchatka Peninsula and Sakhalin Island, and in Sakhalin Bay. It was shown that the distributions of the TA and Ca in the water mass of deep sea areas are determined by the processes of CaCO3 formation and dissolution according to the relation Δ Ca = 0.5 Δ TA (1). The variations of the TA and Ca values observed in the upper 10-m layer and in the near-bottom layers of local depressions in the Deryugin Basin do not satisfy relationship (1). Probable reasons for this discrepancy are considered: organic matter mineralization, mixing of water masses with different preform TA and Ca values, sea ice melting, runoff from land, and sea bottom effects. It is shown that the enrichment in the alkalinity and calcium is caused by the Amur River runoff in the desalinated sea surface layer and by the high geochemical activity in the Deryugin Basin in the near-bottom 200-m layer of local depressions.  相似文献   

17.
A recent swath-bathymetry and geophysical survey of the R/V L'Atalante in the Fairway Basin between Australia and New Caledonia allowed to confirm the Cretaceous age of the creation of the basin by continental stretching. This first stage of opening of the Fairway Basin is associated with the deposition of a continuous salt/mud layer feeding today numerous diapirs, some of them piercing the 3 to 4 km thick sedimentary cover and reaching the seafloor. In close link with this salt/mud layer a Bottom Simulating Reflector indicator of gas hydrates level occupies a 70000 km2 surface at about 500 to 600 m-depth beneath the sea floor. The coexistence of both BSR and diapirs suggests a thermogenic better than biogenic origin for the gas hydrates horizon.  相似文献   

18.
海洋天然气水合物开采方法及产量分析   总被引:2,自引:0,他引:2       下载免费PDF全文
海洋天然气水合物的巨大储量刺激了世界各国能源部门努力研究如何从天然气水合物储层生产天然气。根据水合物形成的条件,只有当水合物处在其相平衡条件以外,水合物才能分解。因此,水合物的开采方法只能为热熔法、抑制剂刺激法、减压法和地面分解法。为了对天然气水合物储层中气体的生产有个定量的评估,本文以水合物开采井为例,运用数学方法推导了水合物井中气体的产生量。结果表明,在天然气水合物储层中,天然气释放量是井内水合物分解温度、压力及水合物层气体渗透性的敏感函数。该函数可以用于天然气水合物井气体开采量的计算及对水合物储层可开采性评价。  相似文献   

19.
The physical structures of snow and sea ice in the Arctic section of 150°-180°W were observed on the basis of snow-pit, ice-core, and drill-hole measurements from late July to late August 2010. Almost all the investigated floes were first-year ice, except for one located north of Alaska, which was probably multi-year ice transported from north of the Canadian Arctic Archipelago during early summer. The snow covers over all the investigated floes were in the melting phase, with temperatures approaching 0℃ and densities of 295-398 kg/m3 . The snow covers can be divided into two to five layers of different textures, with most cases having a top layer of fresh snow, a round-grain layer in the middle, and slush and/or thin icing layers at the bottom. The first-year sea ice contained about 7%-17% granular ice at the top. There was no granular ice in the lower layers. The interior melting and desalination of sea ice introduced strong stratifications of temperature, salinity, density, and gas and brine volume fractions. The sea ice temperature exhibited linear cooling with depth, while the salinity and the density increased linearly with normalized depth from 0.2 to 0.9 and from 0 to 0.65, respectively. The top layer, especially the freeboard layer, had the lowest salinity and density, and consequently the largest gas content and the smallest brine content. Both the salinity and density in the ice basal layer were highly scattered due to large differences in ice porosity among the samples. The bulk average sea ice temperature, salinity, density, and gas and brine volume fractions were-0.8℃, 1.8, 837 kg/m3 , 9.3% and 10.4%, respectively. The snow cover, sea ice bottom, and sea ice interior show evidences of melting during mid-August in the investigated floe located at about 87°N, 175°W.  相似文献   

20.
《Marine and Petroleum Geology》2012,29(10):1751-1767
Supplies of conventional natural gas and oil are declining fast worldwide, and therefore new, unconventional forms of energy resources are needed to meet the ever-increasing demand. Amongst the many different unconventional natural resources are gas hydrates, a solid, ice-like crystalline compound of methane and water formed under specific low temperature and high pressure conditions. Gas hydrates are believed to exist in large quantities worldwide in oceanic regions of continental margins, as well as associated with permafrost regions in the Arctic. Some studies to estimate the global abundance of gas hydrate suggest that the total volume of natural gas locked up in form of gas hydrates may exceed all known conventional natural gas reserves, although large uncertainties exist in these assessments. Gas hydrates have been intensively studied in the last two decades also due to connections between climate forcing (natural and/or anthropogenic) and the potential large volumes of methane trapped in gas hydrate accumulations. The presence of gas hydrate within unconsolidated sediments of the upper few hundred meters below seafloor may also pose a geo-hazard to conventional oil and gas production. Additionally, climate variability and associated changes in pressure-temperature regimes and thus shifts in the gas hydrate stability zone may cause the occurrence of submarine slope failures.Several large-scale national gas hydrate programs exist especially in countries such as Japan, Korea, Taiwan, China, India, and New Zealand, where large demands of energy cannot be met by domestic supplies from natural resources. The past five years have seen several dedicated deep drilling expeditions and other scientific studies conducted throughout Asia and Oceania to understand gas hydrates off India, China, and Korea. This thematic set of publications is dedicated to summarize the most recent findings and results of geo-scientific studies of gas hydrates in the marginal seas and continental margin of the Asia, and Oceania region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号