首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical analysis of cyclotron instabilities is carried out by computing the dispersion relation for a three component cold plasma-beam system. Rates of growth and damping for various values of the stream density are calculated from the dispersion relation. The rates of growth and damping increase monotonically as the number density of the proton stream increases. It is found that the frequencies at the rates of maximum growth and the damping decrease slightly to lower frequencies and a sharp peak at these frequencies becomes blunt. The minimum e-folding times of an ion cyclotron wave for (a) σs = 10−4, σi = 10−2 and (b) σs = 10−1, σi = 10−2 are about 3·84 and 0·16 sec respectively in the vicinity of the equatorial plane at 6 Re, where σs and σi are the ratios of the beam density Ns and the helium ion (H6+) density Ni to the total positive ions in the plasma-beam system.  相似文献   

2.
Using extensive N-body simulations we estimate redshift space power spectra of clusters of galaxies for different cosmological models (SCDM, TCDM, CHDM, ΛCDM, OCDM, BSI, τCDM) and compare the results with observational data for Abell–ACO clusters. Our mock samples of galaxy clusters have the same geometry and selection functions as the observational sample which contains 417 clusters of galaxies in a double cone of galactic latitude |b|>30° up to a depth of 240 h−1 Mpc. The power spectrum has been estimated for wave numbers k in the range 0.03k0.2 h Mpc−1. For k>kmax0.05 h Mpc−1 the power spectrum of the Abell–ACO clusters has a power-law shape, P(k)∝kn, with n≈−1.9, while it changes sharply to a positive slope at k<kmax. By comparison with the mock catalogues SCDM, TCDM (n=0.9), and also OCDM with Ω0=0.35 are rejected. Better agreement with observation can be found for the ΛCDM model with Ω0=0.35 and h=0.7 and the CHDM model with two degenerate neutrinos and ΩHDM=0.2 as well as for a CDM model with broken scale invariance (BSI) and the τCDM model. As for the peak in the Abell–ACO cluster power spectrum, we find that it does not represent a very unusual finding within the set of mock samples extracted from our simulations.  相似文献   

3.
A set of unit clouds of 104 M randomly distributed between 3 and 7 kpc radii, move under the general gravitation of the galactic disk and their mutual gravitation. When the clouds collide they form loose aggregates or giant molecular clouds (GMC). Star formation rate is assumed to be proportional to the mass of the GMC. The more massive stars formed soon turn into supernovae, which in turn break up the GMC back into the unit clouds. After some 350 Myr a steady state is reached, in which the GMCs have a mass spectrum of gradient −1.6, and has the mass-radius relation MR2, both in agreement with the observations. From our simulation we find there should be 775 ± 12 supernova remnants in our galaxy. The existence of spiral arms does not increase the production rate of supernova remnants, but it does make the GMCs to concentrate around them.  相似文献   

4.
We analyze an extended redshift sample of Abell/ACO clusters and compare the results with those coming from numerical simulations of the cluster distribution, based on the truncated Zel'dovich approximation (TZA), for a list of eleven dark matter (DM) models. For each model we run several realizations, so that we generate a set of 48 independent mock Abell/ACO cluster samples per model, on which we estimate cosmic variance effects. Other than the standard CDM model, we consider (a) Ω0 = 1 CDM models based on lowering the Hubble parameter and/or on tilting the primordial spectrum; (b) Ω0 = 1 Cold + Hot DM models with 0.1 ≤Ων ≤0.5; (c) low-density flat ΛCDM models with 0.3 ≤Ω0 ≤0.5. We compare real and simulated cluster distributions by analysing correlation statistics, the probability density function, and supercluster properties from percolation analysis. We introduce a generalized definition of the spectrum shape parameter Γ in terms of σ25/σ8, where σris the rms fluctuation amplitude within a sphere of radius r. As a general result, we find that the distribution of galaxy clusters provides a constraint only on the shape of the power spectrum, but not on its amplitude: a shape parameter 0.18 Γ 0.25 and an effective spectral index at the 20 h−1 Mpc scale −1.1 neff −0.9 are required by the Abell/ACO data. In order to obtain complementary constraints on the spectrum amplitude, we consider the cluster abundance as estimated using the Press-Schechter approach, whose reliability is explicitly tested against N-body simulations. By combining results from the analysis of the distribution and the abundance of clusters we conclude that, of the cosmological models considered here, the only viable models are either Cold + Hot DM ones with 0.2 Ων 0.3, better if shared between two massive ν species, and ΛCDM ones with 0.3 Ω00.5.  相似文献   

5.
N. Hiotelis   《New Astronomy》2002,7(8):531-539
We present density profiles, that are solutions of the spherical Jeans equation, derived under the following two assumptions: (i) the coarse grained phase-density follows a power-law of radius, ρ/σ3r, and (ii) the velocity anisotropy parameter is given by the relation βa(r)=β1+2β2 (r/r*)/[1+(r/r*)2] where β1, β2 are parameters and r* equals twice the virial radius, rvir, of the system. These assumptions are well motivated by the results of N-body simulations. Density profiles have increasing logarithmic slopes γ, defined by γ=−d ln ρ/d ln r. The values of γ at r=10−2.5rvir, a distance where the systems could be resolved by large N-body simulations, lie in the range 1.0–1.6. These inner values of γ increase for increasing β1 and for increasing concentration of the system. On the other hand, slopes at r=rvir lie in the range 2.42–3.82. A model density profile that fits well the results at radial distances between 10−3rvir and rvir and connects kinematic and structural characteristics of spherical systems is described.  相似文献   

6.
If neutrinos have mass, we give reasons for a possible pattern of three (squaed) mass eigenvalues: m12 (2.8−5.8) (eV)2, m22 0.01 (eV)2, m32 (1.5−1) × 10−4 (eV)2. The flavor states νμ and νe are mixtures of the eigenstates with m2 and m3 with a significant mixing, corresponding to an effective mixing angle of about 0.45. The ντ is nearly the state with m1; the other two effective mixing angles are about an order of magnitude smaller than 0.45. There is a marked similarity to mixing in the quark sector.  相似文献   

7.
On the basis of radial velocity and Hipparcos proper motion data, we have analyzed the galactic kinematics of classical Cepheids. Using the 3-D Ogorodnikov-Milne model we have determined the rotational velocity of the Galaxy to be V0 = 240.5 ± 10.2 km/s, on assuming a glactocentric distance of the Sun of R0 = 8.5 kpc. The results clearly indicate a contracting motion in the solar neighbourhood of (∂Vθ∂θ)/R = −2.60 ± 1.07 km s−1 kpc−1, along the direction of galactic rotation. Possible reason for this motion is discussed. The solar motion found here is S = 18.78 ± 0.86 km/s in the direction l = 54.4° ± 2.9° and b = +26.6° ± 2.6°.  相似文献   

8.
Using a complete non-local convection theory, we carried out the theoretical calculations of 7Li depletion of the solar convective envelope models with different convective parameters c1 and c2, and got a model of the solar convection zone consistent with the observed 7Li abundance and the depth of the solar convection zone determined by helioseismic techniques. The overshooting distance of effective non-local convective mixing of 7Li is very extensive, which is about 1.07HP or 0.09R. However, the super-radiative temperature zone is much narrower, and it is only 0.20HP or 0.016R.  相似文献   

9.
Measurements of the density at the F2 peak (NmF2) were obtained by the Boulder, Colorado, ionosonde as part of the SUNDIAL-86 campaign. The measurements were made during a period of low to moderate geomagnetic activity following a “disturbed” day. These measurements were then used to estimate the height of the F2 peak (hmF2). A three-dimensional time-dependent model of Earth's ionosphere was used to calculate NmF2 and hmF2 using the vertical plasma drift as a free parameter. Since the plasmasphere-ionosphere exchange flux can remain upward during the night for these conditions, different feasible flux scenarios were inputed to the ionospheric model. These different flux scenarios had a large effect on the “induced” vertical plasma drifts required to match the measurements (i.e. at times greater than a factor of 2 in speed or a difference in direction). Futhermore, uncertainty in the O+---O collision frequency changes the required vertical plasma drift at night. Despite knowledge of hmF2, interpretation of the vertical plasma drifts as meridional neutral winds is compromised by a lack of knowledge of the plasmasphere-ionosphere exchange flux following disturbed days.  相似文献   

10.
The Solar Maximum Mission satellite did not record any γ-ray counts in excess of the background for a time interval of 223 s after the arrival of the first e's from the supernova 1987A. On the basis of the original data we derive a new 3σ upper limit on the γ fluence for this period and derive improved bounds on the νi → νjγ and νT → νeee+γ radiative decay channels for neutrino masses up to the experimentally allowed value of around 30 MeV.  相似文献   

11.
Inspection of recent spectra presented by Sivjee (1983) show evidence of the 0–4 and 0–5 bands of the N2(c41Σu+a1Πg) Gaydon-Herman system. In conjunction with earlier spectra, it is now possible that this band system is a significant auroral component, with an intensity approx. 7% that of the N2 2P system. The absence in aurorae of the potentially far stronger N2(c41Σu+X1Πg) system is discussed. It is that the O2(A3Σu+X3Σg) band system is indiscernible in Sivjee's auroral spectra, under conditio the foreground nightglow is expected to be clearly visible. On the other hand, at least one relatively strong O2(A3Δua1Δg) band appears to be present in these spectra.  相似文献   

12.
The diffused gamma halo around our Galaxy recently discovered by EGRET could be produced by annihilations of heavy relic neutrinos N (of fourth generation), whose mass is within a narrow range (MZ/2<mN<MZ). Neutrino annihilation in the halo may lead to either ultrarelativistic electron pairs whose Inverse Compton Scattering on infrared and optical galactic photons could be the source of observed GeV gamma rays, or prompt 100 MeV–1 GeV photons (due to neutral pion secondaries) born by reactions. The consequent gamma flux (10−7–10−6 cm−2 s−1 sr−1) is well comparable to the EGRET observed one, and it is also compatible with the narrow window of neutrino mass 45 GeV <mN<50 GeV, recently required to explain the underground DAMA signals.The presence of heavy neutrinos of fourth generation do not contribute much to solve the dark matter problem of the Universe, but may be easily detectable by outcoming LEP II data.  相似文献   

13.
Recent rocket observations of the N2 V-K (Vegard-Kaplan) system in the aurora have been reinterpreted using an atmospheric model based on mass spectrometer measurements in an aurora of similar intensity at the same time of year. In contrast to the original interpretation, we find that population by cascade from the C3Πu and B3Πg states in the A3Σu+v=0,1 levels, as calculated using recently measured electron excitation cross sections, accurately accounts for the observed relative emission rates (IV-K/12PG0.0). In addition there is no need to change the production rate of A 3 Σ u+ molecules relative to that of C3Πuv=0 as a function of altitude in order to fit the profile of the deactivation probability to the atmospheric model. Quenching of A 3 Σ u+ molecules at high altitudes is dominated by atomic oxygen. The rate constants for the v=0 and v=1 levels are 8 × 10−11 cm3 sec−1 and 1.7 × 10−10 cm3 sec−1 respectively, as determined using the model atmosphere mentioned above. Recent observations with a helium cooled mass spectrometer suggest that conventional mass spectrometer measurements tend to underestimate the atomic oxygen relative concentration. The rate coefficients may therefore be too large by as much as a factor of 3. Below 130 Km we find that it is possible to account for the deactivation in bright auroras by invoking large nitric oxide concentrations, similar to those recently observed mass spectrometrically and using a rate constant of 8 × 10−11 cm3 sec−1 for both the v=1 levels. This rate constant is very nearly the same as that measured in the laboratory (7 × 10−11 cm3 sec−1). Molecular oxygen appears not to play a significant role in deactivating the lower A 3 Σ u+ levels.  相似文献   

14.
The existence of sidereal semidiurnal variation of cosmic-ray intensity in a rigidity region 102-103 GV has been reported by many researchers, but there is no consensus of opinion on its origin. In this paper, using the observed semidiurnal variations in a rigidity range (300–600 GV) with 10 directional muon telescopes at Sakashita underground station (geog. lat. = 36°, long. = 138°E, DEPTH = 80 m.w.e.), the authors determine the magnitudes (η1, η2) and directions (a1, a2) of the first- and second-order anisotropies in the following galactic cosmic-ray intensity distribution (j)
jdp = j0{1 + η1P1(cos χ1) + η2P2(cos χ2)}dp
, where Pnis the nth order spherical function and χn is the pitch angle of cosmic rays with respect to an. For the determination, the influence of cosmic-ray's heliomagnetospheric modulation, geomagnetic deflection and nuclear interaction with the terrestrial material and also of the geometric configuration of the telescopes are taken into account. Usually, the semidiurnal variation is produced by the second-order anisotropy. The present observation, however, requires also the first-order anisotropy which usually produces only the diurnal variation, but can produce also the semidiurnal variation as a result of the heliospheric modulation. The first- and second-order anisotropies are characterized with η1) > 0 and η2 < 0 have almost the same direction (a1 a2) specified by the right ascension ( 0.75 h) and declination (δ 50°S) and, therefore, they can be expressed, as a whole, by an axis-symmetric anisotropy of loss-cone type (i.e. deficit intensities in a cone). It is noteworthy that this anisotropy approximately coincides with that inferred from the air shower observation at Mt Norikura in the rigidity region 104 GV.  相似文献   

15.
In this paper, we study the galactic distribution and luminosity function of OH/IR maser sources. All the selected OH/IR sources have optical or infrared identification. Most of them are associated with late-type (>M5) Mira variables. Their derived density distribution shows a steep peak at a galactocentric distance of r0-7.5 kpc and decreases rapidly at smaller and larger R0. The FWHM of the distribution curve is 2.1 kpc. This is similar to the galactic distribution of Mira variables investigated by Glass et al.

We also derive the luminosity function of the identified OH/IR maser sources from their distances, their detection probabilities, and their corrected OH radio peak flux densities. The luminosity function ρ(L) varies as LOH−1.79. This is similar to that of unidentified maser sources. The range of luminosity of identified OH/IR sources is approximately from 0.16 Jy · kpc2 to 1000 Jy · kpc2. It is quite different from that of unidentified OH sources.

Finally, we discuss some differences and relations between identified and unidentified OH/IR maser sources.  相似文献   


16.
We calculated the expected neutrino signal in Borexino from a typical Type II supernova at a distance of 10 kpc. A burst of around 110 events would appear in Borexino within a time interval of about 10 s. Most of these events would come from the reaction channel , while about 30 events would be induced by the interaction of the supernova neutrino flux on 12C in the liquid scintillator. Borexino can clearly distinguish between the neutral-current excitations 12C(ν,ν)12C* (15.11 MeV) and the charged-current reactions 12C(νe,e)12N and , via their distinctive event signatures. The ratio of the charged-current to neutral-current neutrino event rates and their time profiles with respect to each other can provide a handle on supernova and non-standard neutrino physics (mass and flavor oscillations).  相似文献   

17.
Intensified Reticon spectra have been obtained at a high dispersion for the Algol system, RT Persei. They were measured by the cross-correlation technique. The spectroscopic elements, revised for the primary component and determined for the secondary for the first time, are: T0 = HJD 2,446,038.9332, K1 = 55.0, K2 = 194.7, V0 = −8.3 km/s. A mass ratio q = m2/m1 = 0.282 is deduced. A circular orbit is adopted. The spectrum of the primary is F5V, and the secondary is a subgiant. With the elements determined here and the published photometric parameters, the absolute dimensions of the binary are: A = 4.20, R1 = 1.20, R2 = 1.08 R; M1 = 1.08, M2 = 0.30 M.  相似文献   

18.
Auroral luminosities of the main emission lines in the aurora have been calculated for excitation by an isotopic primary electron flux with spectra of the form J(E) = AE exp (−E/E1) + B(E2)E exp (−E/E1). The variation of emissions from O and N2+ with height are shown, as are the variations of column integrated intensities and pertinent intensity ratios with the characteristic energy E2, this leading to a method of estimating the electron spectrum from ground observation.  相似文献   

19.
The orbit of Intercosmos 13 rocket (1975-22B) has been determined at 103 epochs between 30 April 1975 and 10 April 1980 from almost 7000 observations. One hundred and three values of inclination have been determined and corrections incoporated for the effects due to zonal harmonic, lunisolar and tesseral harmonic perturbations, precession, and solid Earth tides. The modified data have been analysed to yield values of the atmospheric rotation rate, Λ rev day−1, viz. Λ = 0.94 ± 0.10 at an average height of 322 ± 6 km and Λ = 1.27 ± 0.02 at 288 km. Analysis of the inclination near 14th-order resonance has indicated lumped harmonic values 109 1.01.4 = − 76.13 ± 12.47, 109 1,014 = − 29.89 ± 32.64, 109 −1.214 = − 63.11 ± 15.44 109 −1.214 = − 32.52 ± 26.96, for inclination 82.952°.  相似文献   

20.
《Astroparticle Physics》2002,17(4):1083-475
Using data from the HEGRA air shower array, taken in the period from April 1998 to March 2000, upper limits on the ratio Iγ/ICR of the diffuse photon flux Iγ to the hadronic cosmic ray flux ICR are determined for the energy region 20–100 TeV. The analysis uses a gamma–hadron discrimination which is based on differences in the development of photon- and hadron-induced air showers after the shower maximum. A method which is sensitive only to the non-isotropic component of the diffuse photon flux yields an upper limit of Iγ/ICR (at 54 TeV) <2.0×10−3 (at the 90% confidence level) for a sky region near the inner galaxy (20°< galactic longitude <60° and |galactic latitude |<5°). A method which is sensitive to both the isotropic and the non-isotropic component yields global upper limits of Iγ/ICR (at 31 TeV) <1.2×10−2 and Iγ/ICR (at 53 TeV) <1.4×10−2 (at the 90% confidence level).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号