首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 343 毫秒
1.
段水强  曹广超  刘弢  吴庆  李燕 《冰川冻土》2013,35(5):1237-1247
选取青海羌塘盆地1976-2010年5期遥感影像, 解译了该区域面积大于1 km2以上的67个湖泊面积.结果表明: 1976-1994年, 研究区大部分湖泊呈萎缩状态, 湖泊面积萎缩了446.8 km2, 萎缩幅度为12.5%;1994-2001年, 湖泊面积由3 132.6 km2增加到3 395.2 km2, 至2007年和2010年, 湖泊持续扩张, 面积分别达到3 641.7 km2和3 836.2 km2, 其中2010年的湖泊面积较1994年增加了22.5%, 甚至超过了1976年, 2007-2010年期间湖泊扩张强度最大.同时, 分析了研究区1959-2010年的气候水文变化, 结果显示年平均气温呈显著上升趋势, 年蒸发量在1959-1980年呈下降趋势, 以后趋于稳定, 年降水量、年径流量在1998-1999年间出现了突变上升.湖泊面积对气候、水文的响应关系表明, 近期的湖泊扩张主要由降水、径流偏丰引起, 与气温上升以及蒸发变化的关系并不显著, 气温上升导致冰川退缩所增加的水量对近期湖泊扩张影响较小. 与青海湖、黄河源等地相比, 青海羌塘盆地近期气候、水文、湖泊面积发生转折的时间要提前7 a左右.  相似文献   

2.
基于2013~2018年Landsat8-OLI 9个时相的遥感数据,采用湿地三类分级系统,以决策树分类法提取不同时间的湿地类型,结果表明:2013-2018年东洞庭湖湖泊草洲、泥滩地和水域面积呈现动态变化,其中草洲面积平均714km2、泥滩地面积平均81km2、水域面积平均502km2;湖区草洲和水体面积占比大,且此消彼长,草洲面积平均占比55.1%,水域面积平均占比38.7%,泥滩地面积最少平均占比仅6.2%;水位变化是湖区草洲出露面积的主控因素,随水位升高,草洲出露面积逐渐减小,且在典型高低水位下草洲空间分布差异明显,高水位下主要分布在南部柴下洲和北部藕池河一带地形较高区域,而低水位条件下湖区大部分草洲面积分布广泛,其面积占湖区总面积的74%。成果进一步验证了东洞庭湖不同水情下的湿地景观格局。  相似文献   

3.
【研究目的】人类活动引起的土地利用/覆被变化是全球环境变化的重要组成部分,旱区土地利用对区域水文和生态的影响尤为显著,探究土地利用变化及其对人类活动的响应对西北干旱内陆生态与资源环境可持续发展具有重要意义。【研究方法】基于1980—2018年间共5期遥感影像,结合土地利用动态度、土地利用转移矩阵和人类活动强度指数分析塔里木河流域各水资源分区土地利用变化特征。【研究结果】近40年中,塔里木河流域耕地、建设用地和林地面积分别增加1.58×104 km2、1.2×103 km2和347 km2,而草地、未利用地和水域面积分别减少1.33×104 km2、0.32×104 km2和815 km2。各水资源分区中塔里木河干流土地利用类型变化最大,其次为渭干河、阿克苏河和喀什噶尔河流域。自2000年以来,塔里木河流域建设用地当量面积和人类活动强度增加相对较快,特别是2000—201...  相似文献   

4.
利用Landsat卫星影像,采用面向对象分类方法提取珠穆朗玛峰自然保护区湖泊信息,分析了湖泊动态及对区域气候变化的响应关系。结果表明:(1)2015年保护区湖泊总面积为489.07 km2,构造湖、河成湖、冰川湖分别占总面积的77.3%、2.6%、20.1%。(2)1975-2015年,保护区内各类湖泊面积变化速率不同,冰川湖最大(1.05 km2·a-1),构造湖次之(-0.85 km2·a-1),河成湖最稳定(0.013 km2·a-1);保护区南坡冰川湖面积变化速率(0.53 km2·a-1)略大于北坡(0.52 km2·a-1)。(3)北坡构造湖、河成湖对区域气候的响应呈阶段性变化规律,1975-2000年珠峰地区气候呈暖湿化趋势,2000年构造湖、河成湖面积达到峰值,两类总计增加22.8 km2;2000-2015年转变为显著的暖干气候,构造湖、河成湖面积均呈减少趋势,总共减少57.16 km2。随着区域气候的变暖,冰川湖总面积不断扩大,近40年间冰川湖面积累计增加43.06 km2。(4)灰色关联度分析显示,年极端低温对构造湖面积变化影响最显著,年均气温对冰川湖起主导作用,年均相对湿度对河成湖影响最大。较其他气候因子而言,降水量对各类湖泊面积变化的影响均最小。  相似文献   

5.
基于高分辨率卫星影像数据,利用遥感、GIS技术获取黑龙江省肇源县内自然资源与生态地质环境各因子分布现状数据,其中:耕地2 541.75 km2、林地161.88 km2、草地349.00 km2、河流128.05 km2、湖泊215.80 km2、沼泽109.17 km2、其他水域84.65 km2、建设用地191.25 km2、未利用地329.94 km2;湿地1 334.54 km2、荒漠化土地775.47 km2。利用地类覆盖率、人均占有量以及景观指数(破碎度指数、平均斑块分形指数、分形维数、多样性指数、均匀度指数)量化分析后,得出两类生态地质环境因子中湿地资源尤其是自然湿地受人类活动干扰程度较大、荒漠化土地受人类活动干扰程度较小的结论。并选取老山村等典型地区进行了多期次遥感动态监测及野外核查,揭示了松嫩低平原典型地区目前存在的湿地退化、土地荒漠化等生态地质环境问题。  相似文献   

6.
杜军  牛晓俊  袁雷  次旺顿珠 《冰川冻土》2020,42(3):1017-1026
利用羌塘国家级自然保护区边缘5个气象站1971 - 2017年逐月平均气温、 平均最高气温、 平均最低气温、 降水量和逐年最大冻土深度等气象资料, 以及卫星遥感资料, 采用线性回归、 相关系数等方法, 分析了自然保护区气候(气温、 降水等)、 水体(湖泊、 冰川)和植被等生态环境因子的变化。结果表明: 近47年自然保护区年平均气温以0.46 ℃·(10a)-1的速率显著升高, 明显高于同期全球和亚洲地表温度的升温率。四季平均气温升温率为0.37 ~ 0.55 ℃·(10a)-1, 升幅在冬季最大、 夏季最小。年降水量呈明显的增加趋势, 增幅为11.0 mm·(10a)-1, 主要表现在春、 夏两季。近43年(1975 - 2017年)色林错面积呈显著增加趋势, 平均增长率为38.48 km2·a-1。1973 - 2017年, 普若岗日冰川面积整体上趋于减少, 平均每年减少2.11 km2; 自然保护区年最大冻土深度变化率为-35.7 cm·(10a)-1。1999 - 2013年保护区NDVI增幅达25.3%, 平均每10年增加0.0184, 植被覆盖度明显增加。总之, 近47年自然保护区表现为气候暖湿化、 冰川退缩、 湖泊扩涨、 冻土退化、 植被覆盖增加的变化特征, 而冰川变化引发的水资源时空分布和水循环过程的变化, 无疑将给高原社会经济发展带来深刻影响。  相似文献   

7.
1976-2014年黄河源区湖泊变化特征及成因分析   总被引:3,自引:0,他引:3  
选取黄河源区1976-2014年Landsat系列卫星影像, 解译了该区域1 km2以上的42个湖泊水面. 结果表明: 除鄂陵湖外, 扎陵湖和其他中小湖泊在过去的38 a间总体上存在稳定(1976-1994年)-萎缩(1994-2004年)-扩张(2004-2010年)-稳定(2010-2014年)四个阶段的变化过程, 湖泊总面积2004年最小, 2007年已经超过1976年. 扎陵湖和鄂陵湖2004年面积仅较1994年萎缩了1.4%, 萎缩幅度很小. 2005年, 扎陵湖水面已恢复到萎缩前的水平. 鄂陵湖在2005年以后水位开始快速上升, 2007年7月上升至海拔4 270 m以上, 2008-2014年的平均水位达到海拔4 270.58 m, 较1986-1999年的平均值(海拔4 268.25 m)上升了2.33 m, 湖面较1994年扩张了30.0~45.2 km2. 中小湖泊面积1994-2004年从288.0 km2萎缩到193.0 km2, 萎缩幅度33.0%, 2004年是萎缩速度最快的一年, 2005年即迎来了快速增长, 这两年中小湖泊面积的年均变化率分别达到-14.5%·a-1和 32.9%·a-1, 变化速率远大于其他年份. 1956-2014年的气候水文变化显示, 58 a来研究区气温上升趋势显著, 变化倾向率达到了0.32℃·(10a)-1. 2003、2004和2005年蒸发能力、降水量、径流量开始依次显著增加, 至2014年, 平均较前分别偏多53.8 mm(6.9%)、57.4 mm(18.5%)和 3.523×108 m3(52.7%). 湖泊面积对气候、水文变化以及人类活动的响应关系表明, 作为特大型外流湖, 扎陵湖、鄂陵湖受降水径流补给变化的影响相对较小, 鄂陵湖2005年后的扩张是下游黄河源电站抬高水位所致. 中小湖泊面积变化与降水、径流有密切的关系, 近期扩张是由降水、径流显著增加引起. 流域尺度上, 气温上升、蒸发能力增强不是2005年以后湖泊扩张的直接原因.  相似文献   

8.
运用遥感(RS)与地理信息系统(GIS)技术, 结合波密县1960-2010年气象数据, 分析了西藏波密地区冰川的主要分布特征和典型大冰川1980-2010年的时空变化. 结果显示: 波密县共有冰川数量2 040条, 总面积为4 382.5 km2, 其中, 分布在海拔4 000~6 000 m的高山冰川总面积达4 086 km2, 占冰川总面积的93.2%; 南坡分布冰川1 504条, 面积3 180.04 km2, 分别占波密冰川总量的73.73%和72.56%, 而北坡占还不到三分之一. 提取1980、 1990、 2000和2010年4期面积大于20 km2的24条大冰川面积进行对比分析, 1980-2010年间波密县大冰川面积总体呈减小趋势, 由1980年的1 592.78 km2退缩至2010年1 567.04 km2, 共退缩了25.74 km2; 其中, 1980-1990年冰川变化贡献最大, 冰川面积退缩了16.62 km2, 占冰川总面积退缩量的64.6%. 波密县气象站数据显示, 50 a来冰川退缩主要受温度持续上升的影响, 降水量变化对冰川变化影响不大.  相似文献   

9.
青藏高原冻融侵蚀敏感性评价与分析   总被引:2,自引:3,他引:2  
冻融侵蚀是我国仅次于水蚀和风蚀的土壤侵蚀类型。青藏高原由于其海拔高、辐射强、气温低的特点,是我国冻融侵蚀较严重的区域。选择影响冻融侵蚀的5个主要因子:气温年较差、降水量、坡度、坡向、植被覆盖度进行定量研究,分析青藏高原冻融侵蚀敏感性强度及空间分布特征。结果表明:(1)青藏高原冻融侵蚀区面积为149.02×104 km2,占青藏高原总面积的62.20%;冻融侵蚀敏感区的面积为56.80×104 km2,中度及以上敏感区面积为27.39×104 km2,占冻融侵蚀敏感区面积的48.22%;(2)冻融侵蚀敏感性空间分布差异明显,中度以上敏感区主要分布在青藏高原南部和东南部、喀喇昆仑山、祁连山、横断山区等地区。  相似文献   

10.
基于ArcGIS环境下,通过选取河南省嵩县区域高程、地貌、工程岩组、植被覆盖度、距构造距离、距水系距离、坡度、坡向等8个因子建立危险性评价模型,易损性选取建筑物、人员和交通等3个承灾因子,分别采用信息量模型和层次分析法对河南省嵩县区域进行地质灾害易发性、危险性和易损性评价。研究结果表明,嵩县区域划分为低风险区面积为965.34 km2,占嵩县区域面积32%;中风险区面积为1 114.65 km2,占嵩县区域面积的37%;高风险区面积为826.23 km2,占嵩县区域面积的27%;极高风险区面积为102.68 km2,占嵩县区域面积的3%。研究成果可应用于嵩县防灾减灾及地质灾害风险管控等方面。  相似文献   

11.
洞庭湖萎缩对湖内洪水影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为了更好地理解湖泊萎缩对湖内洪水过程的影响,在假定洞庭湖将继续萎缩的前提下,通过建立荆江-洞庭湖水动力模型,定量分析洞庭湖萎缩对湖内洪水的影响。研究结果表明,湖内水位及洪峰流量随湖泊面积的萎缩而增加,洪峰水位到达时刻随着湖泊萎缩而提前。若遇1996年型洪水,洞庭湖面积若从目前的2 670 km2减小至1 380 km2时,西洞庭湖及南洞庭湖内最高水位将抬高2.0 m左右,东洞庭湖水位将抬升0.4 m左右,城陵矶站点洪峰水位到达时刻将提前约11 h,洪峰流量增加约4 800 m3/s。因此,若洞庭湖湖泊面积在目前基础上(面积2 670 km2)继续萎缩,湖区特别是西洞庭湖及南洞庭湖将面临更为严峻的洪水灾害。虽然湖泊萎缩对西洞庭湖与南洞庭湖内水面坡降影响较小,但东洞庭湖内水位同时受湖泊萎缩及长江来流的影响,水面坡降发生较大变化,在距离蔡家洲80~110 km(鹿角站附近)河段水面坡降出现大幅增大。  相似文献   

12.
青藏高原可可西里盐湖水位上涨趋势及溃决风险分析   总被引:1,自引:1,他引:0  
2011年位于可可西里腹地的卓乃湖溃决引起的盐湖水位上涨和面积增大趋势仍在快速发展。遥感资料显示,卓乃湖溃决后,盐湖面积持续增加,从2012年的134.1 km2一直持续增大到2018年的197.5 km2,尤其是2016-2018年增加较快,面积增加了42.0 km2,即平均每年增加14.0 km2。水位监测数据显示,2016年5月20日至2018年11月11日期间,盐湖水位共上升了8.241 m,年平均上升2.747 m。目前盐湖的面积仅比模拟的溢出面积小19.3~21.1 km2;湖泊水位仅比分水岭最低处低4.09 m。按照2016-2018年面积和水位变化趋势,预计盐湖将在未来1~2年内可能发生溢水溃决。研究表明:近年来区域降水增加、卓乃湖溃决后地下水释放、上游湖泊出水口可能存在侵蚀扩大导致湖水继续向下输送等原因是导致盐湖水位持续上涨和面积快速增大的主要原因。利用水库溃坝预测分析模型,对盐湖溢水溃决冲沟形成时洪峰流量预测表明,盐湖溢水溃决时将形成巨大的洪峰流量,洪水将对青藏公路、青藏铁路和兰西拉光缆等造成危害,建议尽快开展盐湖潜在的湖水外溢途径地质条件调查,并设计防治措施。  相似文献   

13.
暖湿气候对赛里木湖的影响   总被引:14,自引:2,他引:14  
赛里木湖集水面积1408km2,湖面面积457km2,最大水深86m,总蓄水量210×108m3,是新疆最大的高山湖泊,湖面海拔2073m,四周高山环绕.20世纪80年代以后,赛里木湖及邻近地区,气温逐渐升高,降水增多,气候趋向暖湿.20世纪80年代气温比前20a平均升高0.4~0.6℃,90年代气温比80年代升高0.3~0.4℃,比前20a平均升高0.7~1.0℃,比前30a平均升高0.6~0.8℃.20世纪90年代,切德克水文站降水量比多年平均多5.4%;匹里青水文站降水量比多年平均多7.0%;温泉气象站增加最多,比多年平均增加20.3%.赛里木湖相邻地区降水径流增多,赛里木湖区的降水径流增大,导致湖水位上升.  相似文献   

14.
苦草是鄱阳湖越冬水鸟的重要食物资源,为量化水位变化对鄱阳湖苦草生境的影响,基于环境流体动力学模型(EFDC)和生境适宜度曲线,构建了鄱阳湖苦草生境数值模拟模型;对三峡水库175 m试验性蓄水后鄱阳湖苦草潜在生境面积变化进行了连续模拟,建立了苦草潜在适宜生境和水深≤4 m水域面积变化与星子站水位的定量响应函数;并据此分析了三峡水库运用及拟建鄱阳湖水利枢纽对苦草潜在生境面积的影响。星子站水位15 m左右时苦草潜在生境面积最大,潜在适宜生境和水深≤4 m水域面积分别为1 703 km2和2 336 km2。三峡水库运用可有效保障鄱阳湖苦草潜在生境面积,但其扰动幅度也明显减小,潜在适宜生境和水深≤4 m水域面积序列标准差在三峡运用后减幅分别达到27%和47%。拟建鄱阳湖水利枢纽调控水位在其下闸蓄水期和长江上游水库蓄水调节期内宜分别控制在16 m以下和13.5 m以上,可保障潜在适宜生境及水深≤4 m水域面积与最大值相比减幅分别控制在20%和10%以内。成果明晰了水位变化对鄱阳湖苦草潜在生境面积的定量影响规律,为江湖新水沙条件下鄱阳湖生态系统保育提供了量化依据。  相似文献   

15.
新疆开都-孔雀河流域绿洲需水量与稳定性分析   总被引:3,自引:0,他引:3  
水是绿洲存在和发展的核心, 干旱区绿洲稳定性与水密切相关. 根据2000-2009年资料, 采用蒸发系数法和定额法估算开都-孔雀河流域绿洲自然生态系统和社会经济系统综合需水量, 并对水资源约束条件下的绿洲稳定性进行初步探讨. 结果表明: 2000-2009年, 绿洲年均总需水量理论值约为54.80×108 m3, 其中开都河绿洲总需水量约为20.55×108 m3, 孔雀河绿洲总需水量约为21.90×108 m3, 博斯腾湖区耗水量约为12.35×108 m3, 与绿洲10 a平均供水量相比, 供需表现出极大地不平衡性. 水资源可承载绿洲面积(不含博斯腾湖)约为3139.66 km2, 其中可承载灌溉地面积约为1395.41 km2, 与绿洲10 a平均面积5 248 km2相比, 差别较大, 绿洲处于不稳定状态, 现状绿洲面积应适当收缩. 最后, 对博斯腾湖最低生态水位进行讨论, 初步把大湖最低水位定为海拔1 045 m, 小湖最低生态水位定为海拔1 046.5 m.  相似文献   

16.
戴玉凤  高杨  张国庆  向洋 《冰川冻土》2013,35(3):723-732
湖泊的退缩与扩张是全球气候变化的指示器.利用2003-2011年Landsat ETM数据和2003-2009年ICESat激光测高数据, 分别对青藏高原佩枯错湖泊的面积和高程变化进行了分析, 并进一步估算了湖泊2003-2009年相对水量变化.结果表明: 佩枯错面积年内变化明显, 湖泊面积冬季最小, 春季出现小峰值, 秋季达到最大; 面积年内波动明显(1.18%), 但在冬季、 春季和秋季相对稳定, 波动范围分别为0.26%、 0.1%和0.29%. 2003-2011年湖泊呈退缩趋势, 冬季、 春季和秋季面积年际变化率分别为-0.52 km2·a-1、-0.35 km2·a-1和-0.61 km2·a-1; 2003-2009年间湖泊水位下降了1.17 m, 变化率为-0.05 m·a-1; 2003-2010年, 冬季总水量减少了2.51×108 m3, 春季总水量减少了1.74×108m3, 秋季总水量减少了2.80×108 m3, 平均相对水量变化率分别为-0.35×108 m3·a-1、-0.21×108 m3·a-1、-0.37×108 m3·a-1. 从空间上看, 湖泊退缩主要发生在东北角、 东南角和西南角.气候因素分析表明, 佩枯错湖泊退缩秋季主要是因为夏半年平均气温的升高, 冬季和春季则主要是因为冬半年降水量的减少.  相似文献   

17.
艾比湖面积变化及对生态环境影响   总被引:4,自引:2,他引:2  
艾比湖在中更新世为鼎盛期,湖面积曾达3000 km2,贮水量700×108m3,为良好的淡水湖.由于地壳运动和气候的暖干变化,湖面萎缩,到20世纪50年代初湖面积降至1070 km2.自20世纪50年代以来,由于大规模的水土开发,灌区人口、灌溉面积和引水量大幅度增加,入湖水量急剧减少.从20世纪50年代至80年末,灌区人口增加了59.3×104人,灌区面积增加了16.43×104km2之多,净耗水量增加了8.13×108m3左右.湖面积一度降至499 km2(1987年),湖水矿化度达100 g·L-1左右.湖泊的萎缩,导致生态环境的劣变,表现为沙漠化程度加速,浮尘和沙暴天气增加,人畜受害,也导致野生动物的数量减少.20世纪80年代后,由于气候暖湿转型效应,降水和河川径流量有所增加.尤其是大力推广先进节水灌溉技术和退耕还林以及培育生态林等措施,使得入湖水量大幅度增加,特别是2001-2005年的5 a间,年均入湖水量达7.7×108m3,比1989年增加了76%,湖水面积维持在800~950 km2左右.目前生态环境已有所恢复和改观,荒漠植被得到一定程度的修复,沙尘天气明显减少,已有野生动物出没其间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号