首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the data of vertical sounding of the ionosphere in Alma-Ata (76°55′ E, 43°15′ N) conducted in 2002–2012, the reaction of parameters of the ionospheric F2 layer to various types of nighttime enhancements in the electron concentration in the maximum of the layer (NmF2) was studied, including the height of the maximum and bottom of the layer, its semithickness, and electron concentration at some fixed heights. Examples of recordings of a combination of the enhancements caused by different mechanisms are presented. The similarity of the reaction of the F2-layer parameters to the nighttime enhancements caused by the rise of the layer and plasma flux from the protonosphere and passage of large-scale travelling ionospheric disturbances was found. Difficulties in identifying these two events in the case of their equal duration are noted. The difference in the reaction of the F2-layer parameters to the enhancements caused by the rise of the layer and plasma fluxes from the protonosphere and occurrence of the summer midlatitude ionospheric anomaly is shown.  相似文献   

2.
《Journal of Atmospheric and Solar》2002,64(12-14):1413-1423
In this paper, the ionospheric electron content (IEC) profile features, have been utilized for extraction of a few parameters and the parameters are used for assertion of a certain day as quiet (Q) or disturbed (D). The IEC values taken for the study cover two solar activity periods (high and low) and are based on VHF RB data collected over Guwahati (26.2°N, 91.75°E). The paper describes methods for extraction of parameters like profile factor, P and anomaly factor, PEA from IEC profiles separately for three seasons (summer, winter and equinox). The definitions of Q and D days are made through profile features and the threshold values of ΣKp for each season are evaluated. The relations between ΣKp and P factor, ΣKp and PEA are established after corrections for solar activity condition. The prediction and assertion of Q/D days are then made by examining IEC profiles for the cases where IEC data were not used for the parameter extraction.  相似文献   

3.
An analysis of ionospheric data obtained during geomagnetic disturbances in April and September 2005 is performed in order to obtain information on the behavior of some ionospheric parameters at heights of the F1 layer. The results of measurements by an Irkutsk digisonde at hourly and 5- and 15-min time intervals were used. It is shown that in September all parameters very actively responded to geomagnetic disturbances in short measurement time intervals. It is also shown that the electron concentration behaves more stable at lower heights of the F1 layer both during strong and moderate disturbances.  相似文献   

4.
Results of the studies of ionospheric parameter variations during the intense geomagnetic storm on November 7–11, 2004, in the 20°–80° N, 60°–180° E sector are presented. The data of ionospheric stations and the results of total electron content (TEC) measurements at the network of the GPS ground-based receivers and of the GPS receiver onboard the CHAMP satellite were used. Periods of total absorption and blanketing sporadic E layers were observed at high latitudes, whereas durable negative disturbances typical of geomagnetic storms of high intensity were detected at midlatitudes. In the afternoon hours of local time on November 8, 2004, a large-scale ionospheric disturbance of a frontal type was detected on the basis of foF2 and TEC measurements. The disturbance propagated southwestward at a mean velocity of about 200 m/s. The comparison of the relative amplitude of this large-scale disturbance according to the total electron content (~70%) and foF2 (~80%) measurements made it possible to assume a large vertical scale of the disturbance.  相似文献   

5.
The influence of geomagnetic disturbances on electron density Ne at F1 layer altitudes in different conditions of solar activity during the autumnal and vernal seasons of 2003–2015, according to the data from the Irkutsk digital ionospheric station (52° N, 104° Е) is examined. Variations of Ne at heights of 150–190 km during the periods of twenty medium-scale and strong geomagnetic storms have been analyzed. At these specified heights, a vernal–autumn asymmetry of geomagnetic storm effects is discovered in all periods of solar activity of 2003–2015: a considerable Ne decrease at a height of 190 km and a weaker effect at lower levels during the autumnal storms. During vernal storms, no significant Ne decrease as compared with quiet conditions was registered over the entire analyzed interval of 150?190 km.  相似文献   

6.
We present the results of studies of the subauroral and mid-latitude ionosphere variations in the north-eastern region of Asia. We used the data from network of vertical and oblique-incidence sounding ionosondes and optical measurements. Long-term experiments on the radio paths Magadan–Irkutsk and Norilsk–Irkutsk were carried out within the period 2005–2007. Vertical sounding stations operated in standard regime. Observation of airglow near Irkutsk was provided by the zenith photometer that measured intensities of 557.7 and 630.0 nm atomic oxygen emissions. The results may be summarized as follows. (1) Large daytime negative disturbances are observed during the main and recovery phases mainly at high latitudes, whereas the positive disturbances observed during the main phase at mid latitudes. The disturbances changed their sign between Yakutsk and Irkutsk. (2) During the main and recovery storm phases the fall of foF2 associated with the equatorward wall of the main ionospheric trough is observed in the afternoon and evening. (3) Fluctuations of the electron density more intensive at mid latitudes during the storm main phase are observed during all considered periods. They are classed as traveling ionospheric disturbances (TID). Such sharp gradients of electron density are responsible for the strong changes in the characteristics of the radio wave propagation, particularity MOF. (4) A large-scale ionospheric disturbance is noted at the meridional chain of ionosonds in December 2006 as the sharp increase of foF2. It appears in the evening in the minimum of Dst at high latitude and propagate to equator. (5) A maximum of 630 nm emission above Irkutsk corresponds to the foF2 increase. (6) The obtained experimental data on the net of vertical and oblique-incidence sounding with high time resolution show that such net is the effective facility to study the conditions of the radio wave propagation and can be used for the diagnostic of the ionosphere.  相似文献   

7.
The data, obtained using the methods of partial reflections and ionosphere vertical sounding on the Kola Peninsula and in Scandinavia, at Tumannyi (69.0° N, 35.7° E) and Sodankyla (67.37°N, 26.63°E) observatories, have been analyzed in order to detect earthquake responses. The strong earthquakes have been considered: one earthquake with a magnitude of 7.7 occurred at 0819:25 UT on July 17, 2006, on the western coast of Indonesia (9.33° S, 107.26° E), and another earthquake with a magnitude of 6.2 occurred 2253:59 UT on May 26, 2006, on Yava (7.94° S, 110.32° E). These earthquakes, the epicenters of which were located in the same region and at identical depths (10 km), were observed under quiet conditions in the geomagnetic field (ΣK p = 5.7 and 6.3) and during small solar flares. The response of the ionosphere to these flares was mainly observed in the parameters of the lower ionosphere in the D and E regions. It has been found out that the period of variations in the ordinary component of the partially reflected signal at altitudes of the E region increased before the earthquake that occurred on July 17, 2006. The f min variations at Sodankyla observatory started 20 h before the earthquake. The periods of these variations were 3–6 h. The same periods were found in the variations in other ionospheric parameters (foEs and h’Es). The variations in the ordinary component of partially reflected signals with periods of 2–5 hours were observed on the day of another earthquake (May 26, 2006). Internal gravity waves with periods of several hours, which can be related to the earthquakes, were detected in the amplitude spectra of the ordinary component of partially reflected signals and in other parameters in the lower ionosphere.  相似文献   

8.
The parameters of meridional thermospheric wind oscillations during the propagation of largescale traveling ionospheric disturbances, obtained based on the nighttime observations in the ionospheric F region performed at the Institute of the Ionosphere (Almaty, 76°55′ E, 43°15′ N) in 2000–2007 using a digital ionosonde, have been analyzed. The processing of ionospheric sounding data made it possible to obtain electron density time variations N(t) at fixed altitudes and variations in the altitudes of the F region maximum (h m F) and bottom (h bot F). During the indicated period, 1166 observation sessions were performed, and 581 sessions were characterized by wave activity. Sessions with a relative amplitude of N(t) variations larger than 25% were selected for analysis. The total number of such sessions was 63. The expression for calculating the meridional wind oscillation amplitudes was obtained based on the measured amplitudes of h bot F oscillations. It was indicated that increased amplitudes of thermospheric wind oscillations are obtained when this expression for h m F is used. The diffusion term, which causes increased h m F oscillation amplitudes as compared to the h bot F oscillation amplitudes, was estimated using the regression expression.  相似文献   

9.
Using vertical and oblique radio-sounding data, we analyze the ionospheric and thermospheric disturbances during the magnetic storm that occurred in northeastern Russia on March 17–19, 2015. We consider the heliospheric sources that induced the magnetic storm. During the main and early recovery phases, the midlatitude stations are characterized by extremely low values of electron density at the F2 layer maximum. Using oblique sounding data, we recorded signals that propagated outside the great circle arc. In evening and night hours, no radio signals were found to pass along the Norilsk–Irkutsk and Magadan–Irkutsk paths. The observed ionospheric effects are shown to be caused by a sharp shift of the boundaries of the main ionospheric trough to the invariant latitude 46° N during the main phase of the magnetic storm. The negative ionospheric disturbance during the recovery phase of the storm, which was associated with significant variations in the composition of the neutral atmosphere, led to a change in the mode composition of received radio signals and a decline in observed maximal frequencies in daytime hours of March 18, 2015 by more than 2 times.  相似文献   

10.
The relation of the long-period variations in the midnight and noon values of the critical frequency of the ionospheric F 2 layer at three midlatitude stations (Irkutsk, Moscow, and Boulder) to the daily mean index of geomagnetic activity in years of different solar activity has been studied. It has been found that the correlation coefficients between the above parameters depend on time of day, season, and solar activity level. The correlation coefficients are higher at night than in the daytime, especially at low solar activity. The highest absolute values of the correlation coefficient most often appear during equinoxes: April–May and September–October. It has been shown that the variability of the critical frequencies of the midlatitude ionospheric F 2 layer depends not only on geomagnetic activity but also (to a considerable degree) on the effect of the lower atmosphere.  相似文献   

11.
The behavior of the F2 layer at sunrise has been studied based on vertical-incidence ionospheric sounding data in Almaty (76°55′E, 43°15′N). Records with small amplitudes of electron density background fluctuations were selected in order to exactly estimate the onsets of a pronounced increase in the electron density at different altitudes. It has been indicated that the electron density growth rate is a function of altitude; in this case, the growth rate at the F2 layer maximum is much lower than such values at fixed altitudes of ~30–55 km below the layer maximum. The solar zenith angle (χ) and the blanketing layer thickness (h 0) at the beginning of a pronounced increase in the electron density at altitude h are linearly related to the h value, and these quantities vary within ~90° < χ < 100° and 180 km < h 0 < 260 km, respectively.  相似文献   

12.
A morphological analysis of vertical sounding data obtained in Irkutsk from 2003 to 2008 has been performed. The AE index was used to determine the geomagnetic activity level, and the storm main phase onset was registered based on the D st index. The ionospheric response to a magnetic storm was estimated based on the relative deviation of the critical frequency and altitude of the ionospheric F2 region from the median values. Superstrong magnetic storms and storms without positive initial phases were not considered when the data were selected. We found that positive ionospheric disturbances, which were accompanied by an increase in the F2 region maximum altitude, predominated between the storm initial phase and main phases during all considered magnetic storms. Between these storm phases, negative disturbances were only registered at night. Predominance of positive ionospheric disturbances over negative ones can be related to the selection of storms for studies.  相似文献   

13.
This paper studies the ionospheric and geomagnetic response to an X6.2 solar flare recorded at 14:30 UT on December 13, 2001, in quiet geomagnetic conditions which allow the variations in the geomagnetic field and ionosphere measurements to be easily related to the solar flare radiation.By using measurements from the global positioning system (GPS) and geomagnetic observatories, the temporal evolution of ionospheric total electron content variation, vTECV, and geomagnetic field variations, δB, as well as their rates of variation, were obtained around the subsolar point at different solar zenith angles. The enhancement of both parameters was recorded one to three minutes later than the Geostationary Operational Environmental Satellite (GOES) programme recording; such delay tends to depend on the latitude, longitude, and solar zenith angle of the observatory's observations.The vTECV is related to the local time and the δB to the intensity and position of the ionospheric currents.The vTECV′s maximum value is always recorded later than the maximum values reached by δB and the X-ray intensity. The maximum δB is larger in the local morning than in the afternoon.The rates of vTECV and δB have two maximum values at the same time as the maximum values recorded by Hα (for each ribbon).This work shows the quantitative and qualitative relations between a solar flare and the ionospheric and geomagnetic variations that it produces.  相似文献   

14.
Global electron content (GEC) as a new ionospheric parameter was first proposed by Afraimovich et al. [2006]. GEC is equal to the total number of electrons in the near-Earth space. GEC better than local parameters reflects the global response to a change in solar activity. It has been indicated that, during solar cycle 23, the GEC dynamics followed similar variations in the solar UV irradiance and F 10.7 index, including the 11-year cycle and 27-day variations. The dynamics of the regional electron content (REC) has been considered for three belts: the equatorial belt and two midlatitude belts in the Northern and Southern hemispheres (±30° and 30°–65° geomagnetic latitudes, respectively). In contrast to GEC, the annual REC component is clearly defined for the northern and southern midlatitude belts; the REC amplitude is comparable with the amplitude of the seasonal variations in the Northern Hemisphere and exceeds this amplitude in the Southern Hemisphere by a factor of ~1.7. The dayside to nightside REC ratio, R(t), at the equator is a factor of 1.5 as low as such a GEC ratio, which indicates that the degree of nighttime ionization is higher, especially during the solar activity maximum. The pronounced annual cycle with the maximal R(t) value near 8.0 for the winter Southern Hemisphere and summer Northern Hemisphere is typical of midlatitudes.  相似文献   

15.
All-sky camera (ASC), Global Positioning System (GPS), and ionosonde measurements were used to investigate the upper atmospheric variations at mid-latitude during the strong geomagnetic storm on October 29–31, 2003. An arc-shaped 630.0 nm emission was observed in the northern sky on all-sky images taken at Mt. Bohyun (36.2°N, 128.9°E, GMLAT=29°N) in Korea during 17:48–8:58 UT in the main phase of the geomagnetic storm on October 29. The NmF2 and hmF2 from the ionosonde show strong disturbances at that time. The vertical profiles of electron densities, calculated by the ionospheric tomographic method using ground-based GPS slant total electron contents measurements, show the largest value at ∼440 km height at 18:30 UT on October 29 when the enhancements of OI 630.0 nm emission were observed. The arc-shaped red emission observed during the main phase of the magnetic storm is likely a low-latitude red aurora due to its short duration of ∼1 h. The result implies that the plasmapause was at L=1.4–1.6 during the geomagnetic storm. The fact that the arc did not follow a constant L-value appears to suggest that neutral precipitation and a traveling ionospheric disturbance could also be the cause of the arc.  相似文献   

16.
During an interaction of the Earth’s magnetosphere with the interplanetary magnetic cloud on October 18–19, 1995, a great magnetic storm took place. Extremely intense disturbances of the geomagnetic field and ionosphere were recorded at the midlatitude observatory at Irkutsk (Φ′≈45°, Λ′≈177°, L≈2) in the course of the storm. The most important storm features in the ionosphere and magnetic field are: a significant decrease in the geomagnetic field Z component during the storm main phase; unusually large amplitudes of geomagnetic pulsations in the Pi1 frequency band; extremely low values of critical frequencies of the ionospheric F2-layer; an appearance of intense Es-layers similar to auroral sporadic layers at the end of the recovery phase. These magnetic storm manifestations are typical for auroral and subauroral latitudes but are extremely rare in middle latitudes. We analyze the storm-time midlatitude phenomena and attempt to explore the magnetospheric storm processes using the data of ground observations of geomagnetic pulsations. It is concluded that the dominant mechanism responsible for the development of the October 18–19, 1995 storm is the quasi-stationary transport of plasma sheet particles up to L≈2 shells rather than multiple substorm injections of plasma clouds into the inner magnetosphere.  相似文献   

17.
Between 100 and 120 km height at the Earth's magnetic equator, the equatorial electrojet (EEJ) flows as an enhanced eastward current in the daytime E region ionosphere, which can induce a magnetic perturbation on the ground. Calculating the difference between the horizontal components of magnetic perturbation (H) at magnetometers near the equator and about 6–9° away from the equator, ΔH, provides us with information about the strength of the EEJ. The NCAR Thermosphere–Ionosphere–Electrodynamics General Circulation Model (TIE-GCM) is capable of simulating the EEJ current and its magnetic perturbation on the ground. The simulated diurnal, seasonal (March equinox, June solstice, December solstice), and solar activity (F10.7=80, 140 and 200 units) variations of ΔH in the Peruvian (76°W) and Philippine (121°E) sectors, and the relation of ΔH to the ionospheric vertical drift velocity, are presented in this paper. Results show the diurnal, seasonal and solar activity variations are captured well by the model. Agreements between simulated and observed magnitudes of ΔH and its linear relationship to vertical drift are improved by modifying the standard daytime E region photoionization in the TIE-GCM in order to better simulate observed E region electron densities.  相似文献   

18.
Nighttime height profiles of the amplitudes of large-scale traveling ionospheric disturbances (LSTIDs) obtained from the data of vertical sounding in Almaty (76°55′ E, 43°15′ N) for the period 2000–2007 are analyzed. The height profiles are plotted using the time variations in electron density N h (t) at a series of heights for the F region in the ionosphere with a height step of 10 km. In total, observations were conducted during 1166 nights, among which 581 nights are characterized by wave activity. Nights with the maximum amplitude of variations in N h (t) exceeding 25% are selected for analysis. The total number of such nights is 63; LSTIDs have been recorded in both magnetically quiet and active periods. The regressive ratios between the height of the F-region maximum and the height that corresponds to the maximum absolute amplitude of a wave, as well as between the values of the maximum amplitude at a height profile and the value of the amplitude of variations in N m F(t) at the layer maximum, are obtained.  相似文献   

19.
Data from 15-minute measurements at the vertical ionospheric sounding station in Irkutsk during the summer months of 2008–2011 are analyzed in order to detect in the ionosphere effects of preparation of weak earthquakes of the K = 10–12 energy class. The method of revealing disturbances in ionospheric parameters by simultaneous observations of the sporadic E layer and regular F2 layer, which was previously applied by the authors in the case of stronger earthquakes, was used. The efficiency of using this method to detect ionospheric disturbances preceding earthquakes also in the case of weak earthquakes is demonstrated. Possible ionospheric precursors of the selected series of earthquakes are identified. For them, an empirical dependence relating the time of advance of the shock moment by the probable ionospheric precursor on the energy class of the earthquake and the epicenter distance to the observation point is found.  相似文献   

20.
This study seeks to establish a new system characteristic describing dayside convective flows in the coupled magnetosphere–ionosphere: the low-pass filter function through which interplanetary magnetic field (IMF) fluctuations are processed as they are communicated from the magnetopause to the high-latitude ionosphere near local noon. In doing so, this study confirms that variations in the ionospheric flows at high-latitudes near local noon are well correlated with variations in the IMF orientation and magnitude on short timescales. We construct the filter function by comparing time series of the ionospheric equivalent flows at a fixed location at magnetic local noon and 80° latitude with time series of the IMF. The coherence spectra of these two parameters—averaged over 330 h of comparison—indicate that there is a low-pass cutoff in the ionospheric response to IMF driving at a periods shorter than 20 min (frequencies higher than 0.8 mHz). When there is sufficient power in the IMF fluctuations, this cutoff is relatively sharp—the coherence drops by roughly a factor of three between the periods 32 and 21 min (0.5 and 0.8 mHz). The results also show that on average the coherence between the east–west component of the equivalent flows and IMF By tends to be less than the coherence between the north–south component of the equivalent flows and IMF Bz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号