首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 779 毫秒
1.
We have used a global time-dependent magnetohydrodynamic (MHD) simulation of the magnetosphere and particle tracing calculations to determine the access of solar wind ions to the magnetosphere and the access of ionospheric O+ ions to the storm-time near-Earth plasma sheet and ring current during the September 24–25, 1998 magnetic storm. We found that both sources have access to the plasma sheet and ring current throughout the initial phase of the storm. Notably, the dawnside magnetosphere is magnetically open to the solar wind, allowing solar wind H+ ions direct access to the near-Earth plasma sheet and ring current. The supply of O+ ions from the dayside cusp to the plasma sheet varies because of changes in the solar wind dynamic pressure and in the interplanetary magnetic field (IMF). Most significantly, ionospheric O+ from the dayside cusp loses access to the plasma sheet and ring current soon after the southward turning of the IMF, but recovers after the reconfiguration of the magnetosphere following the passage of the magnetic cloud. On average, during the first 3 h after the sudden storm commencement (SSC), the number density of solar wind H+ ions is a factor of 2–5 larger than the number density of ionospheric O+ ions in the plasma sheet and ring current. However, by 04:00 UT, ∼4 h after the SSC, O+ becomes the dominant species in the ring current and carries more energy density than H+ ions in both the plasma sheet and ring current.  相似文献   

2.
The seasonal dependences of the response of the hydroxyl ((6–2) band) and molecular oxygen O2(b 1Σ g + ) ((0–1) band) emission intensities, temperature, and density indicator in the region of the hydroxyl emission maximum (87 km) to solar activity have been obtained based on the spectral observations of the mesopause emissions at Zvenigorod observatory during 2000–2007. The ratio of the OH (7–3) and (9–4) band intensities, characterizing the behavior of the vibrational temperature, has been used as an indicator of density. It has been established that the response of the studied mesopause characteristics to solar activity is positive in all seasons. In winter the response is maximal in the intensities and temperature and is minimal in the density indicator. The main mechanisms by which solar activity affects the mesopause characteristics have been considered. The behavior of the internal gravity waves with periods of 0.33–7 h depending on solar activity has been studied. It has been noted that these waves become more active at a minimum of the 11-year solar cycle.  相似文献   

3.
The observations of the state of the midlatitude ionospheric D region during the March 29, 2006, solar eclipse, based on the measurements of the characteristics of partially reflected HF signals and radio noise at a frequency of f = 2.31 MHz, are considered. It has been established that the characteristic processes continued for 2–4 h and were caused mainly by atmospheric gas cooling, decrease in the ionization rate, and the following decrease in the electron density. An increase in the electron density on average by 200–250% approximately 70–80 min after the eclipse beginning at altitudes of 90–93 km and approximately 240 min after the end of the solar eclipse at altitudes of 81–84 km, which lasted about 3–4 h, has been detected experimentally. This behavior of N is apparently caused by electron precipitation from the magnetosphere into the atmosphere during and after the solar eclipse. Based on this hypothesis, the fluxes of precipitating electrons (about 107–108 m?2s?1) have been estimated using the experimental data.  相似文献   

4.
A possible mechanism of earthquake triggering by ionizing radiation of solar flares is considered. A theoretical model and results of numerical calculations of disturbance of electric field, electric current, and heat release in lithosphere associated with variation of ionosphere conductivity caused by absorption of ionizing radiation of solar flares are presented. A generation of geomagnetic field disturbances in a range of seconds/tens of seconds is possible as a result of large-scale perturbation of a conductivity of the bottom part of ionosphere in horizontal direction in the presence of external electric field. Amplitude-time characteristics of the geomagnetic disturbance depend upon a perturbation of integral conductivity of ionosphere. Depending on relation between integral Hall and Pedersen conductivities of disturbed ionosphere the oscillating and aperiodic modes of magnetic disturbances may be observed. For strong perturbations of the ionosphere conductivities amplitude of pulsations may obtain ~102 nT. In this case the amplitude of horizontal component of electric field on the Earth surface obtains 0.01 mV/m, electric current density in lithosphere –10–6 A/m2, and the power density of heat release produced by the generated current is 10–7 W/m3. It is shown that the absorption of ionizing radiation of solar flares can result in variations of a density of telluric currents in seismogenic faults comparable with a current density generated in the Earth crust by artificial pulsed power systems (geophysical MHD generator " Pamir-2” and electric pulsed facility " ERGU-600”), which provide regional earthquake triggering and spatiotemporal variation of seismic activity. Therefore, triggering of seismic events is possible not only by man-made pulsed power sources but also by the solar flares. The obtained results may be a physical basis for a novel approach to solve the problem of short-term earthquake prediction based on electromagnetic triggering phenomena.  相似文献   

5.
Ground-based geomagnetic Pc5 (2–7 mHz) pulsations, caused by the passage of dense transients (density disturbances) in the solar wind, were analyzed. It was shown that intensive bursts can appear in the density of the solar wind and its fluctuations, up to Np ~ 30–50 cm3, even during the most magnetically calm year in the past decades (2009). The analysis, performed using one of the latest methods of discrete mathematical analysis (DMA), is presented. The energy functional of a time-series fragment (called “anomaly rectification” in DMA terms) of two such events was calculated. It was established that fluctuations in the dynamic pressure (density) of the solar wind (SW) cause the global excitation of Pc5 geomagnetic pulsations in the daytime sector of the Earth’s magnetosphere, i.e., from polar to equatorial latitudes. Such pulsations started and ended suddenly and simultaneously at all latitudes. Fluctuations in the interplanetary magnetic field (IMF) have turned up to be less geoeffective in exciting geomagnetic pulsations than fluctuations in the SW density. The pulsation generation mechanisms in various structural regions of the magnetosphere were probably different. It was therefore concluded that the most probable source of ground-based pulsations are fluctuations of the corresponding periods in the SW density.  相似文献   

6.
A very strong magnetic storm of May 15, 2005, was caused by an interplanetary magnetic cloud that approached the Earths’ orbit. The sheath region of this cloud was characterized by a high solar wind density (~25–30 cm?3) and velocity (~850 km/s) and strong variations (to ~20 nT) in the interplanetary magnetic field (IMF). It has been indicated that an atypical bay-like geomagnetic disturbance was observed during the initial phase of this storm in a large longitudinal region at high latitudes: from the morning to evening sectors of the geomagnetic local time. Increasing in amplitude, the magnetic bay rapidly propagated to the polar cap latitudes up to the geomagnetic pole. An analysis of the global space-temporal dynamics of geomagnetic pulsations in the frequency band 1–6 mHz indicated that most intense oscillations were observed in the morning sector in the region of the equivalent ionospheric current at latitudes of about 72°–76°. The wavelet structure of magnetic pulsations in the polar cap and fluctuations in IMF was generally similar to the maximum at frequencies lower than 4 mHz. This can indicate that waves directly penetrated into the polar cap from the solar wind.  相似文献   

7.
An analysis of the geomagnetic field variations between 3 min and 2 h at L’Aquila (L=1.6) shows that the power level in the low-frequency range (i.e. for periods longer than approximately 10 min) at solar maximum (1989/90) is much higher than at solar minimum (1985/86). Conversely, at solar minimum, it emerges that there is a greater relative importance of fluctuations with periods smaller than 10 min which might be related to the greater percentage of solar wind speeds greater than approximately 540 km s−1. Diurnal, seasonal and solar cycle variations of both the high- and the low-frequency power are also discussed. We found that several aspects of these variations might be correlated with ionospheric features such as the ionisation of the F2 layer and the location and the intensity of the S current system.  相似文献   

8.
Spatial-temporal and spectral features of ground geomagnetic pulsations in the frequency range of 1–5 mHz at the initial phase of a strong magnetic storm of the 24th cycle of solar activity (August 5–6, 2011, with a Dst-variation in the storm maximum of ?110 nT) are analyzed. Large opposite in sign amplitudes of variations in IMF parameters (from ?20 to +20 nT) at a high velocity of the solar wind (~650 km/s) accompanied by intense bursts in solar-wind density (up to ~50 cm?3) were distinctive feature of interplanetary medium conditions causing the storm. Geomagnetic Pi3 pulsations global in longitude and latitude and in-phase in the middle and equatorial latitudes were found. The onset of pulsation generation was caused by a pulse of dynamic pressure of the solar wind (~20 nPa), i.e., by a considerable compression of the magnetosphere. The maximum (2–3 mHz) in the amplitude spectrum of near-equatorial pulsations coincided with the maximum of pulsations in the daytime polar cap. After the next jump of the dynamic pressure of the solar wind (~35 nPa), an additional maximum appeared in the pulsation spectrum in the frequency band of ~3.5–4.5 mHz. Global pulsations suddenly stopped after a sharp decrease in the solar-wind dynamic pressure and corresponding extension of the magnetosphere. The obtained results are compared with the time dynamics of the position and shape of the plasmapause.  相似文献   

9.
Hemispherical photographs of forest canopies can be used to develop sophisticated models that predict incident below canopy shortwave radiation on the surface of interest (i.e. soil and water). Hemispherical photographs were collected on eight dates over the course of a growing season to estimate leaf area index and to quantify solar radiation incident on the surface of two stream reaches based on output from Gap Light Analyser and Hemisfer software. Stream reaches were shaded by a mixed‐deciduous Ozark border forested riparian canopy. Hemispherical photo model results were compared to observed solar radiation sensed at climate stations adjacent to each stream reach for the entire 2010 water year. Modeled stream‐incident shortwave radiation was validated with above‐stream pyranometers for the month of September. On average, the best hemispherical photo models underestimated daily averages of solar radiation by approximately 14% and 12% for E–W and N–S flowing stream reaches, respectively (44.7 W/m2 measured vs 38.4 W/m2 modeled E–W, 46.8 W/m2 vs. 41.1 W/m2N–S). The best hemispherical photo models overestimated solar radiation relative to in–Stream pyranometers placed in the center of each stream reach by approximately 7% and 17% for E–W and N–S stream reaches respectively (31.3 W/m2 measured vs 33.5 W/m2 modeled E–W, 31.5 W/m2 vs. 37.1 W/m2N–S). The model provides a geographically transferable means for quantifying changes in the solar radiation regime at a stream surface due to changes in canopy density through a growing season, thus providing a relatively simple method for estimating surface and water heating in canopy altered environments (e.g. forest harvest). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
We examine the geomagnetic field and space plasma disturbances developing simultaneously in the solar wind, in the inner and outer magnetosphere, and on the ground from 0730 to 2030 UT on April 11, 1997 during the recovery phase of a moderate magnetic storm. The fluctuations of the solar wind density, H-component of the geomagnetic field, and power of Pc1–2 (0.1–5 Hz) waves at middle and low latitudes evolve nearly simultaneously. These fluctuations also match very well with variations of density and flux of the magnetospheric plasma at the geosynchronous orbit, and of the geomagnetic field at the geosynchronous orbit and northern polar cap. The time delay between the occurrence of disturbances in different magnetosphere regions matches the time of fast mode propagation. These disturbances are accompanied by the generation of Pc1–2 waves at mid- and high-latitude observatories in nearly the same frequency range. A scenario of the evolution of wave phenomena in different magnetospheric domains is proposed.  相似文献   

11.
The dynamics of the absolute global values (Φ) of the large-scale open solar magnetic field (LOSMF) fluxes at an interval of one solar rotation in 2006–2012 has been studied based on the Wilcox Solar Observatory data and using the ISOPAK original package for modeling the solar magnetic field. The reference points and the duration of the final quasi-biennial interval in cycle 23 (January 2006–May 2007; 17 months) and the phases of the cycle 24 minimum (May 2007–November 2009; 30 months), growth (November 2009–May 2012; 30 months), and the beginning of the maximum (May 2012–January 2013) have been determined. It has been indicated that the absolute values (Φ) decreased sharply at the beginning of the minimum, growth, and the maximum phases to ~(2, 1.25, 0.75) × 1022 Mx, respectively. During the entire minimum phase, LOSMF corotated super-quasi-rigidly westward in the direction of solar rotation; at the beginning of the growth phase, this field started corotating mostly eastward. The LOSMF polarity reversal in the current cycle 24 started in May–June 2012 (CR 2123–2124), when fields of southern polarity rushed from the Sun’s southern hemisphere toward the north. The statement that the solar cycle is a continuous series of quasi-biennial LOSMF intervals is confirmed. In particular, the minimum and growth phases are characterized by opposite LOSMF rotation directions, i.e., super-quasi-rigid corotation (twisting) and detwisting, with identical duration at least in cycle 24.  相似文献   

12.
Recent observations have quantified the auroral wind O+ outflow in response to magnetospheric inputs to the ionosphere, notably Poynting energy flux and precipitating electron density. For moderate to high activity periods, ionospheric O+ is observed to become a significant or dominant component of plasma pressure in the inner plasma sheet and ring current regions. Using a global circulation model of magnetospheric fields and its imposed ionospheric boundary conditions, we evaluate the global ionospheric plasma response to local magnetospheric conditions imposed by the simulation and evaluate magnetospheric circulation of solar wind H+, polar wind H+, and auroral wind O+. We launch and track the motions of millions of test particles in the global fields, launched at randomly distributed positions and times. Each particle is launched with a flux weighting and perpendicular and parallel energies randomly selected from defined thermal ranges appropriate to the launch point. One sequence is driven by a two-hour period of southward interplanetary magnetic field for average solar wind intensity. A second is driven by a 2-h period of enhanced solar wind dynamic pressure for average interplanetary field. We find that the simulated ionospheric O+ becomes a significant plasma pressure component in the inner plasma sheet and outer ring current region, particularly when the solar wind is intense or its magnetic field is southward directed. We infer that the reported empirical scalings of auroral wind O+ outflows are consistent with a substantial pressure contribution to the inner plasma sheet and plasma source surrounding the ring current. This result violates the common assumption that the ionospheric load is entirely confined to the F layer, and shows that the ionosphere is often an important dynamic element throughout the magnetosphere during moderate to large solar wind disturbances.  相似文献   

13.
The upper ionosphere electron density characterized by the critical frequency foF2 is correlated with solar activity when using monthly medians or averages from longer intervals. When shorter intervals are studied, time delays of different lengths in solar activity effects in the ionosphere are observed. The correlation between the foF2 values and the solar radiation intensity, given by the F10.7 index, is studied using the 1967–2003 data of mid-latitude ionosonde stations spaced at distances greater than 100° in geographical longitude. At which longitude the reaction of foF2 to the changes in solar activity appears sooner depends on the position of the interval studied in the 22-year solar cycle.  相似文献   

14.
This paper deals with the diurnal and seasonal variations of height of the peak electron density of the F2-layer (hmF2) derived from digital ionosonde measurements at a low–middle-latitude station, New Delhi (28.6°N, 77.2°E, dip 42.4°N). Diurnal and seasonal variations of hmF2 are examined and comparisons of the observations are made with the predictions of the International Reference Ionosphere (IRI-2001) model. Our study shows that during both the moderate and low solar activity periods, the diurnal pattern of median hmF2 reveals a more or less similar trend during all the seasons with pre-sunrise and daytime peaks during winter and equinox except during summer, where the pre-sunrise peak is absent. Comparison of observed median hmF2 values with the IRI during moderate and low solar activity periods, in general, reveals an IRI overestimation in hmF2 during all the seasons for local times from about 06 LT till midnight hours except during summer for low solar activity, while outside this time period, the observed hmF2 values are close to the IRI predictions. The hmF2 representation in the IRI model does not reproduce pre-sunrise peaks occurring at about 05 LT during winter and equinox as seen in the observations during both the solar activity periods. The noontime observed median hmF2 values increase by about 10–25% from low (2004–2005) to high solar activity (2001–2002) during winter and equinox, while the IRI in the same time period and seasons shows an increase of about 10–20%. During summer, however, the observed noontime median hmF2 values show a little increase with the solar activity, as compared to the IRI with an increase of about 12%.  相似文献   

15.
The resonance transition 2P-2S of the atomic hydrogen (Lyman-alpha emission) is the strongest and most conspicuous feature in the solar EUV spectrum. The Lyman-alpha radiation transfer depends on the resonance scattering from the hydrogen atoms in the atmosphere and on the O2 absorption. Since the Lyman-alpha extinction in the atmosphere is a measure for the column density of the oxygen molecules, the atmospheric O2 density and temperature profiles can be calculated thereof. A detector of solar Lyman-alpha radiation was manufactured in the Stara Zagora Department of the Solar-Terrestrial Influences Laboratory (STIL). Its basic part is an ionization camera, filled in with NO. A 60 V power supply is applied to the chamber. The produced photoelectric current from the sensor is fed to a two-channel amplifier, providing analog signal. The characteristics of the Lyman-alpha detector were studied. It passed successfully all tests and the results showed that the so-designed instrument could be used in rocket experiments to measure the Lymanalpha flux. From the measurements of the detector, the Lyman-alpha vertical profile can be obtained. Programs are created to compute the O2 density, atmospheric power and temperature profiles based on Lymanalpha data. The detector design appertained to ASLAF project (Attenuation of the Solar Lyman-Alpha Flux), a scientific cooperation between STIL—Bul.Acad.Sci., Stara Zagora Department and the Atmospheric Physics Group at the Department of Meteorology (MISU), Stockholm University, Sweden. The joint project was part of the rocket experiment HotPay I, in the ALOMAR eARI Project, EU’s 6th Framework Programme, Andøya Rocket Range, Andenes, Norway. The project is partly financed by the Bulgarian Ministry of Science and Education.  相似文献   

16.
Based on the DMSP F6 and F7 satellite observations, the characteristics of precipitating particles in different auroral precipitation regions of the dayside sector have been studied depending on the solar wind plasma density. Under quiet geomagnetic conditions (|AL| < 100 nT and B z > 0), a considerable increase in the fluxes of precipitating ions is observed in the zones of structured auroral oval precipitation (AOP) and soft diffuse precipitation (SDP). A decrease in the mean energy of precipitating ions is observed simultaneously with the flux growth in these regions. The global pattern of variations in the fluxes of precipitating ions, which shows the regions of effective penetration of solar wind particles into the magnetosphere at a change in the solar wind density from 2 to 20 cm?3, has been constructed. The maximal flux variation (ΔJ i = 1.8 · 107 cm?2 s?1, i.e., 3.5% of an increase in the solar wind particle flux) is observed in the SDP region on the dayside of the Earth. The dependence of precipitating ion fluxes in the low-latitude boundary layer (LLBL), dayside polar cusp, and mantle on the solar wind density at positive and negative values of the IMF B z component has been studied. In the cusp region, an increase in the precipitating ion flux is approximately 17% of an increase in the solar wind density. The IMF southward turning does not result in an appreciable increase in the ion precipitation fluxes either in the cusp or in the mantle. This fact can indicate that the reconnection of the geomagnetic field with southward IMF is not the most effective mechanism for penetration of solar wind particles into these regions.  相似文献   

17.
The removal of Alphazurine FG (AF) dye from water by an electrocoagulation process has been studied. The effect of some operational parameters, such as anode material, current density, initial dye concentration, pH of solution, conductivity, and inter‐electrode distance, on the removal efficiency was investigated. Iron and aluminum were used as anodes in the electrocoagulation cell. It was found that the efficiency of the iron anode was better than that of the aluminum anode for AF removal. The factors that affected the removal efficiency were the current density and the initial dye concentration. The removal efficiency increased from about 35% at 25 A m–2 to about 97% at 100 A m–2, during 4 min of electrocoagulation. The results exhibited pseudo‐first‐order kinetics for AF removal by electrocoagulation. In addition, a mathematical model was successfully established for predicting the removal efficiency. A comparison between the model results and experimental data gave a high correlation coefficient (R2 = 0.9925), which indicates that the model is able to predict the removal efficiency of AF.  相似文献   

18.
Quasi-periodic variations in the power of incoherent scattered signals, caused by wave disturbances of the electron concentration in the ionosphere, are analyzed for the day of a partial solar eclipse and for a background day. The windowed and adaptive Fourier transforms and the wavelet transform are used for spectral analysis. The spectral parameters of the wave disturbances at altitudes of 100–500 km in the 10–120 min period range differed significantly on the day of the solar eclipse and on the background day. Variations in the spectrum began near the onset of the phase of maximum disk occultation and continued no less than 2 h. The amplitude of time variations N was 2 × 109–4 × 1010 m?3, and the relative amplitude was 0.10–0.15. Wave disturbances have been compared for five solar eclipses; the comparison shows a noticeable variation in the spectrum of the wave disturbances during these events.  相似文献   

19.
Variations of the upper boundary of the ionosphere (UBI) are investigated based on three sources of information: (i) ionosonde-derived parameters: critical frequency foF2, propagation factor M3000F2, and sub-peak thickness of the bottomside electron density profile; (ii) total electron content (TEC) observations from signals of the Global Positioning System (GPS) satellites; (iii) model electron densities of the International Reference Ionosphere (IRI*) extended towards the plasmasphere. The ionospheric slab thickness is calculated as ratio of TEC to the F2 layer peak electron density, NmF2, representing a measure of thickness of electron density profile in the bottomside and topside ionosphere eliminating the plasmaspheric slab thickness of GPS-TEC with the IRI* code. The ratio of slab thickness to the real thickness in the topside ionosphere is deduced making use of a similar ratio in the bottomside ionosphere with a weight Rw. Model weight Rw is represented as a superposition of the base-functions of local time, geomagnetic latitude, solar and magnetic activity. The time-space variations of domain of convergence of the ionosphere and plasmasphere differ from an average value of UBI at ∼1000 km over the earth. Analysis for quiet monthly average conditions and during the storms (September 2002, October–November 2003, November 2004) has shown shrinking UBI altitude at daytime to 400 km. The upper ionosphere height is increased by night with an ‘ionospheric tail’ which expands from 1000 km to more than 2000 km over the earth under quiet and disturbed space weather. These effects are interposed on a trend of increasing UBI height with solar activity when both the critical frequency foF2 and the peak height hmF2 are growing during the solar cycle.  相似文献   

20.
The monthly median values of the height of peak electron density of the F2-layer (hmF2) derived from ionosonde measurements at three high latitude stations, namely Narssarssuaq (NAR) (61.2 °N, 314.6 °E), Sondrestrom (SON) (67°N, 309.1°E) and College (COL) (69.9°N, 212.2°E) were analyzed and compared with the International Reference Ionosphere (IRI-2001) model, using Comité Consultatif International des Radio communications) (CCIR and Union Radio-Scientifique Internationale (URSI) options. The analysis covers hmF2 values for March Equinox (February, March, April), June Solstice (May, June, July), September Equinox (August, September, October), and December Solstice (November, December, January), during periods of high (2000–2001), medium (2004–2005) and low (2007–2008) solar activity. Generally, the IRI-2001 prediction follow fairly well the diurnal and seasonal variation patterns of the observed values of hmF2 at all the stations. However, IRI-2001 overestimates and underestimates hmF2 at different times of the day for all solar activity periods and in all the seasons considered. The percentage deviation never exceeded 20%, except during DEC SOLS at COL and SON and during MARCH EQUI at SON during low solar activity period. For all solar activity periods considered, both the URSI and CCIR options of the IRI-2001 model give hmF2 values close to the ones measured, but the URSI option performed better than the CCIR option.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号