首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正1 Introduction Meromictic soda Lake Doroninskoe localized in the intermountain area,filled with continental sediments of the Mesozoic,in the upper basin of the river Amur.Coordinates of its location are N51°14'42"E112°14'40",  相似文献   

2.
The concentration of elemental sulfur (S0) in the upper oxic layer of the meromictic (stratified by water mineralization) soda Lake Doroninskoe (about 5.5 m depth) varied in the survey periods from the detection limit (0.002 mg/l) to the registered maximum of 0.444 mg/l, with an average value of 0.12 mg/l. In the lower hydrosulfide layer, these concentrations amounted to 0.012–1.88 mg/l. The results obtained point to the processes of sulfide sulfur oxidation under reductive conditions, and of sulfate reduction to form hydrogen sulfide in the oxic medium. The dynamics of the seasonal S0-thiosulfate ratio testifies to the dual (oxidative and reductive) nature of the latter.  相似文献   

3.
正1 Introduction Many soda and salt lakes are characterized by the formation of the meromictic conditions under which a part of the water column is not involved in the annual process of mixing(Mac Intyre,Melack,1982).This creates an  相似文献   

4.
本文通过对在外贝加尔大骨节病区水文地球化学研究结果表明,该地区天然水呈现出高浓度的磷(高达3.5mg/L),同时,锰、硅、铅等元素也呈现出高浓度的地球化学特征。分析水文地球化学数据,认为大骨节病可能与生物地球化学性质的多种因素有关系。进一步研究大骨节病的成因机制需要新的可靠的环境地球化学数据。  相似文献   

5.
正1 Introduction Prokaryotes are key organisms in aquatic ecosystems as they play animportant role in the biogeochemical cycling of elements.Investigations on the relationships betweenthe diversity of microbial community and environmentalfactors offer useful information that bothleads to understanding of the process of element  相似文献   

6.
正1 Introduction On the territory Kulunda Plain,located to the south-west of the Ob’plateau,there are more than 3,000 fresh and salt lakes with water TDS range from 1 to 430 g/L.The interest in these lakes was associated mainly with the study of  相似文献   

7.
Geology of Ore Deposits - The article discusses a novel methodological approach to deciphering the evolution of ore-magmatic systems (OMS), based on the study of geochemical fields associated with...  相似文献   

8.
9.
10.
The Berezitovoe deposit is a large-sized Au-Ag-Zn-Pb deposit in the east of the SelengaStanovoi superterrane, Russia. Au-Ag orebodies are hosted by tourmaline-garnet-quartz-muscovite metasomatic rocks; Zn-Pb orebodies are hosted by granodiorites, porphyritic granites and tourmalinegarnet-quartz-muscovite metasomatic rocks. These orebodies are surrounded by wall rocks dominated by the Tukuringra Complex granodiorites, porphyritic granites, and gneissic granodiorites. The alteration includes silicification and garnet, sericitization chloritization, carbonatization and kaollinization. LA-ICP-MS U-Pb zircon dating indicates that the gold mineralization can be divided into two stages in the Berezitovoe polymetallic gold deposit(at 363.5 ± 1.5 Ma, and133.4± 0.5).Hornblende-plagioclase gneisses of the Mogocha Group in the study area underwent Paleoproterozoic metamorphism(at 1870 ± 7.8 and 2400 ± 13 Ma), gneissic granodiorite of the Tukuringra Complex yields a late Paleozoic magmatic age(at 379.2 ± 1.1 Ma),and subalkaline porphyritic granitoid of the Amudzhikan Complex yield late Mesozoic magmatic ages(133-139 and 150-163 Ma). Granodiorites of the Tukuringra Complex in the study area have high concentrations of SiO_2(average of 60.9 wt%), are aluminum-oversaturated(average A/CNK of 1.49), are enriched in the large ion lithophile elements(e.g.,K, Rb, and Ba), U, Th, and Pb, are depleted in high field strength elements(e.g., Ta, Nb, and Ti), and have slightly negative Eu and no Ce anomalies in chondrite-normalized rare earth element diagrams.Fluid inclusions from quartz veins include three types: aqueous two-phase, CO_2-bearing three-phase,and pure CO_2. Aqueous two-phase inclusions homogenize at 167℃-249℃ and have salinities of 4.32%-9.47% NaCl equivalent, densities of 0.86-0.95 g/cm~3, and formed at depths of 0.52-0.94 km. In comparison, the C0_2-bearing three-phase inclusions have homogenization temperatures of 265℃-346℃,salinities of 7.14%-11.57% NaCl equivalent, and total densities of 0.62-0.67 g/cm~3. The geochemical and zircon U-Pb data and the regional tectonic evolution of the study area, show that the Berezitovoe polymetallic gold deposit formed in an island arc or active continental margin setting, most probably related to late Paleozoic subduction of Okhotsk Ocean crust beneath the Siberian Plate.  相似文献   

11.
正1 Introduction In the south of Eastern Transbaikalia in the border area with China and Mongolia,there are at least 300 saline without outlet lakes.They are confined to the semi-arid zone Daurian steppes with pronounced continental salinization processes and are mostly located on the bottoms of the intermountain basins.Their origin is related to evaporative concentration of fresh waters lakes filling.  相似文献   

12.

The distribution of substitutional Al, Ti, and Ge impurities in quartz samples from the Darasun, Teremkinskoe, and Talatui gold deposits, located in the Darasun ore field, were studied by electron paramagnetic resonance. The relationship between the isomorphous substitution and dynamic recrystallization of quartz was studied by optical and scanning electron microscopy. It was found that analysis of the plots of interdependence between the concentrations of various substitutional impurities in quartz (isogens) can detect development trends of isomorphous substitution. Two isomorphous substitution stages were recognized, one associated with quartz crystallization, and the other, with its subsequent dynamic recrystallization. The first stage is characterized by incorporation of Al impurity into the quartz crystal lattice, and the second, by incorporation Ti impurity. A Ge impurity is a catalyst for isomorphous substitution, and its concentrations vary widely. It is noted that the second stage plays a decisive role, because it accounts for the incorporation of the larger part of substitutional impurities. This process is facilitated by the dynamic recrystallization of quartz. Four genetic quartz groups, described by individual isogens, have been recognized in the Darasun ore field. Two of them correspond to quartz crystallized directly from a magmatogenic fluid or redeposited with the melt’s participation, and the other two groups, to quartz crystallized from an altered fluid. It was found that substitutional Al concentrations are retained in quartz after redeposition, whereas substitutional Ti concentrations decrease dramatically Mineral formation processes at each gold deposit are reviewed. Two types of temperature zoning, normal and reverse, have been recognized at the Darasun deposit. Each is characterized by an individual genetic quartz group and the degree of closedness of the mineral formation system. The genetically similar magmatogenic quartz samples found at the Darasun and Talatui deposits indicate the uniformity of the mineralization process in the Darasun ore field. The established trends of isomorphous substitution in quartz are useful in studies of the ore formation histories of gold and other ore deposits.

  相似文献   

13.
14.
The Late Paleozoic intrusive rocks, mostly granitoids, totally occupy more than 200,000 km2 on the territory of Transbaikalia. Isotopic U-Pb zircon dating (about 30 samples from the most typical plutons) shows that the Late Paleozoic magmatic cycle lasted for 55–60 m.y., from ~330 Ma to ~275 Ma. During this time span, five intrusive suites were emplaced throughout the region. The earliest are high-K calc-alkaline granites (330–310 Ma) making up the Angara–Vitim batholith of 150,000 km2 in area. At later stages, formation of geochemically distinct intrusive suites occurred with total or partial overlap in time. In the interval of 305–285 Ma two suites were emplaced: calc-alkaline granitoids with decreased SiO2 content (the Chivyrkui suite of quartz monzonite and granodiorite) and the Zaza suite comprising transitional from calc-alkaline to alkaline granite and quartz syenite. At the next stage, in the interval of 285–278 Ma the shoshonitic Low Selenga suite made up of monzonite, syenite and alkali rich microgabbro was formed; this suite was followed, with significant overlap in time (281–276 Ma), by emplacement of Early Kunalei suite of alkaline (alkali feldspar) and peralkaline syenite and granite. Concurrent emplacement of distinct plutonic suites suggests simultaneous magma generation at different depth and, possibly, from different sources. Despite complex sequence of formation of Late Paleozoic intrusive suites, a general trend from high-K calc-alkaline to alkaline and peralkaline granitoids, is clearly recognized. New data on the isotopic U-Pb zircon age support the Rb-Sr isotope data suggesting that emplacement of large volumes of peralkaline and alkaline (alkali feldspar) syenites and granites occurred in two separate stages: Early Permian (281–278 Ma) and Late Triassic (230–210 Ma). Large volumes and specific compositions of granitoids suggest that the Late Paleozoic magmatism in Transbaikalia occurred successively in the post-collisional (330–310 Ma), transitional (305–285 Ma) and intraplate (285–275 Ma) setting.  相似文献   

15.
We report compositions of homogenized quartz-hosted melt inclusions from a layered sequence of Li-, F-rich granites in the Khangilay complex that document the range of melt evolution from barren biotite granites to Ta-rich, lepidolite–amazonite–albite granites. The melt inclusions are crystalline at room temperature and were homogenized in a rapid-quench hydrothermal apparatus at 200 MPa before analysis. Homogenization runs determined solidus temperatures near 550 °C and full homogenization between 650 and 750 °C. The compositions of inclusions, determined by electron microprobe and Raman spectroscopy (for H2O), show regular overall trends of increasing differentiation from the least-evolved Khangilay units to apical units in the Orlovka intrusion. Total volatile contents in the most-evolved melts reach over 11 wt.% (H2O: 8.6 wt.%, F: 1.6 wt.%, B2O3: 1.5 wt.%). Concentrations of Rb range from about 1000 to 3600 ppm but other trace elements could not be measured reliably by electron microprobe. The resulting trends of melt evolution are similar to those described by the whole-rock samples, despite petrographic evidence for albite- and mica-rich segregations previously taken as evidence for post-magmatic metasomatism.

Melt variation trends in most samples are consistent with fractional crystallization as the main process of magma evolution and residual melt compositions plot at the granite minimum in the normative Qz–Ab–Or system. However, melts trapped in the highly evolved pegmatitic samples from Orlovka deviate from the minimum melt composition and show compositional variations in Al, Na and K that requires a different explanation. We suggest that unmixing of the late-stage residual melt into an aluminosilicate melt and a salt-rich dense aqueous fluid (hydrosaline melt) occurred. Experimental data show the effectiveness of this process to separate K (aluminosilicate melt) from Na (hydrosaline melt) and high mobility of the latter due to its low viscosity and relatively low density may explain local zones of albitization in the upper parts of the granite.  相似文献   


16.
Coexisting melt (MI), fluid-melt (FMI) and fluid (FI) inclusions in quartz from the Oktaybrskaya pegmatite, central Transbaikalia, have been studied and the thermodynamic modeling of PVTX-properties of aqueous orthoboric-acid fluids has been carried out to define the conditions of pocket formation. At room temperature, FMI in early pocket quartz and in quartz from the coarse-grained quartz–oligoclase host pegmatite contain crystalline aggregates and an orthoboric-acid fluid. The portion of FMI in inclusion assemblages decreases and the volume of fluid in inclusions increases from the early to the late growth zones in the pocket quartz. No FMI have been found in the late growth zones. Significant variations of solid/fluid ratios in the neighboring FMI result from heterogeneous entrapment of coexisting melts and fluids by a host mineral. Raman spectroscopy, SEM EDS and EMPA indicate that the crystalline aggregates in FMI are dominated by mica minerals of the boron-rich muscovite–nanpingite CsAl2[AlSi3O10](OH,F)2 series as well as lepidolite. Topaz, quartz, potassium feldspar and several unidentified minerals occur in much lower amounts. Fluid isolations in FMI and FI have similar total salinity (4–8 wt.% NaCl eq.) and H3BO3 contents (12–16 wt.%). The melt inclusions in host-pegmatite quartz homogenize at 570–600 °C. The silicate crystalline aggregates in large inclusions in pocket quartz completely melt at 615 °C. However, even after those inclusions were significantly overheated at 650±10 °C and 2.5 kbar during 24 h they remained non-homogeneous and displayed two types: (i) glass+unmelted crystals and (ii) fluid+glass. The FMI glasses contain 1.94–2.73 wt.% F, 2.51 wt.% B2O3, 3.64–5.20 wt.% Cs2O, 0.54 wt.% Li2O, 0.57 wt.% Ta2O5, 0.10 wt.% Nb2O5, 0.12 wt.% BeO. The H2O content of the glass could exceed 12 wt.%. Such compositions suggest that the residual melts of the latest magmatic stage were strongly enriched in H2O, B, F, Cs and contained elevated concentrations of Li, Be, Ta, and Nb. FMI microthermometry showed that those melts could have crystallized at 615–550 °C.

Crystallization of quartz–feldspar pegmatite matrix leads to the formation of H2O-, B- and F-enriched residual melts and associated fluids (prototypes of pockets). Fluids of different compositions and residual melts of different liquidus–solidus PT-conditions would form pockets with various internal fluid pressures. During crystallization, those melts release more aqueous fluids resulting in a further increase of the fluid pressure in pockets. A significant overpressure and a possible pressure gradient between the neighboring pockets would induce fracturing of pockets and “fluid explosions”. The fracturing commonly results in the crushing of pocket walls, formation of new fractures connecting adjacent pockets, heterogenization and mixing of pocket fluids. Such newly formed fluids would interact with a primary pegmatite matrix along the fractures and cause autometasomatic alteration, recrystallization, leaching and formation of “primary–secondary” pockets.  相似文献   


17.
Based on comprehensive studies of fluid inclusions in quartz formed at different stages of hydrothermal process, we consider the physicochemical conditions of formation of epithermal ores (K1) in the Balei ore field. The limiting parameters of hydrothermal process have been established: 353–131 °C, 150–30 bars, and salt concentrations of 7.6–0.5 wt.%-NaCl equiv. A specific feature of the ore-forming process at the Balei deposits is a rapid drop in temperature and pressure, which is typical of open hydrothermal systems. The temperature increase at the beginning of each stage evidences pulse-like ore formation. The productive stage coincides with the initiation of a drastic decrease in temperature (<225 °C) and salt concentration in the solution. The deposits resulted from the functioning of the common Balei ore-magmatic system at shallow depths with a high permeability of the host rocks. High-K calc-alkalic magmas might have been sources of gold mineralization. The ore formation zone is localized above intrusive bodies near their roof. It is not ruled out that the Balei gold was partly borrowed from the products of the early cycles (J2-3) of gold mineralization and from the host rocks.  相似文献   

18.
Thirteen new species referable to four genera, of which one is new, from the Cretaceous of Russia and Mongolia are established herein and assigned to the family Pelecinidae. Among the four genera, Protopelecinus gen. nov., including four new species, is referred to the subfamily Pelecininae, while Iscopinus Kozlov, including three new species, Eopelecinus Zhang, Rasnitsyn and Zhang, including five new species, and Scorpiopelecinus laetus sp. nov. are assigned to the subfamily Iscopininae. Of these new taxa, eight, namely Protopelecinus regularis, P. furtivus, Iscopinus simplex, ?I. suspectus, Eopelecinus exquisitus, E. scorpioideus, E. rudis and Scorpiopelecinus laetus, are from the Lower Cretaceous Zaza Formation of Baissa, Transbaikalia, Russia; two, E. minutus and E. fragilis, are from the basal Lower Cretaceous Tsagan-Tsab Formation of Khutel-Khara, Mongolia; two, P. dubius and P. deformis, are from the Lower Cretaceous (Aptian?) of Bon Tsagan, Mongolia; and one, I. separatus, is from the Upper Cretaceous (Cenomanian) Ola Formation of Obeshchayushchiy, Russia. A key to fossil pelecinid wasps is provided and a morphological analysis shows that the Pelecinidae might be paraphyletic with respect to the Proctotrupidae. The Chinese insect fauna from both the Yixian and Laiyang formations is dominated by Eopelecinus and Sinopelecinus whereas the Siberian + Mongolian fauna from the Zaza and Tsagan-Tsab formations is dominated by Eopelecinus and Iscopinus. Hence, Eopelecinus is common to both. The differences between the two faunas are likely to be the result of geographical variation in populations.  相似文献   

19.
The Late Cretaceous Pterophyllum species survived as relict elements in areas influenced by volcanism in the North-East of Russia. Two new species are described: P. philippoviae Gnilovskaya from the Turonian-Coniacian deposits of the Vetvinskaya Unit (Penzhina and Oklan Rivers interfluve, Magadan Region) and P. terechoviae from the Maastrichtian deposits of the Kakanaut Formation (Kakanaut River Basin, Koryak Upland). The upper boundary of Pterophyllum stratigraphic range is extended from the Turonian-Coniacian up to the K/Pg boundary. Pterophyllum terechoviae is the youngest member of the genus and probably the latest occurrence of Bennettitales in the Northern Hemisphere.  相似文献   

20.
This paper considers the problems of the existence of unexposed Late Jurassic-Early Cretaceous Priiskatel’skii and Pautovaya granitoid massifs in the core of the Pautovaya Horst and the Late Cretaceous Orotukan-Sulukhachan Massif, which is located at depths of <2 km and projected to the surface as the Verkhnii Orotukan, Sulukhachan, and Solnechnyi granite massifs. The formation of palingenetic-anatectic granitoid magma and its migration to the surface occurred under conditions of general basification of the crust in the Late Mesozoic and led to the formation of the Pautovaya Horst. Granitization of near-surface parts of the crust was accompanied by basification at depths of 8–15 km, where granitoid magma originated in magmatic chambers. The contact-metamorphosed sedimentary cap of the uneroded granitoid core of the Pautovaya Horst is promising for tin-rare metal ore deposits and occurrences and unpromising for gold mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号