首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
板块构造学说面临的挑战   总被引:9,自引:4,他引:9  
板块构造学说揭示了海底扩张和板块的水平运动现象,阐明了与板块边界相联系的岩浆活动。但大量资料表明地球历史上岩石圈板块与软流圈是同步耦合运动的,而不是在软流圈上滑移。全球扩张与俯冲的不对称性现象也是不吻合于板块构造理论所期望的。安第斯弧作为洋陆俯冲的典范在地球物理和地球化学上均缺少证据。对于与俯冲带相关的弧后引张、大陆增生、地壳物质返回地幔和成矿作用方面均存在较多的问题。大火成岩省所揭示的岩浆活动现象超越了板块构造的格局,并发生在整个地质历史时期和更广泛的地域范围。大火成岩省学说所解释的大陆增长、地壳物质返回地幔和成矿作用过程完全不同于板块构造学说。驱动地幔柱的深地幔对流假说允许岩石圈板块与下伏软流圈一起运动,吻合铅同位素所揭示的岩石圈与软流圈长期耦合的规律。  相似文献   

2.
Largely because of the wide variety of observational constraints which must be satisfied, the search for a viable driving mechanism is perhaps the most perplexing problem related to plate tectonics. The mechanism must be compatible with the rigid behavior of lithospheric plates, and with a wide range of plate sizes, shapes and motions. It must be consistent with complex configurations of plate boundaries and equally complex boundary interactions, such as the destruction of ridges at subduction zones. The mechanism must produce steady-state relative and absolute plate motions which persist for tens of millions of years, but must also account for sudden dramatic changes. Finally, the plate driving mechanism must be consistent with the non-Newtonian properties of olivine and with the fabrics of upper mantle peridotites.Mounting evidence suggests that plate motions result from forces associated with plate boundaries and that the principal resisting force is drag at the base of the lithosphere, particularly beneath continents Several investigators have suggested that gravitational forces acting on thermally-induced, lateral density variations in the upper mantle are the principal driving forces for plate tectonics. If so, plate motions are ultimately controlled by the temperature distribution in the upper mantle, and plate tectonics represents a state of dynamic equilibrium in which plate motions are both the cause and the consequence of temperature and density variations in the mantle. This concept requires that average absolute plate velocities be predictable from the characteristics of individual plates, and that plates tend to move down horizontal temperature gradients.A simple linear relation which includes contributions from ridge push (RP), slab pull (SP), trench suction (TS) and continental drag (CD): (cm/y) = (2.6 ± 0.4) + (4.8 ± 1.8) RP + (14.3 ± 1.7) SP +(3.5 ± 2.5) TS−(5.1 ±0.7) CD predicts plate velocities with an rms error of 0.44 cm/y, and a correlation coefficient of 0.98. That plate velocities can be accurately predicted from their own boundary configurations and proportions of continental lithosphere is strong evidence that plate motions result from negative buoyancy forces associated with plate boundaries.  相似文献   

3.
孟凡超  刘嘉麒  崔岩  高金亮  刘祥  童英 《岩石学报》2014,30(12):3569-3586
东北地区中生代经历了蒙古-鄂霍茨克构造体系向太平洋构造体系的转换,形成了不同期次火山活动。本文归纳总结了露头区与覆盖区中生代火山岩的年代学、空间分布、岩石组合以及地球化学特征,揭示了两个构造域的时空分布范围。该区火山岩锆石U-Pb年龄统计结果表明中生代存在五期火山活动:早-中侏罗世(190~160Ma)、晚侏罗世(160~145Ma)、早白垩世早期(145~120Ma)、早白垩世晚期(120~100Ma)、晚白垩世早期(100~90Ma)。早-中侏罗世火山岩分布较少,火山岩仅分布在大兴安岭西部满洲里地区和东部张广才岭以及南侧辽宁北票-朝阳地区,火山岩属于高钾钙碱性系列,为蒙古-鄂霍茨克海闭合和法拉隆板块双俯冲作用的产物。晚侏罗世东北地区火山活动明显增强,主要分布在大兴安岭地区,张广才岭以及小兴安岭也有少量分布。西部大兴安岭地区以粗面安山岩、粗面岩为主,属于同碰撞造山成因,为蒙古-鄂霍茨克海闭合造山环境产物。东部以中酸性、酸性岩为主,为法拉隆板块背离欧亚大陆,岩石圈伸展引起的壳源物质熔融产物。早白垩世早期火山活动最为强烈,火山岩主要分布在大兴安岭地区。岩性以高钾钙碱性系列的粗面玄武安山岩、粗面安山岩、安山岩、粗面岩为主,为蒙古-鄂霍茨克海闭合造山后伸展环境产物。早白垩世晚期火山岩主要分布在松辽盆地内部。火山岩以中酸性岩为主,属于中钾-高钾钙碱性系列,为伊泽奈崎板块俯冲引起的弧后拉张,软流圈上涌导致年轻地壳熔融的产物。晚白垩世早期火山岩仅分布在小兴安岭及吉林、黑龙江省东部地区。火山岩为一套玄武岩、玄武安山岩、安山岩和英安岩组合,属于中钾钙碱性系列,是伊泽奈崎-库拉板块高角度俯冲的大陆边缘岩浆活动产物。东北地区中生代不同期次火山岩记录了蒙古-鄂霍茨克构造域向太平洋构造域转换过程及其时空影响范围。  相似文献   

4.
In contrast to the normal ‘Wilson cycle’ sequence of subduction leading to continental collision and associated mountain building, the evolution of the New Zealand plate boundary in the Neogene reflects the converse—initially a period of continental convergence that is followed by the emplacement of subduction. Plate reconstructions allow us to place limits on the location and timing of the continental convergence and subduction zones and the migration of the transition between the two plate boundary regimes. Relative plate motions and reconstructions since the Early to Mid-Miocene require significant continental convergence in advance of the emplacement of the southward migrating Hikurangi subduction—a sequence of tectonism seen in the present plate boundary geography of Hikurangi subduction beneath North Island and convergence in the Southern Alps along the Alpine Fault. In contrast to a transition from subduction to continental convergence where the leading edge of the upper plate is relatively thin and deformable, the transition from a continental convergent regime, with its associated crustal and lithospheric thickening, to subduction of oceanic lithosphere requires substantial thinning (removal) of upper plate continental lithosphere to make room for the slab. The simple structure of the Wadati–Benioff zone seen in the present-day geometry of the subducting Pacific plate beneath North Island indicates that this lithospheric adjustment occurs quickly. Associated with this rapid lithospheric thinning is the development of a series of ephemeral basins, younging to the south, that straddle the migrating slab edge. Based on this association between localized vertical tectonics and slab emplacement, the tectonic history of these basins records the effects of lithospheric delamination driven by the southward migrating leading edge of the subducting Pacific slab. Although the New Zealand plate boundary is often described as simply two subduction zones linked by the transpressive Alpine Fault, in actuality the present is merely a snapshot view of an ongoing and complex evolution from convergence to subduction.  相似文献   

5.
杨文采 《地质论评》2014,60(5):945-961
本篇讨论大陆岩石圈拆沉、伸展与裂解作用过程。由于大陆岩石圈厚度大而且很不均匀,产生裂谷的机制比较复杂。大陆碰撞远程效应的触发,岩石圈拆沉,以及板块运动的不规则性和地球应力场方向转折,都可能产生岩石圈断裂和大陆裂谷。岩石圈拆沉为在重力作用下"去陆根"的作用过程,演化过程可分为大陆根拆离、地壳伸展和岩石圈地幔整体破裂三个阶段。大陆碰撞带、俯冲的大陆和大洋板块、克拉通区域岩石圈,都可能产生岩石圈拆沉。大陆岩石圈调查表明,拉张区可见地壳伸展、岩石圈拆离、软流圈上拱和热沉降;它们是大陆岩石圈伸展与裂解早期的主要表现。从初始拉张的盆岭省到成熟的张裂省,拆离后地壳伸展成复式地堑,下地壳幔源玄武岩浆侵位,断裂带贯通并切穿整个岩石圈,表明地壳伸展进入成熟阶段。中国东北松辽盆地和西欧北海盆地曾处于成熟的张裂省。岩石圈破裂为岩浆侵位提供了阻力很小的通道网。岩浆侵位作用伴随岩石圈破裂和热流体上涌,成熟的张裂省可发展成大陆裂谷。多数的大陆裂谷带并没有发展成威尔逊裂谷带和洋中脊,普通的大陆裂谷要演化为威尔逊裂谷带,必须有来自软流圈的长期和持续的热流和玄武质岩浆的供应。威尔逊裂谷带岩石圈地幔和软流圈为地震低速带,其根源可能与来自地幔底部的地幔热羽流有关。  相似文献   

6.
The motion of Greenland relative to Ellesmere Island along Nares Strait is determined from poles of rotation which provide control for the motion independent of local geology and geophysics. The plate kinematics around the North Atlantic Ocean, the Norwegian and Greenland Seas and the Eurasian Basin of the Arctic Ocean constrain motion along Nares Strait. These motions are checked by examining the stability characteristics of the triple junctions. These junctions are found to be stable. The motion along Nares Strait between anomalies 34 and 13 is a combination of strike-slip and compression. The regional geology is found to support the plate reconstructions. The local geology of the Nares Strait area is reviewed and found not to refute the predicted motions. The geophysical and geological data are interpreted in terms of the Wilson cycle, the opening and closing of an ocean. The Nares Strait area has the characteristics of a cryptic suture, a join between regions of collided continental crust.  相似文献   

7.
根据区域地质调查资料,对山西省中生代侵入岩进行分析研究,将其划分为3个岩浆系列: 碱性偏碱性系列、亚碱性(基性)中性—中酸性系列和A型花岗岩(酸性)系列。碱性偏碱性岩系列形成于后碰撞构造环境,亚碱性(基性)中性—中酸性岩系列为大陆边缘弧和大陆岛弧及后造山构造环境,A型花岗岩系列为板内大陆裂谷或与地幔热点(地幔羽)有关的构造环境,板块俯冲作用为其提供了热能和含水溶液。大地构造分区划分为华北陆块区构造岩浆省(Ⅰ级),其中包括3个岩浆带(Ⅱ级): 南兴蒙岩浆带、北秦岭岩浆带和华北东部岩浆带,每个岩浆带又可划分为2个岩浆亚带(2期岩浆作用)(Ⅲ级),各个岩浆亚带均具有板块俯冲造山带火成岩的特征和发育演化极性。该成果为解决板块构造登陆问题提供了借鉴。  相似文献   

8.
太平洋板块中—新生代构造演化及板块重建   总被引:6,自引:4,他引:2  
太平洋板块是一个中生代以来形成的地球上最大的大洋板块,但其起源机制、结构构造、构造演化等始终不清楚。太平洋板块内部的复杂性更是未受到重视,其内部的大火成岩省、海山链、微洋块、微陆块及其下部更深层地幔的微幔块都非常发育,这些复杂板内或板下构造代表的地球动力学含义亟待解决。文章基于最新的板块重建结果,试图分析其运动学过程,揭示太平洋板块形成与演化机制。研究表明,太平洋板块起源于RRR三节点,但不是一个纯粹的完整大洋板块,其增生演化过程经历了非威尔逊旋回模式,其板缘经历了一些外来微陆块或微洋块的并入,其内部也因各种原因出现了一些新生微洋块,总体表现为一个碎片化的镶嵌式板内格局。太平洋板块记录了与邻区板块相互作用的重要构造事件,大约55 Ma左右开始俯冲到东亚陆缘,导致东亚陆缘短暂的北西-南东向伸展,随后受印度-欧亚碰撞动力系统和太平洋俯冲动力系统联合控制,总体处于右行右阶的拉分背景,形成了一系列盆地群,俯冲后撤等逐渐形成了双俯冲系统。太平洋板块还记录了深浅部耦合过程,下地幔中的太平洋LLSVP通过遥相关对上部岩石圈微板块、大火成岩省分布具有决定性作用;火山链或热点揭示板块运动同时,也反映深浅部物质交换过程,海山群也揭示太平洋板块之下软流圈并非单一对流胞,其对流格局的多样性尚待深入研究。   相似文献   

9.
The Los Tuxtlas volcanic field (LTVF) of late Miocene to Recent age is a key area to understand the consequences of the current subduction of the Cocos plate beneath the North American plate, as well as the competing effects of the ongoing extension along the Gulf of Mexico coast. Geochemical and radiogenic (Sr, Nd, and Pb) isotope data are used to constrain the origin of these 7 Ma to Recent magmas in this area. The basanitic and alkaline basaltic rocks show highly steep light rare-earth element-enriched patterns implying residual garnet in their mantle source, whereas the evolved alkaline and sub-alkaline rocks have less steep rare-earth element patterns consistent with a contribution from the continental crust. Geochemical and isotope data from the LTVF are compared with those from continental rifts, extension-related areas, continental break-up regions, and island and continental arcs, including the Central American volcanic arc related to the subduction of the same oceanic plate (Cocos plate), as well as with those from the two nearby Mexican provinces [the Eastern Alkaline Province (EAP) and the eastern part of the Mexican Volcanic Belt (E-MVB)]. These data for the LTVF primitive rocks are similar to rifts, extension-related areas and continental break-up regions, including the two Mexican provinces, but different from island and continental arcs, including the northern part of the Central American Volcanic Arc (CAVA). The LTVF rocks show an unusual Th and U enrichment with respect to Ba and Rb, which also renders a distinct negative Nb anomaly (with respect to Th and K) in them. These rocks also show a negative Nb anomaly (with respect to Ba and La) that is similar to numerous rift, extension-related areas, and continental break-up regions, but distinct from all arcs around the world, indicating that the magma genesis processes in the LTVF are similar to those in rifts. The “Sr-shift”, shown to be a typical feature of most, if not all, island and continental arcs including the CAVA, is not present in the LTVF rocks. Numerous discrimination diagrams, including the new discriminant function diagrams, suggest a rift setting for the LTVF. An essentially extension-related origin of the LTVF is, therefore, inferred in this study. Furthermore, in the light of major and trace element data for LTVF primitive rocks and their modelling an incompatible element-enriched garnet-bearing source seems plausible. The LTVF source is likely to reside in the lithosphere rather than the asthenosphere although the asthenospheric contribution cannot be completely ruled out. The evolved alkaline and sub-alkaline rocks might have a lower crustal component. Finally, it appears that the LTVF shows more affinity to the EAP rather than to the Mexican Volcanic Belt (MVB), implying that the LTVF should probably be considered as a part of the EAP.  相似文献   

10.
It is proposed that major continental collision normally causes two orogenies. The first is characterized by ophiolite obduction, and the second by widespread deformation, often accompanied by metamorphism and granite intrusion. The two orogenies are separated by a relatively quiescent orogenic pause of 40–60 Ma. The two stages of continental collision are illustrated by examples from the Paleozoic Newfoundland Appalachians, and the Mesozoic-Cenozoic Tethyan collision belts of the Zagros and Himalayas.

The stages of continental collision are explained in terms of the forces driving plate motions, which are dominated by the downward pull of subducting oceanic lithosphere and, to a lesser extent, by the outward push of spreading oceanic ridges.

The Taconic stage marks attempted subduction of continental crust. The buoyancy of continental crust offsets the negative buoyancy of subducting oceanic lithosphere and other driving forces so that plate motion is halted. Orogeny involves vertical buoyancy forces and is concentrated along the narrow belt of plate overlap at the subduction zone.

In a major collision the Taconic stage destroys a substantial proportion of the earth's subducting capacity. It is an event of such magnitude that it has global consequences, reducing sea-floor spreading and the rate of convection. This results in retention of heat within the earth and a consequent increase in the forces driving the plates. The orogenic pause represents the time taken for these forces to become strong enough to overcome the obstruction of buoyant continental crust and renew subduction at the collision zone.

The Acadian stage of collision occurs when renewed subduction is achieved by detachment of continental crust from its underlying lithosphere. As the subcrustal lithosphere is subducted, the crust moves horizontally. The result is crustal shortening with widespread deformation and generation of anatectic granitic magma, as well as subduction related volcanism.

The effects of continental collision on the rate of sea-floor spreading can be related to eustatic changes in sea level, glaciations, and mass extinctions. There may also be connections, through changes in the rate of mantle convection, to the earth's magnetic polarity bias and rotation rate.  相似文献   


11.
According to geologic reconstructions, the motion of the Sierran-Great Valley block with respect to the Colorado Plateau was mainly westerly at more than 20 mm/yr from 16 to 10 Ma, changing to northwest or NNW since 8 to 10 Ma, at an average rate of 15 mm/yr. These kinematics are consistent with two other independent methods of determining the position of the block since 20 Ma–reconstructions based on paleomagnetic data from range blocks that bound the Basin and Range on the west, and a revised history of Pacific-North America plate motion based on a global plate circuit (Atwater and Stock, 1998, this issue). The plate-tectonic reconstruction shows a change to more northerly motion between the Pacific and North American plates at ~8 Ma, in concert with the motion of the Sierran-Great Valley block. Moreover, the northeast limit of extant oceanic crust (as indicated by the reconstruction of the continental geology) tracks closely with the southwest limit of extant continental crust (as indicated by the positions of oceanic plates) since 20 Ma. The coordination between plate motions and the intraplate geology suggests that plate-boundary forces strongly influenced deformation within the continent.  相似文献   

12.
13.
大火成岩省及地幔动力学   总被引:4,自引:1,他引:4       下载免费PDF全文
大火成岩省由一个体积巨大的、连续的、以富镁铁岩石占优势的喷出岩及其伴生的侵入岩组成,是一个全球现象。它包括大陆溢流玄武岩和伴生的侵入岩,火山被动边缘玄武岩,大洋高原、海岭、海山群和洋盆溢流玄武岩。Ontong Java和Kerguelen-Broken Ridge大洋高原、北大西洋火山被动边缘、德干和哥伦比亚河大陆溢流玄武岩是3个主要大火成岩省的典型代表。各种不同的大火成岩省在时空分布及组成上都具有相似性,它们具有非常大的体积、高的喷发速率,岩石类型以拉斑玄武岩为主。大火成岩省代表了地球上已知的最大的火山岩浆活动,记录了物质和能量从地球内部向外的大量转换。大火成岩省难以用板块构造来解释,可用热柱模式来解释,通常被认为是与来自下地幔的热柱“头”有关。大火成岩省是地球动力学过程在地壳的表现,因此大火成岩省参数可作为边界条件去反演地幔动力学过程。  相似文献   

14.
晚古生代特提斯区热带、亚热带植物群的东西分异   总被引:3,自引:0,他引:3       下载免费PDF全文
从早石炭世开始,地球出现明显受气候带控制的植物分区现象,产生了分别代表南、北温—寒带的冈瓦纳植物区和安加拉植物区以及夹在其间的代表热带、亚热带的欧美植物区(广义)。随着南、北大陆在特提斯西部的汇聚,广义的欧美植物区在晚石炭世产生了东西分异,形成了西部狭义的欧美植物区和东部的华夏植物区。本文从分析东、西两植物区的生态特征、演化阶段、古构造格局的重组和古地理环境等因素入手,探讨了两植物区之间的区别及其分异的原因。可以认为植物区的东西分异是由气候的东西分异造成的,而气候的东西分异则是由于特提斯西部的板块汇聚造成的,它促使西部特提斯地区转变为干旱的大陆性气候,而东部特提斯地区为裂解阶段,保持着潮湿的海洋性气候。  相似文献   

15.
地幔柱构造是基于全地慢对流模式、主要依据热点火山活动提出的新的全球构造理论。它的主要表现形式和产物是地幔柱头上部地壳抬升、岩浆活动形成大火成岩省、大型放射状岩墙群,并导致大陆裂解、板块运动和大规模成矿,是生物灭绝、磁极倒转的诱因。中国大陆的地质演化历史中保存了多期地幔柱活动印记,它们主要是华南新元古代Rodinia地幔柱、古生代古特提斯和峨眉山地幔柱和中一新生代中国东部地慢柱构造事件。上述地幔柱活动产生了地壳抬升、强烈岩浆活动、大陆伸展与裂解、岩石圈剧烈减薄和大规模成矿等重要地质事件。  相似文献   

16.
中国岩石圈应力场与构造运动区域特征   总被引:8,自引:1,他引:8       下载免费PDF全文
徐纪人  赵志新 《中国地质》2006,33(4):782-792
笔者系统分析了1918—2005年间中国大陆及其周缘发生的3130个中、强地震的震源机制解,根据其特征进行了岩石圈应力场构造分区,首次得到区域应力场的压应力轴和张应力轴空间分布的统计数字结果。在此基础上研究了应力场的区域特征、探讨了其动力学来源以及构造运动特征。总体结果表明,中国大陆及其周缘岩石圈应力场和构造运动可以归结为印度洋板块、太平洋板块、菲律宾海板块与欧亚板块之间相对运动,以及大陆板内区域块体之间的相互作用的结果。印度洋板块向欧亚板块的碰撞挤压运动所产生的强烈的挤压应力,控制了喜马拉雅、青藏高原、中国西部乃至延伸到天山及其以北的广大地区。在青藏高原周缘地区和中国西部的大范围内,压应力P轴水平分量方位位于20~40°,形成了近NE方向的挤压应力场。大量逆断层型强震集中发生在青藏高原的南、北和西部周缘地区,以及天山等地区。而多数正断层型地震集中发生在青藏高原中部高海拔的地区,断层位错的水平分量位于近东西方向。表明青藏高原周缘区域发生南北向强烈挤压短缩的同时,中部高海拔地区存在着明显的近东西向的扩张运动。中国东部的华北地区受到太平洋板块向欧亚板块俯冲挤压的同时,又受到从贝加尔湖经过大华北直到琉球海沟的广阔地域里存在着的统一的、方位为170°的引张应力场的控制。华北地区大地震的震源机制解均反映出该区地震的发生大体为NEE向挤压应力和NNW向张应力的共同作用结果。台湾纵谷断层是菲律宾海板块与欧亚板块之间碰撞挤压边界。来自北西向运动的菲律宾海板块构造应力控制了从台湾纵谷、华南块体,直到中国南北地震带南段东部地域的应力场。地震的震源机制结果还表明,将中国大陆分成东、西两部分的中国南北地震带是印度洋板块、菲律宾海板块与太平洋板块在中国大陆内部影响控制范围的分界线。  相似文献   

17.
In this paper we present the results of a generalization of paleomagnetic data for the territory of the Siberian craton and its folded framing that were obtained during the last fifteen years. We propose a new version of the apparent polar wander path for the Siberian continental plate, including the interval from the Mesoproterozoic–Neoproterozoic boundary up to the end of the Mesozoic. The constructed path forms the basis for new concepts on the tectonics of the Siberian paleocontinent and the paleooceans that surrounded it. We present a series of paleotectonic reconstructions based on paleomagnetic data, which not only displays the paleogeographic position of the Siberian continent, but also reveals the features of the tectonic evolution of its margins during the last billion years. In particular it has been established that large-scale strike-slip motions played an important role in the tectonic regime of the continental plate at all stages of its development.  相似文献   

18.
重新认识中国斑岩铜矿的成矿地质条件   总被引:40,自引:10,他引:40  
根据中国大陆洋陆作用的关系和造山带的演化,重新划分了中国斑岩铜矿成矿域和成矿带,将其分为古亚洲、北部特提斯、南部特提斯(喜马拉雅)和环太平洋4个成矿域。古亚洲成矿域又分为华北陆块北缘早-中古生代成矿带、哈萨克斯坦地块东北缘晚古生代成矿带、哈萨克斯坦地块南缘中晚古生代成矿带、西伯利亚板块西南缘晚古生代成矿带。特提斯北部成矿域分为中咱地块西缘晚三叠世义敦成矿带、羌塘地块(昌都-思茅地块)北缘古近纪玉龙成矿带、塔里木地块南缘晚古生代-新生代成矿带、扬子地块西缘古近纪成矿带。南部特提斯(喜马拉雅)成矿域分为班公错成矿带和冈底斯成矿带。环太平洋成矿域分晚中生代活动陆缘成矿带和台湾古近纪-新近纪岛弧成矿带。综合分析中国大陆地质演化史与斑岩铜矿成矿地质背景,对中国斑岩铜矿勘查工作具有重要参考价值。  相似文献   

19.
《地学前缘(英文版)》2020,11(4):1253-1256
Paleogeography can be reconstructed using various crust-or mantle-based reference frames that make fundamentally different assumptions.The various reconstruction models differ significantly in continental paleolongitude,but it has been difficult to assess which models are more valid.We suggest here a "LLSVP test",where an assumed correlation between present-day large low velocity shear-wave provinces and the paleogeography of supercontinent Pangea at breakup ca.200 million years ago can be used to assess the relative accuracy of published reconstructions.Closest correlations between continental paleolongitude and the African LLSVP are achieved with mantle-based reference frames(moving hotspots and true polar wander),whereas shallower crustbased reference frames are shown to be invalid.The relative success of mantle-based frames,and thus the importance of the depth of reference frame,supports the notion that mantle convection is largely vertical compared to the horizontal plate motion of tectonics.  相似文献   

20.
The typical features of metallogenic provinces in the orogenic belts are described and explained in the sense of the modern plate tectonics. Some phenomena, however, are not in agreement with the scheme of “consuming margins” — particulary the timing of the magmatic-tectonic cycles and the assembly of ore metals in mountain chains. Therefore the older assumption of a synorogenic anatexis of the continental crust has to be maintained. The metals of the continental crust got combined with the volatiles and with the metals of the basaltic magma to form ore deposits. The Alpine-Mediterranean metallogenesis seems to be the result of repeated and interfering subduction (producing deposits of Cu, Fe, Cr) and palingenesis (producing deposits of Pb-Zn, Au, Ag etc.) in Cretaceous and in Tertiary time. In the cratonic areas, three types of metallogenic provinces can be distinguished: Huge lakkolithes of liquid basic mantle magma with Cr, Ni, Cu, Pt — areas of granitization with a haphazard distribution of different ores — and the simple stratiform deposits in the stable platform cover; the latter as well as the small deposits along rifts and separating margins can best be explained as mobilisates created by heat flow and some mantle volatiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号