首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The problem of the ionospheric disturbances associated with geomagnetic storms is examined with the goal of searching for a relationship between the time-developments of the two phenomena. Faraday rotation measurements of total electron content (NT) are used to monitor the ionospheric F-region at a mid-latitude site, while a variety of geomagnetic parameters are examined as possible ways of following the geomagnetic variations. The ionospheric and geomagnetic data taken during 28 individual storms from 1967 to 1969 are used to search for a predictive scheme which can be tested using data from 17 storms in 1970. The specific aim is to find the geomagnetic parameter whose time-development can best forecast whether or not the ionospheric response will include an initial positive phase prior to the normally extended period of F-region depletions. Correlations between NT and the geomagnetic indices Kp, and equatorial Dst(H) prove to be wholly inadequate. The local times of main-phase-onset (MPO) determined from the equatorial Dst(H) indices as well as from local horizontal component data, also prove to be unsatisfactory. The best correlations are obtained using local measurements of the total geomagnetic field (F). These results show that a storm commencement (SC) will produce an enhancement in nt during the afternoon period following the SC unless there is an intervening post-midnight period with a strong depression of the geomagnetic field. Operationally this is taken to be a depression in F of at least 100γ near 03:00 LT  相似文献   

2.
Measurements of electron content (NT) near the crest of the equatorial ionosphere anomaly in South America have been made and analysed to investigate NT variations with solar hour, solar rotation and geomagnetic storms. The annual mean of diurnal ratio, defined as the ratio of the maximum to the minimum electron content of the day is found to be 5.0. Anomalous increases in night time electron content are observed with maxima around 2100 LMT and 2300 LMT during summer and equinoctial months. These increases are found to be linked with vertical motion of the F-layer. Spatial resonance in equatorial F-layer plasma appears to be the possible cause of these increases.  相似文献   

3.
Geomagnetic field variations during five major Solar Energetic Particle (SEP) events of solar cycle 23 have been investigated in the present study. The SEP events of 1 October 2001, 4 November 2001, 22 November 2001, 21 April 2002 and 14 May 2005 have been selected to study the geomagnetic field variations at two high-latitude stations, Thule (77.5° N, 69.2° W) and Resolute Bay (74.4° E, 94.5° W) of the northern polar cap. We have used the GOES proton flux in seven different energy channels (0.8–4 MeV, 4–9 MeV, 9–15 MeV, 15–40 MeV, 40–80 MeV, 80–165 MeV, 165–500 MeV). All the proton events were associated with geoeffective or Earth directed CMEs that caused intense geomagnetic storms in response to geospace. We have taken high-latitude indices, AE and PC, under consideration and found fairly good correlation of these with the ground magnetic field records during the five proton events. The departures of the H component during the events were calculated from the quietest day of the month for each event and have been represented as ΔH THL and ΔH RES for Thule and Resolute Bay, respectively. The correspondence of spectral index, inferred from event integrated spectra, with ground magnetic signatures ΔH THL and ΔH RES along with Dst and PC indices have been brought out. From the correlation analysis we found a very strong correlation to exist between the geomagnetic field variation (ΔHs) and high-latitude indices AE and PC. To find the association of geomagnetic storm intensity with proton flux characteristics we derived the correspondence between the spectral indices and geomagnetic field variations (ΔHs) along with the Dst and AE index. We found a strong correlation (0.88) to exist between the spectral indices and ΔHs and also between spectral indices and AE and PC.  相似文献   

4.
《Planetary and Space Science》2007,55(10):1218-1224
In this paper, we report the results derived from a statistical analysis of whistlers recorded at Varanasi during the period January 1990–December 1999. The monthly occurrence rate shows a maximum during January to March. In order to study the role of geomagnetic disturbance on the whistler occurrence rate, we have used the KP index and its variation. It is found that the occurrence probability monotonically increases with ∑KP (daily sum) values. It is found that, when ∑KP>20, the occurrence rate is greater than the average value, in good agreement with results reported by other workers. In addition, we also present the probability of the observation of whistlers during weak/intense geomagnetic storms and also during the main phase and recovery phase of geomagnetic storms.  相似文献   

5.
Data from a low altitude polar orbiting satellite, on auroral protons >115 keV in the evening and forenoon sectors, are presented.In the forenoon sector there is a weak but fairly steady precipitation at Λ ≈ 75° during quiet conditions. This precipitation is situated at higher invariant latitudes at local noon than at local dawn and can probably be ascribed to the high energy tail of the polar cleft protons. During moderately disturbed conditions, especially during the recovery phase of geomagnetic storms, there are some seemingly more “impulsive” precipitation events at Λ ≈ 65°. During very disturbed conditions these two precipitation zones in the forenoon sector seem to merge.In the evening sector a rather sharp equatorward boundary of the main precipitation, at Λ ≈ 69° during quiet conditions, varies fairly smoothly from pass to pass. South of this boundary, at invariant latitudes around 62°, there is a steady weak drizzle from the radiation belt. Due to a longitudinal effect this drizzle, as recorded by the satellite, shows a diurnal variation.The equatorward boundaries of the main precipitation at both local times move equatorward with increasing ring current strength. When Dst gets less than about — 100nT, the poleward boundaries are found to move equatorward too. From an attempt to reveal some of the substorm-dependent changes of the precipitation it is found that an equatorward shift of the precipitation areas takes place during, or just prior to, the substorm expansive phase, accompanied by a large intensity increase in the evening sector, whereas the recovery phase is linked with a poleward expansion of the precipitation at both local times.  相似文献   

6.
Interplanetary magnetic clouds (MCs) are one of the main sources of large non-recurrent geomagnetic storms. With the aid of a force-free flux rope model, the dependence of the intensity of geomagnetic activity (indicated by Dst index) on the axial orientation (denoted by θ and φ in GSE coordinates) of the magnetic cloud is analyzed theoretically. The distribution of the Dst values in the (θ, φ) plane is calculated by changing the axial orientation for various cases. It is concluded that (i) geomagnetic storms tend to occur in the region of θ<0°, especially in the region of θ≲−45°, where larger geomagnetic activity could be created; (ii) the intensity of geomagnetic activity varies more strongly with θ than with φ; (iii) when the parameters B 0 (the magnetic field strength at the flux rope axis), R 0 (the radius of the flux rope), or V (the bulk speed) increase, or |D| (the shortest distance between the flux rope axis and the x-axis in GSE coordinates) decreases, a flux rope not only can increase the intensity of geomagnetic activity, but also is more likely to create a storm, however the variation of n (the density) only has a little effect on the intensity; (iv) the most efficient orientation (MEO) in which a flux rope can cause the largest geomagnetic activity appears at φ∼0° or ∼ 180°, and some value of θ which depends mainly on D; (v) the minimum Dst value that could be caused by a flux rope is the most sensitive to changes in B 0 and V of the flux rope, and for a stronger and/or faster MC, a wider range of orientations will be geoeffective. Further, through analyzing 20 MC-caused moderate to large geomagnetic storms during 1998 – 2003, a long-term prediction of MC-caused geomagnetic storms on the basis of the flux rope model is proposed and assessed. The comparison between the theoretical results and the observations shows that there is a close linear correlation between the estimated and observed minimum Dst values. This suggests that using the ideal flux rope to predict practical MC-caused geomagnetic storms is applicable. The possibility of the long-term prediction of MC-caused geomagnetic storms is discussed briefly.  相似文献   

7.
Hidalgo  M.A. 《Solar physics》2003,216(1-2):311-324
Using an elliptical cross-section model for the study of the magnetic topology of magnetic clouds (MCs) in the interplanetary medium, we develop an analytical approach to their relationship with geomagnetic storms. Assuming an axially symmetric ring current and once we have obtained the disturbances produced in its current density due to the passage of a MC through it (whose axis has a latitude θ, a longitude φ, and its cross-section has an orientation ζ), then we determine the decrease in the value of the geomagnetic field at the Earth's equator, i.e., the D st index. The D st model presented allows us to estimate the physical parameters which characterize the symmetric ring current during the recovery phase of the storm time. The theoretical and experimental D st indexes are compared for four intense geomagnetic storms (D st<−100 nT), all of them associated with MCs. As seen in the figures presented, the fits are good for every storm. In view of these results we conclude that the effects of a MC over the symmetric ring current can explain the main profile of the recovery phase of a geomagnetic storm.  相似文献   

8.
In this paper, we analyze the interplanetary causes of eight great geomagnetic storms during the solar maximum (2000-2001). The result shows that the interplanetary causes were the intense southward magnetic field and the notable characteristic among the causal mechanism is compression. Six of eight great geomagnetic storms were associated with the compression of southward magnetic field, which can be classified into (1) the compression between ICMEs (2) the compression between ICMEs and interplanetary medium. It suggests that the compressed magnetic field would be more geoeffective. At the same time, we also find that half of all great storms were related to successive halo CMEs, most of which originated from the same active region. The interactions between successive halo CMEs usually can lead to greater geoeffectiveness by enhancing their southward field Bs interval either in the sheath region of the ejecta or within magnetic clouds (MCs). The types of them included: the compression between the fast speed transient flow and the slow speed background flow, the multiple MCs, besides shock compression. Further, the linear fit of the Dst versus gives the weights of and Δt as α=2.51 and β=0.75, respectively. This may suggest that the compression mechanism, with associated intense Bs, rather than duration, is the main factor in causing a great geomagnetic storm.  相似文献   

9.
Observations are presented of long-lived global Pc5 ULF wave activity observed at a wide range of local times. The event was monitored in the high latitude ionosphere (∼60–80° magnetic latitude) by several SuperDARN HF radars and 5 magnetometer chains in Scandinavia, Greenland, Canada, Alaska and Russia. The event coincided with a protracted period (∼36 h) of northward interplanetary magnetic field (IMF). The study focuses on 4 h during which distinct dawn/dusk asymmetries in the wave characteristics were observed with multiple field line resonance (FLR) structures observed in the dawn flank at 1.7, 2.6, 3.3, 4.2 and 5.4 mHz and compressional oscillations in the dusk flank at 1.7 and 2.3 mHz. The data indicated an anti-sunward propagation in both the dawn and dusk flanks and a low azimuthal m number (∣m∣∼6) suggesting a generation mechanism external to the Earth's magnetosphere. A sudden increase in the solar wind dynamic pressure followed by a period of strongly northward, Bz dominated IMF, coincides with the observations and also a large increase in Pc5 wave power observed in the dawn flank. The observed enhancements in the wave activity and FLR structures are thought to be due to a Kelvin–Helmholtz driven waveguide mode. Additionally, there is no evidence that the frequencies of the FLRs are intrinsic to the solar wind. It thus seems that the frequencies were determined by the dimensions of the magnetospheric cavity.  相似文献   

10.
The characteristics of latitudinal angles of solar wind flow (θv) observed near earth have been studied during the period 1973-2003. The average magnitude of θv shows distinct enhancements during the declining and maximum phases of the sunspot cycles. A close association of Bz component of IMF in the GSE system and the orientation of meridional flows in the solar wind is found which depends on the IMF sector polarity. This effect has been studied in typical geomagnetic storm periods. The occurrence of non-radial flows is also found to exhibit heliolatitudinal dependence during the years 1975 and 1985 as a characteristic feature of non-radial solar wind expansion from polar coronal holes.  相似文献   

11.
Auroral boundary variations and the interplanetary magnetic field   总被引:1,自引:0,他引:1  
This paper describes a DMSP data set of 150 auroral images during magnetically quiet times which have been analyzed in corrected geomagnetic local time and latitudinal coordinates and fit to offset circles. The fit parameters R (circle radius) and (X, Y) (center location) have been compared to the hourly interplanetary magnetic field (IMF) prior to the time of the satellite scan of the aurora. The results for variation of R with Bz, agree with previous works and generally show about a 1° increase of R with increase of southward Bz by 1 nT. The location of the circle center also has a clear statistical shift in the Southern Hemisphere with IMF By such that the southern polar cap moves towards dusk (dawn) with By > (By < 0).  相似文献   

12.
《Planetary and Space Science》1987,35(10):1301-1316
The magnetic field vector residuals observed from the Magsat satellite have been used to obtain the dependence of the polar cap boundary and the current system on IMF for quiet and mildly disturbed conditions (Kp ⩽ 3 +). The study has been carried out for the summer months in the Southern Hemisphere. “Shear reversals” (SRs) in vector residuals indicative of the infinite current sheet approximation of the field-aligned currents (FACs) indicate roughly the polar cap boundary or the poleward boundary of the plasma sheet. This is also the poleward edge of the region 1 FACs. The SR is defined to occur at the latitude where the vector goes to minimum and changes direction by approximately 180°.It is found that SRs mainly occur when the interplanetary magnetic field (IMF) has a southward-directed Bz- component and in the latitude range of about 70°–80°. SRs in the dusk sector occur predominantly when the azimuthal component By is positive and in the dawn sector when By is negative, irrespective of the sign of Bz These results agree with the known merging process of IMF with magnetopause field lines. When SRs occur on both dawn and dusk sectors, the residuals over the entire polar cap are nearly uniform in direction and magnitude, indicating negligible polar currents. Similar behaviour is observed during highly disturbed conditions usually associated with large negative values of Bz.Forty-one Magsat orbits with such SRs are quantitatively modelled for preliminary case studies of the resulting current distribution. It is found that SRs, in the plane perpendicular to the geomagnetic field, for the current vectors and the magnetic vector residuals (perturbations relative to the unperturbed field) occur at almost the same latitudes. The electrojet intensities range from 1.2 × 104 to 6.5 × 105 A (amperes). A preliminary classification of polar cap boundary crossings characterized by vector rotations rather than SRs also shows that they tend to occur mainly for negative Bz.  相似文献   

13.
The temperature and density of the plasma in the Earth's distant plasma sheet at the downstream distances of about 20–25 Re are examined during a high geomagnetic disturbance period. It is shown that the plasma sheet cools when magnetospheric substorm expansion is indicated by the AE index. During cooling, the plasma sheet temperature, T, and the number density, N, are related by T ∝ N23 (adiabatic process) in some instances, while by TN?1 (isobaric process) in other cases. The total plasma and magnetic pressure decreases when T ∝ N23 and increases when TN?1. Observation also indicates that the dawn-dusk component of plasma flow is frequently large and comparable to the sunward-tailward flow component near the central plasma sheet during substorms.  相似文献   

14.
The Retarding Potential Analyzer aboard OGO-6 sometimes recorded marked depressions of ion temperature as the satellite crossed the equatorial region. These “Ti troughs” occur at heights between about 700 km and the satellite apogee at 1100 km. At the centre of a trough, close to the dip equator, Ti is frequently 500–1000 K below its value at the northern and southern edges, which are usually 15°–20° in latitude from the centre of the trough. At a given season and local time, the occurrence, symmetry, depth and position of the troughs often vary markedly with longitude. The troughs have no particular association with equatorial troughs of ion concentration Ni.As suggested by Hanson, Nagy and Moffett, the Ti troughs appear to be caused by transequatorial winds that drive F region plasma along geomagnetic field lines. The plasma is adiabatically cooled as it is driven upwards on the “upwind” side of the dip equator, and heated as it descends on the “downwind” side. The available data on the occurrence of troughs at different longitudes, local times and seasons are reasonably consistent with wind directions deduced from Jacchia's model and the OGO-6 thermospheric model of Hedin et al., and with the north-south asymmetries of the tropical 630 nm airglow observed by OGO-4 and OGO-6. Factors determining the latitudinal extent of the troughs are discussed and some questions for further study are listed.  相似文献   

15.
Using incoherent scatter data from Millstone Hill, we investigated the variations in the shape of the daytime, mid-latitude ionospheric electron density profile associated with changes in geomagnetic activity. The analysis performed was to deduce the dependence upon the 3-hr geomagnetic index Kp of h(Nm), h(0·7 Nm) above and below Nm, the plasma scale height HT in the range 500–1000 km, and the ratio N(1000)N(hm). The electron density data used spanned the solar maximum years 1968–1971. Daytime data from the period 1000 to 1600 LT were averaged separately for summer, winter and spring-fall. It is shown that the mean value M of the factor M = B cos θ sec χ used by Titheridge (1972) to relate the Faraday rotation Ω from a geostationary satellite to the total electron content NN up to 2000 km is practically the same (to within 1–2 per cent) as the M value used to relate the NT and Ω values both computed up to 1000 km. Taking advantage of this identity, we have used the linear relationship obtained between the ionospheric parameters and Kp to deduce the height at which M should be evaluated as a function of Kp.  相似文献   

16.
A gridded spherical electrostatic analyzer aboard Injun 5 has been used to measure fluxes of thermal and hyperthermal electrons at subauroral latitudes in the midnight sector of the northern ionosphere between altitudes of 2500 and 850 km. Due to the offset between the geomagnetic and geographic poles hyperthermal fluxes, consisting of energetic photoelectrons that have escaped from the sunlit southern hemisphere are observed along orbits over the Atlantic Ocean and North America but not over Asia. The ambient electron temperatures (Te) near 2500 km have their highest values at trough latitudes for all longitudes. At altitudes near 1000 km elevated electron temperatures in the trough were not a consistent feature of the data. Equatorward of the trough, in the longitude sector to which conjugate photoelectrons have access, Te ~ 4000 K at 2500 km and ~ 3000 K at 1000 km. For regions with the conjugate point in darkness Te ? 2300 K over the 1000–2500 km altitude range. The effective thermal characteristics of conjugate photoelectrons are studied as functions of altitude and latitude. The observations indicate that (1) at trough latitudes elevated electron temperatures in the topside ionosphere are mostly produced by sources other than conjugate photoelectrons, and (2) at subtrough latitudes, in the Alantic Ocean-North American longitude sector, conjugate photoelectrons contribute significantly to the heating of topside electrons. Much of the conjugate photoelectron energy is deposited at altitudes >2500 km then conducted along magnetic field lines into the ionosphere.  相似文献   

17.
High latitude magnetic field data from 16 northern observatories are averaged during periods of magnetic disturbance level Kp = 2? to 3+. Within this disturbance level, variations between interplanetary magnetic field sector (toward and away from the Sun) and geomagnetic season (dipole latitude of the Sun: > 10° = summer, < ? 10° = winter) are delineated. Variations between seasons are: (1) The positive bay and polar cap disturbance is a maximum in summer and a minimum in winter for both sectors. (2) The negative bay disturbance is a maximum in summer and a minimum in winter when the interplanetary field is toward the Sun and vice versa during away sectors. Variations between sectors are: (1) During summer and equinox the negative bay disturbance is greater for toward sectors than for away sectors. The reverse occurs during winter. (2) The positive bay disturbance is greater during toward sectors than during away sectors for all seasons. (3) All diiferences in disturbance level are greater at sunlit local times than in darkness. (4) Angular differences in the direction of the horizontal disturbance of up to 75° occur between sectors in the polar cap and dayside during all seasons. (5) The polar cap-auroral belt boundary location is different for the two sectors. Compared to data from away sectors, this boundary for toward sectors is shifted northward near dawn (5–8h) and southward between 10 and 22h. (6) Accompanying this boundary difference there is a change in the direction of the vertical disturbance in the region between 9 and 14h at geomagnetic latitudes 77–88°. ΔZ in this region is negative during away sectors and positive during toward sectors. Differences between sectors are attributed to changes in the ionospheric electric field configuration and in the distribution of magnetic field aligned currents.Features unrelated to sector or season also occur: (1) A significant Y component is present in both the positive and negative bays. (2) The vertical disturbance (¦ΔZ¦) to the north of the auroral belt is much larger than that to the south. (3) Two distinct regions of maximum activity are present in the ΔZ accompanying the positive bay disturbance.  相似文献   

18.
Magnetic field measurements from 133 low-latitude transits of the HEOS-1 satellite through the magnetosphere have been used to analyse the low-frequency pulsation activity in the outer regions of the geomagnetic field. Providing full longitude coverage in the sunward hemisphere at geocentric distances larger than ~7.5 Re, this survey complements previous low-frequency pulsation data from satellites at smaller geocentric distances. Several giant PC5 events, each being mainly compressional and lasting 1–2 hr, are described in detail and it is shown that this phenomenon is relatively common in the 8–12 Re, geocentric distance range near dusk. A depression of the ambient field magnitude always accompanied the events, suggesting that they are associated with a region of enhanced plasma pressure. The properties of these wave events are compared with the predictions of current micropulsation theories involving a Kelvin-Helmholtz generation mechanism and field-line resonance. Unlike the PC5 events observed nearer Earth, these events were not obviously related to periods of enhanced geomagnetic activity.  相似文献   

19.
With the aid of the Akasofu's energy coupling function between the solar wind and the magnetosphere, we have made in this paper an analysis of about 20 geomagnetic storms recorded at Beijing during the period of years 1966 to 1972. There is a close correlation between the energy coupling function ? and the geomagnetic indices ap and Kp. All in all an empirical formula as ? ~ 1?2 × 1017ap has been found for the geomagnetic storms occurred in a low latitude station, i.e. Beijing of China. Comparisons of the horizontal component Hmax (in γ) and ?(1018 erg s?1) in Table 1 indicate that the development of storm main phase at Beijing depends very much on the ? values thus involved. Also, these are well illustrated for several individual storms as mentioned in the second section of the paper. In concluding this paper some brief discussions are made and included. It is hoped that geomagnetic observations in the middle and low latitudes from our vast country should make further contributions to the study of solar wind-magnetosphere coupling, including the Akasofu's energy coupling function.  相似文献   

20.
This paper presents a correlative study between the peak values of geomagnetic activity indices (Dst, Kp, ap and AE) and the peak values of various interplanetary field (Bt, Bz, E and σB) and plasma (T, D, V, P and β) parameters along with their various products (BV, BzV and B2V) during intense geomagnetic storms (GMSs) for rising, maximum and decay phases as well as for complete solar cycle 23. The study leads to the conclusion that the peak values of different geomagnetic activity indices are in good correlation with Bt, Bz, σB, V, E, BV, BzV and B2V, therefore these parameters are most useful for predicting GMSs and substorms. These parameters are also reliable indicators of the strength of GMSs. We have also presented the lag/lead time analysis between the maximum of Dst and peak values of geomagnetic activity indices, various interplanetary field/plasma parameters for all GMSs. We have found that the average of peak values of geomagnetic activity indices and various field/plasma parameters are larger in decay phase compare to rising and maximum phases of cycle 23. Our analyses show that average values of lag/lead time lie in the ≈?4.00 h interval for Kp, ap and AE indices as well as for Bt, Bz, σB, E, D and P. For a more meaningful analysis we have also presented the above study for two different groups G1 (CME-driven GMSs) and G2 (CIR-driven GMSs) separately. Correlation coefficients between various interplanetary field/plasma parameters, their various products and geomagnetic activity indices for G1 and G2 groups show different nature. Three GMSs and associated solar sources observed during three different phases of this solar cycle have also been studied and it is found that GMSs are associated with large flares, halo CMEs and their active regions are close to the solar equator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号