首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new approach on numerical modeling of wave propagation is introduced and is used to analyze the effect of earthquake magnitudes (ground motion amplitudes) on wave propagation. In this method, the sum of the maximum amplitudes of the first output model at time 0 s and rest of the output models at different times are normalized to unity. Considering this as a constraint, the sum of the weighted‐squared Fourier amplitudes is minimized by using the Lagrange multiplier method. The proposed method can reveal the relationship of actual time histories by showing simple clear peaks. This method is used to analyze the time histories of various earthquake events at different vertical array sites of the Kashiwazaki–Kariwa nuclear power plant of Tokyo electric power company (TEPCO). The wave arrival times obtained from this method and down‐hole measurements are compared. The results show increase in the arrival times at surface layer when the magnitude of earthquake is large. The results reveal that the amplitudes of small magnitude earthquakes at depths are small and are largely amplified at surface, whereas in case of large magnitude earthquakes, the amplitudes are large at depths and are deamplified at surface reflecting the effects of the strain‐dependent soil properties that result in non‐linear site response to strong shaking. The results also show that the reflected peak amplitudes are higher for small magnitude earthquakes than for large magnitude earthquakes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In view of the potential importance of long-period ground motion in the design of large structures, near-field ground displacement is computed by the elastic dislocation theory for several earthquake fault models. The validity of such computations is confirmed by comparing the computed seismogram with the observed long-period seismogram of the 1923 Kanto earthquake. The ground motions are computed for three hypothetical earthquakes, a hypothetical Kanto earthquake, Tokai earthquake and Nemuro-Oki earthquake. The location and the nature of the faulting of these earthquakes are predicted by plate tectonics and precise earthquake mechanism studies. Major conclusions are: Tokyo may suffer, in the hypothetical Kanto earthquake, ground motions about half as large as those experienced in the 1923 Kanto earthquake; Hamamatsu, a large city on the Tokai coast, may experience in the hypothetical Tokai earthquake ground motions which are as large as, or even larger than, those experienced in the epicentral area of the 1923 Kanto earthquake; the hypothetical Nemuro-Oki earthquake may cause ground motions as large as those experienced in the 1968 Tokachi-Oki earthquake on the coastal cities in Hokkaido.  相似文献   

3.
A resistivity variometer, which has been operated at a station about 60 km south of Tokyo, recorded eleven resistivity steps in association with earthquake occurrences during a four year period of observation. Comparing these steps to those calculated on the basis of the dislocation theory, it is concluded that the variometer has an enormously high sensitivity or amplification factor amounting to 3 · 104 for small strains of the order of 10−8–10−9.Hypothetical strain steps, that would have been observed at a point having an epicentral distance of 100 km, correlate well with earthquakes of magnitudes ranging from 5 to 8. The time required for a step to be completed seems large for a large earthquake although there is considerable scatter in the diagram for the time vs. magnitude relation. Nothing definite has been put forward about the nature of precursory effect observed for a few of the earthquakes.  相似文献   

4.
This study presents the future seismic hazard map of Coimbatore city, India, by considering rupture phenomenon. Seismotectonic map for Coimbatore has been generated using past earthquakes and seismic sources within 300 km radius around the city. The region experienced a largest earthquake of moment magnitude 6.3 in 1900. Available earthquakes are divided into two categories: one includes events having moment magnitude of 5.0 and above, i.e., damaging earthquakes in the region and the other includes the remaining, i.e., minor earthquakes. Subsurface rupture character of the region has been established by considering the damaging earthquakes and total length of seismic source. Magnitudes of each source are estimated by assuming the subsurface rupture length in terms of percentage of total length of sources and matched with reported earthquake. Estimated magnitudes match well with the reported earthquakes for a RLD of 5.2% of the total length of source. Zone of influence circles is also marked in the seismotectonic map by considering subsurface rupture length of fault associated with these earthquakes. As earthquakes relive strain energy that builds up on faults, it is assumed that all the earthquakes close to damaging earthquake have released the entire strain energy and it would take some time for the rebuilding of strain energy to cause a similar earthquake in the same location/fault. Area free from influence circles has potential for future earthquake, if there is seismogenic source and minor earthquake in the last 20 years. Based on this rupture phenomenon, eight probable locations have been identified and these locations might have the potential for the future earthquakes. Characteristic earthquake moment magnitude (M w ) of 6.4 is estimated for the seismic study area considering seismic sources close to probable zones and 15% increased regional rupture character. The city is divided into several grid points at spacing of 0.01° and the peak ground acceleration (PGA) due to each probable earthquake is calculated at every grid point in city by using the regional attenuation model. The maximum of all these eight PGAs is taken for each grid point and the final PGA map is arrived. This map is compared to the PGA map developed based on the conventional deterministic seismic hazard analysis (DSHA) approach. The probable future rupture earthquakes gave less PGA than that of DSHA approach. The occurrence of any earthquake may be expected in near future in these eight zones, as these eight places have been experiencing minor earthquakes and are located in well-defined seismogenic sources.  相似文献   

5.
An instrumental earthquake catalog covering the time span between 1903 and 2007 and for the area bounded by 32°N–38°N and 35°E–43°E has been compiled in this research. The catalog has a magnitude of completeness (M c ) with 3.5. Least squares and statistical probability Gumbel’s techniques with different approaches have been applied on the instrumental events in order to assess the average recurrence time periods for different earthquake magnitudes. The constants a and b of Gutenberg-Richter and the average recurrence times have been computed firstly for the study area and secondly for the central and northern parts of Dead Sea fault system. The different statistical computations using Knopoff and Kagan formalism are generally in agreement and suggest an average recurrence time of 203 years for an earthquake of magnitude 7 for the region. The occurrence of large well-documented historical earthquakes in Lebanon and western Syria, the existence of active fault segments, the absence of large earthquakes during the study period, the increasing number of the low-magnitude earthquakes, and the continued accumulation of the strain since 1900 indicate therefore the probability of an earthquake occurrence of a large magnitude. This should be permanently taken into consideration in seismic hazard assessment on the local and regional scales.  相似文献   

6.
In this study, seismological aspects and field observation of the 2010 Kuh-Zar earthquake has been investigated. The Kuh-Zar earthquake, of magnitude 5.7 (Mw), occurred in northeastern Iran on August 27, 2010. The area is surrounded by branches of the active faults which are coated by the quaternary alluvium. During the past several decades, this area has been struck by a number of earthquakes. This earthquake with a moderate magnitude caused a higher rate of damage contrasted with previous earthquakes of the same magnitude range in Iran. Fortunately, the source of the Kuh-Zar earthquake was in a sparsely populated area, and therefore, it caused a few loss of life with the highest observed intensity of shaking VII (modified Mercalli intensity) in the Kuh-Zar village. The shock killed 4 people, injured 40, and destroyed more than 12 villages. According to the field observation, the mechanism of this shock is defined as a left-lateral strike slip. We also checked out the properties of strong ground motions in this earthquake using the records availed by Iranian strong motion network. At KUZ station, about 7 km east of the epicenter, the recorded PGA and PGV in both horizontal and vertical components were remarkably large for an event of this size, and visual inspection of the velocity time history reveals a pulse-like shape. Unfortunately no other recording stations were located close enough to the fault to capture a directivity pulse. Finally, according to the strong-motion properties and observed information, ShakeMaps of the earthquake have been generated by the native intensity observations and the recorded strong motions.  相似文献   

7.
Akio Yoshida 《Tectonophysics》1987,140(2-4):131-143
Seismic activity in the region surrounding the foci is investigated for three severe earthquakes (two with a magnitude of 6.1 and one with a magnitude of 5.3) which have occurred in Japan in recent years. The most conspicuous feature commonly noticed is precursory activation of seismic belts which include the focal regions of main shocks. The repetition of the same pattern in the space-time distribution of earthquake occurrence along the seismic belt is also observed for each case. The precursory activity of seismic belts terminates in rather a short period and, after that, the area around the focus of the forthcoming large earthquake becomes quiescent, which demonstrates the appearance of the seismic gap of the second kind (Mogi, 1979). The periods of seismic quiescence for the cases investigated in this paper are longer than those which are given by the regression relationship between earthquake magnitude and precursor time proposed for example, by Sekiya (1977). However, our definition of anomalous seismic activity is clear, and it is possible to give a physical meaning to it as an increase in the local stress field in the seismic belt. We propose that a kind of coupling between intraplate tectonic blocks, analogous to interplate coupling in the subduction region, is responsible for the formation of the stress field relevant to these earthquakes. Although this is at present only one of the possible viewpoints on the formation of the focal region of large intraplate earthquakes, it may be worthwhile to study various precursory phenomena in-connection with this hypothesis.  相似文献   

8.
为研究太阳活动与全球大震的关系, 引入一个无量纲的"地震能量函数√G", 并分析研究了1681—2011故年间全球M≥7.0大震的能量释放的时间序列.由此发现全球大震在太阳活动周4个阶段的分布和活动度, 随震级的强度而异.提出地壳对太阳风暴加卸载响应模式, 用于解释此现象: 通过考察最近331 a, 得出全球共发生了10个M≥9.0超级巨震的时空分布特征, 特别是太阳活动峰年期间没有发生过超级巨震.该研究结果可为判断全球大震提供参考.   相似文献   

9.
Abstract

Eight caves have been investigated near Saint-Paul- de-Fenouillet after the earthquake of 5.2 magnitude of February 1996 which occurred in the eastern Pyrenees (France) and caused moderate damage at the ground surface. The earthquake has been associated with the movement of an E-W fault. The caves had not been visited since the earthquake. Some damage, mainly collapses of soda straws and small rocks, could be attributed to this earthquake. The most interesting cave in the epicentral area is the Paradet cave which is situated on a recently activated fault plane. In this cave, soda straw falls could be attributed to the earthquake, but other more ancient damage was also observed. Analysis of the azimuth of fallen speleothems, which are natural pendulums, may indicate the directions, and an estimation of their mechanical properties gives the threshold of the seismic ground motion amplitude responsible for their collapse, thus supplying information to calibrate damage due to past earthquakes. A statistical study indicates that the main direction of the collapsed soda straws is E–W. Numerical simulations confirm that soda straws are relatively strong objects that may break under certain conditions during earthquakes. © Elsevier, Paris  相似文献   

10.
Statistics of ultimate strain are improved by adding new data to the previous ones. The critical value for horizontal strain seems somewhat larger than that for vertical strain, although parameters of a Weibull distribution, which is customarily used for quality-control research and which fits in very well with the present statistics, are calculated for the whole set of data making no distinction between the two subsets because of their scantiness.On the basis of the parameters thus determined and strain rates obtained from geodetic data, probabilities of earthquake occurrence in a few regions in Japan and the U.S. are estimated. Probability of having an earthquake in an area southwest of Tokyo, where we had the 1923 earthquake (magnitude 7.9), at this time amounts to 20%, a value almost the same as that obtained in the previous papers. The probability will reach some 50 and 90% by 2000 and 2050, respectively. In the North Izu district, where an earthquake of magnitude 7.0 occurred in 1930, a shearing crustal motion is going on to an extent for which we have a probability for an earthquake recurring there in these 40 years amounting to 40%. By the end of this century, it will become as high as 85%.Similar estimates of such cumulative probabilities are made for the San Francisco and Fort Tejon regions, where great earthquakes occurred respectively in 1906 and 1857, yielding values of 30 and 80% at present. These probabilities are tentative because of possible errors in evaluating geodetic measurements and uncertainty of the ultimate crustal strain assigned to the San Andreas fault.  相似文献   

11.
2013年8月28日、31日, 云南迪庆藏族自治州香格里拉县、德钦县、四川省甘孜藏族自治州得荣县交界地区连续发生5.1级、5.9级地震.为了查明此次地震的影响破坏程度, 进行了地震现场建筑物震害考察并对震中附近断裂进行了野外构造地质剖面调查.两次地震在短时间内并在相近位置连续发生, 造成了此次云南香格里拉、德钦-四川得荣交界地震比以往同级地震的破坏程度要高, 地震烈度最高为Ⅷ级, 有感范围大, 5.9级地震宏观震中大致处在整个灾区破坏最严重的奔子栏镇争古村一带(28.20°N, 99.36°E), 距离地震微观震中约5.1km.等震线沿德钦-中甸断裂呈北西向分布, 近似为椭球状, 结合此次地震震中附近区域现场断裂调查、震源机制解数据以及地震余震空间分布特征, 初步推断此次地震的发震构造为德钦-中甸断层, 其主要表现为一次以正断为主兼有左旋走滑错动的地震事件.   相似文献   

12.
2008年5月12日汶川特大地震震害调查及分析表明,目前以活动断裂和历史地震调查为重点的工程区域构造稳定性评价方法存在漏判与误判特大地震问题,从而为工程安全埋下重大安全隐患。以龙门山活动推覆体为例,在已有研究成果基础上,利用岩体结构控制论、拜尔利定律等普适性原理对龙门山地壳岩体结构力学特征、控震结构面的抗剪强度与地震震级的线性相关性、地震震级与抗震设防烈度的关系进行了定量研究,对评价区域构造稳定性的关键问题进行了探讨。结果表明,推覆体型活动地块边界带中的滑脱层是对推覆体区域构造稳定性起主要控制作用的构造结构面--控震结构面,地震震级与滑脱层的埋深、抗剪切强度存在显著相关性:8级地震的震源深度接近20 km、7级地震的震源深度接近14 km、6级地震的震源深度接近10 km,据此对研究区及邻近的古地震进行了深度核定,圈定了龙门山活动推覆体-岷山地块的6级以上强震可能发生的范围、对应Ⅶ-Ⅺ度的抗震设防烈度范围。此研究成果弥补了以往根据活动断裂-发震断裂-历史最大震级与对应地震烈度评价工程区域构造稳定性,因历史地震资料疏漏不全、活动断裂带研究平面与深度范围局限以及忽视区域构造稳定性的岩体力学实质而导致评价结果常常出现误判与漏判的诸多缺陷。  相似文献   

13.
Frequency-size relation of earthquakes in a region can be approximated by the Gutenberg-Richter law(GR). This power-law model involves two parameters: a-value measuring seismic activity or earthquake productivity, and b-value describing the relation between frequencies of small and large earthquakes.The spatial and temporal variations of these two parameters, especially the b-value, have been substantially investigated. For example, it has been shown that b-value depends inversely on differential stress. The b-value has also been utilized as earthquake precursor in large earthquake prediction.However, the physical meaning and properties of b-value including its value range still remain as an open fundamental question. We explore the property of b-value from frequency-size GR model in a new form which relates average energy release and probability of large earthquakes. Based on this new form of GR relation the b-value can be related to the singularity index(1-2/3 b) of fractal energy-probability power-law model. This model as applied to the global database of earthquakes with size M ≥ 5 from 1964 to 2015 indicates a systematic increase of singularity from earthquakes occurring on mid-ocean ridges, to those in subduction zones and in collision zones.  相似文献   

14.
《Geodinamica Acta》1999,12(3-4):143-158
Eight caves have been investigated near Saint-Paul-de-Fenouillet after the earthquake of 5.2 magnitude of February 1996 which occurred in the eastern Pyrenees (France) and caused moderate damage at the ground surface. The earthquake has been associated with the movement of an E-W fault. The caves had not been visited since the earthquake. Some damage, mainly collapses of soda straws and small rocks, could be attributed to this earthquake. The most interesting cave in the epicentral area is the Paradet cave which is situated on a recently activated fault plane. In this cave, soda straw falls could be attributed to the earthquake, but other more ancient damage was also observed. Analysis of the azimuth of fallen speleothems, which are natural pendulums, may indicate the directions, and an estimation of their mechanical properties gives the threshold of the seismic ground motion amplitude responsible for their collapse, thus supplying information to calibrate damage due to past earthquakes. A statistical study indicates that the main direction of the collapsed soda straws is E-W. Numerical simulations confirm that soda straws are relatively strong objects that may break under certain conditions during earthquakes.  相似文献   

15.
Ten moderate to large (magnitude 6–7) earthquakes have occurred in southwestern British Columbia and northwestern Washington in the last 130 years. A future large earthquake close to Vancouver, Victoria, or Seattle would cause tens of billions of dollars damage and would seriously impact the economies of Canada and the United States. An improved understanding of seismic hazards and risk in the region has been gained in recent years by using geologic data to extend the short period of instrumented seismicity. Geologic studies have demonstrated that historically unprecedented, magnitude 8 to 9 earthquakes have struck the coastal Pacific Northwest on average once every 500 years over the last several thousand years; another earthquake of this size can be expected in the future. Geologic data also provide insights into the likely damaging effects of future large earthquakes in the region. Much of the earthquake damage will result directly from ground shaking, but damage can also be expected from secondary phenomena, including liquefaction, landslides, and tsunamis. Vancouver is at great risk from earthquakes because important infrastructure, including energy and transportation lifelines, probably would be damaged or destroyed by landslides and liquefaction-induced ground failure.  相似文献   

16.
The earthquake is known to be an unpredictable geophysical phenomenon. Only few seismic indicators and assumptions of earthquakes can be predicted with probable certainty. This study attempts to analyze the earthquakes over the Indo-Himalayan Border region including Bhutan, Bangladesh, Nepal, China and India during the period from 1995 to 2015. Bangladesh, Bhutan and China borders experience fewer earthquakes than Nepal and India border regions. However, Indo-China rim has inconsistency and vast range in its magnitude. Bangladesh though is a small country with respect to others, but it experiences earthquakes comparable to Bhutan. Nepal experiences highest number of earthquakes. In the last 20 years around 800 records have been observed with moment magnitude > 4.0 Richter scale, while very few records (around 10–12) have been observed for large earthquakes having moment magnitude > 6.0 Richter scale over the region. In this study adaptive neuro-fuzzy inference system has been implemented to assess the predictability of seismic moment associated with large earthquakes having the moment magnitude between 6.0 and 8.0 Richter scales using different combination of epochs, technique and membership functions. The Gaussian membership function with hybrid technique and 40 epochs is observed to be the reasonable model on the basis of the selected spatial and temporal scale. The forecast error in terms of root-mean-square error with the stopping criterion 0.001 has been observed to be 0.006 in case of large earthquakes (> 6.5 Richter scale), that is, forecast accuracy of 99.4%. The model bias of 0.6% may be due to inadequate number of large earthquakes having moment magnitude > 6.5 Richter scale over the region.  相似文献   

17.
Following the impounding of the Shivaji Sager Lake in 1962, tremors became prevalent in the Koyna region, considered previously to be aseismic. During ensuing years the tremor frequency appears to have been dependent on the rate of increase of water level, maximum water level reached, and the period for which high levels were retained. This culminated in a burst of seismic activity from September 1967 to January 1968 following the record water levels in the reservoir and included the earthquake of September 13, 1967 with magnitude 5.5 and the damaging December 10, 1967 earthquake of magnitude 6.0. During the next five years water levels were kept low and no significant earthquakes occurred subsequent to the October 29, 1968 earthquake of magnitude 5.

The reservoir was filled to maximum capacity during September 1973 and this was followed by a conspicuous increase in seismic activity which included an earthquake of magnitude 5.1 on October 17, 1973. However, seismic activity during 1973 was much less severe than that of 1967. This relative decrease in seismicity may indicate that (a) the “threshhold level” for relatively large magnitude earthquakes had increased; (b) a major portion of the accumulated strains had been released; and/or (c) the importance of the longer period of high loading in 1967. Similar observations have been made at other seismically active reservoir sites.  相似文献   


18.
广东省及邻区新生代以来构造运动与地震活动分区的研究   总被引:3,自引:0,他引:3  
综合分析多年来地震地质调查资料,将广东省及部分邻区划分为具不同构造活动特点的6个区,分别论述、分析这些区内新生代以来的断裂构造、火山喷发、第四纪沉积及地震活动等。结果认为,由断层样品热释光测定确定的断层最近期活动年龄主要是在中更新世和晚更新世,沿海地带主要为晚更新世和全新世。新生代以来构造具继承性活动的地区是地震最活动地区,如琼雷地区。同时,由于历史上发生过强震,地震后至今具较大速率下沉地区,在今后相当长时间内可能是不易发生强震地区,如琼北东部和南澎-南澳地区;Ms6级地震将主要发生在晚更新世以来的新生盆地,如潮汕盆地和近岸海湾地区;Ms5级地震在一定条件下,几乎可能发生在省内的任何地区。  相似文献   

19.
2013年10月31日,吉林省松原前郭尔罗斯蒙古族自治县(44.60°N,124.18°E)发生震级为5.5级地震,此后的40 d内发生了700多次地震,其中5级以上地震5次。松原地区近年来地震活动频繁,2014年1月以来又发生4级以上地震9次、5级以上地震1次,震中处于松辽盆地油气田开采区,地震活动序列十分特殊。为了揭示松原地震的发震机制与发震模式,研究深部地质过程与地震的关系,根据此次实测的通过震中25 km长的大地电磁测深剖面,结合地热梯度、He同位素比值(3He/4He)、CO2碳同位素、地震序列等资料的综合分析,发现震中地区存在两个位于不同深度的低阻体,地震发生与地幔深部岩浆活动有关;据此提出了一种新的地震发生模式——岩浆泡破裂发震模式,描述了来自地幔的基性岩浆通过向上侵入、在脆-韧性转换带附近聚集形成岩浆泡、岩浆泡破裂及岩浆泡上覆岩层中聚集能量引发岩层破裂产生地震的过程,并使来自地幔的无机成因的CO2气在储层中形成CO2气藏。该模式可以解释许多发生在大陆内部地震和深源地震的发生机制。  相似文献   

20.
Seismic shear‐wave splitting (SWS) monitors the low‐level deformation of fluid‐saturated microcracked rock. We report evidence of systematic SWS changes, recorded above small earthquakes, monitoring the accumulation of stress before earthquakes that allows the time and magnitude of impending large earthquakes to be stress‐forecast. The effects have been seen with hindsight before some 15 earthquakes ranging in magnitude from an M1.7 seismic swarm event in Iceland to the Ms7.7 Chi‐Chi Earthquake in Taiwan, including a successfully stress‐forecast of a M5.0 earthquake in SW Iceland. Characteristic increases in SWS time‐delays are observed before large earthquakes, which abruptly change to deceases shortly before the earthquake occurs. There is a linear relationship between magnitudes and logarithms of durations of both increases and decreases in SWS time‐delays before large impending earthquakes. However, suitably persistent swarms of small earthquakes are too scarce for routine stress‐forecasting. Reliable forecasting requires controlled‐source cross‐hole seismics between neighbouring boreholes in stress‐monitoring sites (SMS). It would be possible to stress‐forecast damaging earthquakes worldwide by a global network of SMS in real time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号