首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Motion of the interplanetary dust particle under the action of collisions with much smaller interplanetary dust particles is investigated. The equation of motion is derived. Perturbation equations of celestial mechanics are also discussed. The results are compared with the Poynting-Robertson effect and the effect of solar wind on the motion of the interplanetary dust particles, from the point of view of observational data.  相似文献   

2.
The problem of electromagnetic perturbations of charged dust particle orbits in interplanetary space has been re-examined in the light of our better understanding of the large scale spatial and temporal interplanetary plasma and field topology. Using both analytical and numerical solutions for particle propagation it was shown that: (1) stochastic variations induced by electromagnetic forces are unimportant for the zodiacal dust cloud except for the lowest masses, (2) systemetic variations in orbit inclinations are unimportant if orbital radii are larger than 10 a.u. This is due to the solar cycle variation in magnetic polarity which tends to cancel out systematic effects, (3) systematic variations in orbital parameters (inclination, longitude of ascending node, longitude of perihel) induced by electromagnetic forces inside 1 a.u. tend to shift the plane of symmetry of the zodiacal dust cloud somewhat towards the solar magnetic equatorial plane, (4) inside 0.3 a.u. there is a possibility that dust particles may enter a region of “magnetically resonant” orbits for some time. Changes in orbit parameters are then correspondingly enhanced, (5) the observed similarity of the plane of symmetry of zodiacal light with the solar equatorial plane may be the effect of the interaction of charged interplanetary dust particles with the interplanetary magnetic field. Numerical orbit calculation of dust particles show that one of the results of this interaction is the rotation of the orbit plane about the solar rotational axis.  相似文献   

3.
Abrupt or gradual disintegration of the interplanetary dust particle causes increase of its distance from the Sun due to the solar radiation pressure. The problem of the orbital evolution of the interplanetary dust particles under such disintegration processes is discussed. The process of gradual disintegration due to the solar wind particles is calculated in detail. Obtained results represent corrections to the changes of orbital elements for the Poynting-Robertson effect and effect of the solar wind.  相似文献   

4.
New measurements using radio and plasma-wave instruments in interplanetary space have shown that nanometer-scale dust, or nanodust, is a significant contributor to the total mass in interplanetary space. Better measurements of nanodust will allow us to determine where it comes from and the extent to which it interacts with the solar wind. When one of these nanodust grains impacts a spacecraft, it creates an expanding plasma cloud, which perturbs the photoelectron currents. This leads to a voltage pulse between the spacecraft body and the antenna. Nanodust has a high charge/mass ratio, and therefore can be accelerated by the interplanetary magnetic field to the speed of the solar wind: significantly faster than the Keplerian orbital speeds of heavier dust. The amplitude of the signal induced by a dust grain grows much more strongly with speed than with mass of the dust particle. As a result, nanodust can produce a strong signal despite its low mass. The WAVES instruments on the twin Solar TErrestrial RElations Observatory spacecraft have observed interplanetary nanodust particles since shortly after their launch in 2006. After describing a new and improved analysis of the last five years of STEREO/WAVES Low Frequency Receiver data, we present a statistical survey of the nanodust characteristics, namely the rise time of the pulse voltage and the flux of nanodust. We show that previous measurements and interplanetary dust models agree with this survey. The temporal variations of the nanodust flux are also discussed.  相似文献   

5.
Dust particles, like photons, carry information from remote sites in space and time. From knowledge of the dust particles' birthplace and their bulk properties, we can learn about the remote environment out of which the particles were formed. This approach is called “Dust Astronomy” which is carried out by means of a dust telescope on a Dust Observatory in space. Targets for a dust telescope are the local interstellar medium and nearby star forming regions, as well as comets and asteroids. Dust from interstellar and interplanetary sources is distinguished by accurately sensing their trajectories. Trajectory sensors may use the electric charge signals that are induced when charged grains fly through the detector. Modern in-situ dust impact detectors are capable of providing mass, speed, physical and chemical information of dust grains in space. A Dust Observatory mission is feasible with state-of-the-art technology. It will (1) provide the distinction between interstellar dust and interplanetary dust of cometary and asteroidal origin, (2) determine the elemental composition of impacting dust particles, and (3) monitor the fluxes of various dust components as a function of direction and particle masses.  相似文献   

6.
The suggestion that significant quantities of interplanetary dust are produced by both main-belt asteroids and comets is based on the Infrared Astronomical Satellite detection of dust trails or bands associated with these objects. Gravitational focusing strongly biases all near-Earth collections of interplanetary dust in favor of particles with the lowest geocentric velocities, that is the dust from main-belt asteroids spiraling into the Sun under the influence of Poynting-Robertson radiation drag.

The major dust bands in the main-belt appear to be associated with the catastrophic disruptions which produced the Eos, Themis and Koronis families of asteroids. If dust particles are produced in the catastrophic collision process, then Poynting-Robertson radiation drag is such an efficient transport mechanism from the main-belt to 1 AU that near-Earth collections of interplanetary dust should include, and perhaps be dominated by, this material. The physical, chemical and mineralogical properties of this asteroidal dust can provide constraints on the properties of the asteroidal parent bodies.

Interplanetary dust particles from 5 to 100 μm in diameter have been recovered from the stratosphere of the Earth by NASA sampling aircraft since the mid1970s. The densities of a large fraction of these interplanetary dust particles are significantly lower than the densities of their constituent silicate mineral phases, indicating significant porosities. Direct examination of ultra-microtome thin-sections of interplanetary dust particles also shows significant porosities. The majority of the particles are chemically and mineralogically similar to, but not identical to, the carbonaceous chondrite meteorites.

Most stony interplanetary dust particles have carbon contents exceeding those of Allende, a carbonaceous chondrite meteorite having a low albedo. The population of interplanetary dust does not appear to exhibit the full range of compositional diversity inferred from reflection spectroscopy of the main-belt asteroids. In particular, higher albedo particles corresponding to S-type asteroids are underrepresented or absent from the stratospheric collections, and primitive carbonaceous particles seem to be overrepresented in the stratospheric collections compared to the fraction of mainbelt asteroids classified as primitive. This suggests that much of the interplanetary dust may be generated by a stochastic process, probably preferentially sampling a few most recent collisional events.  相似文献   


7.
Action of electromagnetic radiation on nonspherical dust particles is discussed. It is stressed that the radiation pressure coefficientQ PR cannot be considered to be a scalar quantity, as it is used in all calculations for dynamical studies of interplanetary dust particles. Also the equation <Q PR A> = <Q PR ><A> (A - area of the particle) holds only for perfectly absorbing convex dust particle (Q PR = 1) and not even one of these two properties holds for interplanetary dust particles. Plane mirror is discussed in detail - all calculations can be done in this simple case.  相似文献   

8.
Abstract— Submicron platey Sn-rich grains are present in chondritic porous interplanetary dust particle (IDP) W7029*A and it is the second occurrence of a tin mineral in a stratospheric micrometeorite. Selected Area Electron Diffraction data for the Snrich grains match with Sn2O3 and Sn3O4. The oxide(s) may have formed in the solar nebula when tin metal catalytically supported reduction of CO or during flash heating on atmospheric entry of the IDP. The presence of tin is consistent with enrichments for other volatile trace elements in chondritic IDPs and may signal an emerging trend towards non-chondritic volatile element abundances in chondritic IDPs. The observation confirms small-scale mineralogical heterogeneity in fine-grained chondritic porous interplanetary dust.  相似文献   

9.
The effect of the solar radiation on the interplanetary dust particle is derived. The most simple correct derivation is presented (in terms of orderv/c) and each step is explained in detail. Derivation takes into account the general case of a spherical particle, not only perfectly absorbing one as in the case of Robertson's derivation (Robertson, 1937). Some new results on relativistic covariant formula are also presented.  相似文献   

10.
The action of the solar electromagnetic radiation (in the form of the Poynting-Robertson effect) on the motion of interplanetary dust particle in the gravitational field of the Sun is discussed from the theoretical point of view. Results are presented to all orders inv/c (c - speed of light,v -orbital velocity of the particle) - general relativistic formula is presented.  相似文献   

11.
In this paper, we present the final report of the data obtained from the Space Dust (SPADUS) instrument on the Earth-orbiting Advanced Research and Global Observation Satellite (ARGOS). The University of Chicago's SPADUS instrument on the US Air Force's Advanced Research and Global Observation Satellite has been operating in a nearly polar orbit, at an altitude of approximately 850 km, since soon after its launch on day 54, 1999 (23 February) until termination of the SPADUS operations on day 248, 2001 (5 September).The instrument consists of a polyvinylidene fluoride (PVDF) dust trajectory system, which includes two planar arrays of PVDF sensors (a total of 16 sensors per array) separated by 20.25 cm to provide time of flight (TOF) measurements. The trajectory system measures dust particle flux, mass distribution, velocity and trajectory. The instrument also includes the SPADUS Ancillary Diagnostic Sensor (ADS) subsystem, which measured energetic charged particles (electrons, protons, etc).The PVDF dust trajectory system detected a total of 368 dust impacts over the SPADUS live-time interval of 739 days, yielding an average particle flux of 0.50 impacts/day. Of these 368 impacts, 35 were D1-D2 type events—where particles impacted and penetrated a D1 sensor, then impacted a D2 rear array sensor—allowing for time-of-flight measurements. Of the 35 D1-D2 impacts on SPADUS, we identified 19 D1-D2 impacts yielding TOF values. Of these 19 events, 14 were ambiguous (either bound or interplanetary) and 5 were unambiguous interplanetary impacts. Examples of particle orbits for debris particles as well as D1-D2 impacts are detailed. We also describe transient particle streams detected by the SPADUS trajectory system, resulting from the passage of ARGOS through streams of debris particles in Earth orbit. One of the streams was shown to result from detection by SPADUS of the debris generated by the explosion of a Chinese booster rocket.The SPADUS flight data accumulated over the 30-month mission shows that PVDF-based dust instruments utilizing two planar arrays of PVDF dust sensors in a TOF arrangement—can provide useful measurements of particle velocity, mass distribution, flux, trajectory and particle orbital elements.  相似文献   

12.
Diagnostic infrared spectra of individual nanogram-sized interplanetary dust particles (IDPs) collected in the Earth's stratosphere have been obtained. A mount containing three crushed “chondritic” IDPs shows features near 1000 and 500 cm?1, suggestive of crystalline pyroxene, and different from those of crystalline olivine, amorphous olivine, or meteoritic clay minerals. The structural diversity of chondritic IDPs and possible effects of atmospheric heating must be considered when comparing this spectrum with astrophysical spectra of interplanetary and cometary dust. Transmission electron microscope (TEM) and infrared observations are also reported on one member of the rare subset of IDPs which resemble hydrated carbonaceous chondrite matrix material. The infrared spectrum of this particle between 4000 and 400 cm?1 closely matches that of the C2 meteorite Murchison. TEM observations suggest that this class of particles might serve as a thermometer for the process of heating on atmospheric entry.  相似文献   

13.
We performed chemical, mineralogical, and isotopic studies of the first interplanetary dust particles (IDPs) collected in the stratosphere without the use of silicone oil. The collection substrate, polyurethane foam, effectively traps impacting particles, but the lack of an embedding medium results in significant particle fragmentation. Two dust particles found on the collector exhibit the typical compositional and mineralogical properties of chondritic porous interplanetary dust particles (CP‐IDPs). Hydrogen and nitrogen isotopic imaging revealed isotopic anomalies of typical magnitude and spatial variability observed in previous CP‐IDP studies. Oxygen isotopic imaging shows that individual mineral grains and glass with embedded metal and sulfide (GEMS) grains are dominated by solar system materials. No systematic differences are observed in element abundance patterns of GEMS grains from the dry collection versus silicone oil‐collected IDPs. This initial study establishes the validity of a new IDP collection substrate that avoids the use of silicone oil as a collection medium, removing the need for this problematic contaminant and the organic solvents necessary to remove it. Additional silicone oil‐free collections of this type are needed to determine more accurate bulk element abundances of IDPs and to examine the indigenous soluble organic components of IDPs.  相似文献   

14.
Martha S. Hanner 《Icarus》1980,43(3):373-380
The zodiacal light brightness and measured spatial density of the interplanetary dust lead to a mean geometric albedo of 0.24 for the dust particles near 1 AU; whereas the composition of collected micrometeroids suggests a geometric albedo ?0.1. The data do not support the very low albedo (?0.01) proposed by A. F. Cook [Icarus33 (1978), 349–360]. The evidence is against a change in the mean particle albedo between 0.1 and 2 AU. Beyond 2 AU the data are unclear and a change in albedo is not ruled out.  相似文献   

15.
The problem of the action of the solar radiation on the motion of interplanetary dust particle is discussed. Differences between the action of electromagnetic solar radiation and that of the solar wind are explained not only from the point of view of the physical nature of these phenomena but also from the point of view of dust particle's orbital evolution. As for the electromagnetic solar radiation, general equation of motion for the particle is written and the most important consequences are: (i) the process of inspiralling toward the Sun is not the only possible motion - even spiralling from the Sun is also possible, and, (ii) the orbital plane of the particle (its inclination) may change in time. As for the solar wind, the effect corresponding to the fact that solar wind particles spread out from the Sun in nonradial direction causes that the process of inspiralling toward the Sun is in more than 50% less effective than for radial spread out; in the region of the asteroid belt (long period orbits) the process of inspiralling is changed into offspiralling. Also shift in the perihelion of dust particle's orbit exists.  相似文献   

16.
The action of the solar corpuscular radiation on the rotational properties of small interplanetary dust particles is investigated. It is shown that the solar wind increases the angular momentum (spin) of the particle. Analytic solutions are presented for dominant terms in which quantities of the orders (v/u) n ,n 1, are neglected (v is the orbital velocity of dust particle around the Sun andu is the speed of the solar wind particles).  相似文献   

17.
Cometary material inevitably undergoes chemical changes before and on leaving the nucleus. In seeking to explain comets as the origin of many IDPs (interplanetary dust particles), an understanding of potential surface chemistry is vital. Grains are formed and transformed at the nucleus surface; much of the cometary volatiles may arise from the organic material. In cometary near-surface permafrost, one expects cryogenic chemistry with crystal growth and isotope. This could be the hydrous environment where IDPs form. Seasonal and geographic variations imply a range of environmental conditions and surface evolution. Interplanetary dust impacts and electrostatic forces also have roles in generating cometary dust. The absence of predicted cometary dust ‘envelopes’ is compatible with the wide range of particle structures and compositions. Study of IDPs would distinguish between this model and alternatives that see comets as aggregates of core-mantle grains built in interstellar clouds.  相似文献   

18.
Carbon delivered to the Earth by interplanetary dust particles may have been an important source of pre-biotic organic matter (Anders, 1989). Interplanetary dust is shown to deliver an order-of-magnitude higher surface concentration of carbon onto Mars than onto Earth, suggesting interplanetary dust may be an important source of carbon on Mars as well.  相似文献   

19.
Carbon delivered to the Earth by interplanetary dust particles may have been an important source of pre-biotic organic matter (Anders, 1989). Interplanetary dust is shown to deliver an order-of-magnitude higher surface concentration of carbon onto Mars than onto Earth, suggesting interplanetary dust may be an important source of carbon on Mars as well.  相似文献   

20.
Abstract— The elemental compositions of 200 interplanetary dust particles (IDPs) collected in the stratosphere have been determined by energy dispersive X-ray (EDX) analysis. The results reasonably define the normal compositional range of chondritic interplanetary dust particles averaging 10 micrometers in size, and constitute a database for comparison with individual IDPs, meteorites, and spacecraft data from comets and asteroids. The average elemental composition of all IDPs analyzed is most similar to that of CI chondrites, but the data show that there are small yet discernable differences between mean IDP composition and the CI norm. Individual particles were classified into broad morphological groups, and the two major groups show unambiguous compositional differences. The “porous” group is a close match to bulk CI abundances, but the “smooth” group has systematic Ca and Mg depletions, and contains stoichiometric “excess” oxygen consistent with the presence of hydrous phases. Similar depletions of Ca and Mg in CI and CM matrix have been attributed to leaching, and by analogy we suggest that particles in the smooth group have also been processed by aqueous alteration. The occurrence of carbonates, magnetite framboids, and layer silicates provides additional evidence that at least a significant number of the smooth-class IDPs have been substantially processed by aqueous activity. The presence or absence of aqueous modification in members of a particle sub-class is an important clue to the origin. Although it cannot be proven, we hypothesize that extensive aqueous activity only occurs in asteroids and that, accordingly, the smooth class of IDPs has an asteroidal origin. If both comets and asteroids are major sources of interplanetary dust, then by default the porous particles are inferred to be dominated by cometary material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号