首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Skomorovsky  V.I.  Firstova  N.M.  Kashapova  L.K.  Kushtal  G.I.  Boulatov  A.V. 《Solar physics》2001,199(1):37-45
A new two-bandpass birefringent filter has been produced at ISTP, Irkutsk for the investigation of the fine structure of the chromosphere. One filter passband is centered on the Hei 10830 Å line, the second one is centered on H. The FWHM of the Hei 10830 Å passband is 0.46 Å and of the H passband is 0.3 Å. A large number of filtergrams were obtained with the filter at the Sayan observatory. At the same time, spectral observations with high spatial and spectral resolution were carried out by the large solar vacuum telescope at the Baikal Observatory. We selected 29 `dark point' spectra with sizes from 2 to 13, as well as `dark points' on the filtergrams. Comparison of spectrograms and filtergrams has shown a good agreement of their size and intensity in relation with the surrounding chromosphere as well as the absence of primary line-of-sight velocities in both observation types. From spectral observations, the depth of 10830 Å is over 30% for some `dark points', and the FWHM is more than 1 Å. Hei 10830 Å line profiles in `dark points' are more deep and wide than in quiet regions. The optical depth of the chromosphere in `dark points' is estimated. Comparison with the unperturbed chromosphere showed that `dark points' in Hei 10830 Å are more optically thin than the nearby chromosphere.  相似文献   

2.
Chiuderi Drago  F.  Alissandrakis  C.E.  Bentley  R.D.  Philips  A.T. 《Solar physics》1998,182(2):459-476
High-resolution microwave observations of several flares performed with the Westerbork Synthesis Radio Telescope (WRST) on 3 and 4 July 1993 are compared with Yohkoh observations in the soft and hard X-ray domain. Only for one flare, among the six analyzed, was the hard X-ray spectrum between 20 and 200 keV available from the Wide Bragg Spectrometer, supplying the energy spectrum of non-thermal particles responsible for this radiation and for the radio emission. A complete model of this flare is derived which accounts for all available observations in the X-ray and radio wavelengths.  相似文献   

3.
Miroshnichenko  L.I.  Pérez EnrÍquez  R.  Mendoza  B. 《Solar physics》1999,186(1-2):381-400
It is widely accepted now that a significant fraction of the solar energetic particles (SEPs) observed at 1 AU after major solar flares are actually accelerated at a CME-driven shock. In addition, in the emerging new paradigm for SEP acceleration in different sources at or near the Sun, the existence of two types of flares – impulsive and gradual – is recognized. Within this concept, it is tempting also to separate SEPs into two groups – interacting and escaping – and to derive their 'source spectra' from observational data on various flare emissions (protons, gamma rays, neutrons, etc.). By different techniques, those spectra have been reconstructed for 80 solar proton events (SPE) in 1949–1991. In this paper, all available data on the source spectra of solar protons are summarized and revised. We discuss in detail existing uncertainties in the derived spectral indexes, consider other methodological problems involved in this study, and suggest several possible lines for the future investigations of solar flares and SCRs using the source spectrum data. It is noted that some peculiarities of the spectra, for instance, spectral steepening for high energies, may be characteristic of large events of the 23 February 1956 type.  相似文献   

4.
An infrared solar spectrum observed by ground-based telescopes is seriously affected by the background radiation both from the telescope and sky, relative to the visible wavelengths. Its accuracy is also influenced by the spectral resolution of the Fourier transform spectrometer. In the paper, we developed a CO2 gas cell and installed it in the sample compartment to calibrate the spectral resolution of the Bruker IFS-125HR at infrared wavelengths. The measured spectral resolution is 0...  相似文献   

5.
6.
Kejun  Li  Schmieder  B.  Malherbe  J.-M.  Roudier  Th.  Wiik  J.-E. 《Solar physics》1998,183(2):323-338
The Multichannel Subtractive Double Pass spectrograph (MSDP) is designed to observe line profiles in a 2D field of view with a good spatial and temporal resolution. In order to deal with this unique opportunity, we introduce a new method for fitting the hydrogen H line formed in prominences and deriving various plasma parameters from line profile observations. A quiescent prominence was observed on 5 June 1996, at the Pic du Midi during an international campaign between 09:30 UT and 11:00 UT with the MSDP spectrograph operating in H at the Turret Dome. Using the new fitting method, we show that the temperature, column density of hydrogen atoms and microturbulent velocity of the prominence are respectively about 8500 K, 1.4×1012 cm–2, and 10 to 20 km s–1. The electron density of the prominence is about 1.8×1010 cm–3.  相似文献   

7.
We present the results of magnetic field measurements in three active prominences, July 24, 1981, July 24, 1999, and July 12, 2004, obtained from observations with the echelle spectrograph of the horizontal solar telescope at the Astronomical Observatory of the Taras Shevchenko Kiev National University. The magnetic fields were measured from the Zeeman splitting of the I ± V profiles in the He I D3 and H?? lines in the atmosphere at heights from 3 to 14 Mm. Our measurements of the effective magnetic fields B eff from the shift of the profile centroids have shown that the magnetic fields averaged over the entrance slit area were within the range from ?600 to +1500 G. The amplitude values of the local fields have been estimated from the splitting of the bisectors of the central parts of the line profiles at 0.9 of the peak intensity. The corresponding fields B 0.9 have turned out to be approximately twice B eff and reached 4000 G in absolute value. Narrow (1?C2 Mm) height peaks at heights of 6?C11 Mm have been found in the height distributions of the magnetic field. We have found an interesting effect in two prominences-an anticorrelation between the magnetic field strengths measured from the D3 and H?? lines.  相似文献   

8.
The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth’s upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105?nm with unprecedented spectral resolution (0.1?nm), temporal cadence (ten seconds), and accuracy (20%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazing-incidence spectrograph that measures the solar EUV irradiance in the 5 to 37?nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105?nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39?nm, and a MEGS-Photometer measures the Sun’s bright hydrogen emission at 121.6?nm. The EVE data products include a near real-time space-weather product (Level?0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15?minutes. The EVE higher-level products are Level?2 with the solar EUV irradiance at higher time cadence (0.25?seconds for photometers and ten seconds for spectrographs) and Level?3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth’s ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team.  相似文献   

9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号