首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A substantial decrease in atmospheric carbon dioxide (CO2) concentration during the mid-Palaeozoic is likely to have been the consequence partially of the evolution of rooted land plants. The earliest land plants evolved in the Ordovician but these were small cryptophytes without any roots. Much of the evidence for the evolution of vascular plants comes from the Old Red Sandstone of South Wales and the Welsh Borderland. Plants with large rooting systems evolved during the Middle Devonian and resulted in an increase in chemical weathering of silicate rocks. This, in turn, caused a contemporaneous drop in atmospheric CO2 concentration from approximately 25 times present concentration in the Cambrian to twice the present concentration by the late Carboniferous. The supposed mechanism for CO2 removal from the atmosphere involves oceanic carbonate precipitation, enhanced by plant-enhanced chemical weathering of Ca and Mg silicates.  相似文献   

2.
The oxygen (δ18O, δ17O) and carbon (δ13C, FMOD14C-the fraction of modern 14C) isotopic compositions of carbonate were measured for a set of paired Antarctic CM chondrites (EET 96006, EET 96016, EET 96017, and EET 96019). While the oxygen isotopic compositions do not plot on the terrestrial fractionation line and indicate that a component of the carbonate minerals has an extraterrestrial origin, they also do not fall on the array defined for carbonates by CM falls and are thus consistent with the presence of a terrestrial carbonate component. The δ13C and FMOD14C measurements of carbonate suggest the presence of at least two carbon sources: carbonate derived from atmospheric CO2 that is inferred to have been produced as a result of silicate weathering reactions and carbonate derived from another carbon source that is either old or non-atmospheric. The relationships between oxygen and carbon isotope data provide additional constraints on the weathering process, and allow the possibility that rock-dominated weathering of the meteorite caused the oxygen isotopic composition of Antarctic water added to the meteorite to evolve away from the terrestrial mass-fractionation array, leading to formation of low temperature terrestrial alteration products that do not lie on the terrestrial fractionation line.  相似文献   

3.
Four massive brecciated, chimney-like, and slender pipe network carbonate samples(JA-4, JA-5, JX-8 and BG-12) were collected from southwestern Taiwan, which were suggested to have formed as a result of anaerobic oxidization of methane(AOM). Considering that the environmental conditions of the carbonates precipitation and the sources of carbon and organic matter need to be further declared, molecular fossils and compound-specific carbon isotopic investigations of the carbonates were conducted in this study. According to lipid biomarkers of 2,6,10,15,19-pentamethyleicosane(PMI) and squalane diagnostic to methanotrophic archaea, as well as the extremely low δ13C values(as low as -113.4‰) detected in samples JA-4, JA-5 and JX-8, these carbonates were revealed to be a result of AOM. Based on the varied δ13C values of characteristic archaea biomarkers in specific samples, biogenic methane was proposed to be responsible for the formation of samples JA-4 and JA-5, whereas a mixed carbon source of 13C-depleted methane and 13C-enriched residual CO_2 from methanogenesis was suggested for the carbonate of JX-8 due to the co-occurrence of a highly positive δ13 Ccarb value(+8‰) and a moderate 13C depletion of PMI. The low content of AOM-related biomarkers and the absence of indicators for ANME-2 suggested that these carbonates were formed in weak seep settings. By comparison, no typical lipid biomarkers for methanotrophic archaea was detected in carbonate BG-12. The short-chain and long-chain n-alkanes accounted for 30% and 45% of all hydrocarbons, respectively, with a CPI value of 1.2, suggesting that the n-alkanes were derived from both marine organisms and terrestrial inputs. A low thermal maturity could be revealed by the incomplete equilibrium value of the C31αβ 22S/(22S+22R) ratio(0.5), and the carbonate BG-12 was probably deposited in a suboxic condition indicated by a value of Pr/Ph ratio(2.5).  相似文献   

4.
During the Aptian (Cretaceous), in what is now the South Atlantic, the largest chemogenic (abiotic) carbonate factory so far identified in the Phanerozoic geological record developed as a vast hyper-alkaline lake system. This covered at least 330 000 km2, producing carbonates, locally over 500 m thick, in what are now the offshore Santos and Campos basins (Brazil), and Kwanza Basin (Angola). Current evidence supports the view that almost all of this carbonate was chemogenic in origin, precipitated from hyper-alkaline, shallow lake waters, probably by evaporation. This unit, best documented from offshore Brazil and known as the Barra Velha Formation (Santos Basin) and the Macabu Formation (Campos Basin), consists of just two basic carbonate components, millimetre to centimetre sized crystal shrubs and spherulites. These are commonly in situ but can also be reworked into a range of detrital facies. Demonstrable microbialites are generally rare. These carbonates are associated with Mg silicates (as clays) which had a profound influence not only on the textural development of the in situ carbonates, but also on their diagenesis. The dissolution of the clays produced much of the porosity in these limestones, which are the hosts for multi-billion barrel oil fields. The source of the carbonate was most likely from metasomatic alteration of mafic rocks, such as continental flood basalts related to Atlantic opening, with some contribution from much older continental basement. Clear evidence that serpentinization of possible exhumed mantle is lacking but mantle CO2 is likely to have been a critical factor in determining the composition of the fluids from which the carbonates formed and the high alkalinities of the lake waters.  相似文献   

5.
It is widely accepted that chemical weathering of Ca–silicate rocks could potentially control long-term climate change by providing feedback interaction with atmospheric CO2 drawdown by means of precipitation of carbonate, and that in contrast weathering of carbonate rocks has not an equivalent impact because all of the CO2 consumed in the weathering process is returned to the atmosphere by the comparatively rapid precipitation of carbonates in the oceans. Here, it is shown that the rapid kinetics of carbonate dissolution and the importance of small amounts of carbonate minerals in controlling the dissolved inorganic C (DIC) of silicate watersheds, coupled with aquatic photosynthetic uptake of the weathering-related DIC and burial of some of the resulting organic C, suggest that the atmospheric CO2 sink from carbonate weathering may previously have been underestimated by a factor of about 3, amounting to 0.477 Pg C/a. This indicates that the contribution of silicate weathering to the atmospheric CO2 sink may be only 6%, while the other 94% is by carbonate weathering. Therefore, the atmospheric CO2 sink by carbonate weathering might be significant in controlling both the short-term and long-term climate changes. This questions the traditional point of view that only chemical weathering of Ca–silicate rocks potentially controls long-term climate change.  相似文献   

6.
Zou  Lin  Dong  Lin  Ning  Meng  Huang  Kangjun  Peng  Yongbo  Qin  Shujian  Yuan  Honglin  Shen  Bing 《中国地球化学学报》2019,38(4):481-496

The continent is the second largest carbon sink on Earth’s surface. With the diversification of vascular land plants in the late Paleozoic, terrestrial organic carbon burial is represented by massive coal formation, while the development of soil profiles would account for both organic and inorganic carbon burial. As compared with soil organic carbon, inorganic carbon burial, collectively known as the soil carbonate, would have a greater impact on the long-term carbon cycle. Soil carbonate would have multiple carbon sources, including dissolution of host calcareous rocks, dissolved inorganic carbon from freshwater, and oxidation of organic matter, but the host calcareous rock dissolution would not cause atmospheric CO2 drawdown. Thus, to evaluate the potential effect of soil carbonate formation on the atmospheric pCO2 level, different carbon sources of soil carbonate should be quantitatively differentiated. In this study, we analyzed the carbon and magnesium isotopes of pedogenic calcite veins developed in a heavily weathered outcrop, consisting of limestone of the early Paleogene Guanzhuang Group in North China. Based on the C and Mg isotope data, we developed a numerical model to quantify the carbon source of calcite veins. The modeling results indicate that 4–37 wt% of carbon in these calcite veins was derived from atmospheric CO2. The low contribution from atmospheric CO2 might be attributed to the host limestone that might have diluted the atmospheric CO2 sink. Nevertheless, taking this value into consideration, it is estimated that soil carbonate formation would lower 1 ppm atmospheric CO2 within 2000 years, i.e., soil carbonate alone would sequester all atmospheric CO2 within 1 million years. Finally, our study suggests the C–Mg isotope system might be a better tool in quantifying the carbon source of soil carbonate.

  相似文献   

7.
Physiochemical controls on the carbonate geochemistry of large river systems are important regulators of carbon exchange between terrestrial and marine reservoirs on human time scales. Although many studies have focused on large-scale river carbon fluxes, there are few investigations of mechanistic aspects of carbonate mass balance and transport at the catchment scale. We determined elemental and carbonate geochemistry and mass balances for net carbonate dissolution fluxes from the forested, mid-latitude Huron River watershed, established on carbonate-rich unconfined glacial drift aquifers. Shallow groundwaters are near equilibrium with respect to calcite at pCO2 values up to 25 times atmospheric values. Surface waters are largely groundwater fed and exhibit chemical evolution due to CO2 degassing, carbonate precipitation in lakes and wetlands, and anthropogenic introduction of road salts (NaCl and CaCl2). Because the source groundwater Mg2+/HCO3 ? ratio is fairly constant, this parameter permits mass balances to be made between carbonate dissolution and back precipitation after groundwater discharge. Typically, precipitation does not occur until IAP/K calcite values exceed 10 times supersaturation. Stream chemistry changes little thereafter even though streams remain highly supersaturated for calcite. Our data taken together with historical United States Geological Survey (USGS) data show that alkalinity losses to carbonate precipitation are most significant during periods of lowest discharge. Thus, on an annual basis, the large carbon flux from carbonate dissolution in soil zones is only decreased by a relatively small amount by the back precipitation of calcium carbonate.  相似文献   

8.

Background  

This study provides experimental evidence for biologically induced precipitation of magnesium carbonates, specifically dypingite (Mg5(CO3)4(OH)2·5H2O), by cyanobacteria from an alkaline wetland near Atlin, British Columbia. This wetland is part of a larger hydromagnesite (Mg5(CO3)4(OH)2·4H2O) playa. Abiotic and biotic processes for magnesium carbonate precipitation in this environment are compared.  相似文献   

9.
In a mid-continental North American grassland, solute concentrations in shallow, limestone-hosted groundwater and adjacent surface water cycle annually and have increased steadily over the 15-year study period, 1991-2005, inclusive. Modeled groundwater CO2, verified by measurements of recent samples, increased from 10−2.05 atm to 10−1.94 atm, about a 20% increase, from 1991 to 2005. The measured groundwater alkalinity and alkaline-earth element concentrations also increased over that time period. We propose that carbonate minerals dissolve in response to lowered pH that occurs during an annual carbonate-mineral saturation cycle. The cycle starts with low saturation during late summer and autumn when dissolved CO2 is high. As dissolved CO2 decreases in the spring and early summer, carbonates become oversaturated, but oversaturation does not exceed the threshold for precipitation. We propose that groundwater is a CO2 sink through weathering of limestone: soil-generated CO2 is transformed to alkalinity through dissolution of calcite or dolomite. The annual cycle and long-term increase in shallow groundwater CO2 is similar to, but greater than, atmospheric CO2.  相似文献   

10.
由于广泛而强烈的岩浆作用,我国东部的松辽、渤海湾、莺歌海以及西部的塔里木等盆地中都有富CO2深部流体的活动。富CO2深部流体与碳酸盐岩相互作用可用Duan and Li(2008)所建立的CO2-H2O-CaCO3-NaCl体系的热力学模型来进行模拟计算。计算结果表明,富CO2深部流体在自深部向浅部运移过程中对CaCO3的溶解度会逐渐增加,到达一定深度后溶解度达到最大值,再向浅部溶解度开始逐渐降低; 也就是深部流体具有深部溶蚀碳酸盐岩-浅部沉淀碳酸盐矿物的规律。与浅部地层中的流体发生混合会使流体的CO2含量和盐度降低,会导致CaCO3的沉淀充填; 深部流体进入开启性断裂/裂缝体系中时,由于压力的降低,也会发生CaCO3的沉淀充填。深部流体的CO2含量、盐度、温度和压力的变化影响着实际的溶蚀-充填过程。塔中地区钻井也揭示了深部下奥陶统碳酸盐岩中发育有丰富的溶蚀孔隙,而在相对浅部的奥陶系灰岩和志留系砂岩中见有大量方解石的充填,这是富CO2流体深部溶蚀-浅部充填的一个较好的实例。基于理论和实际分析,本文认为在岩浆火山作用广泛发育的塔里木等盆地中下古生界深部优质碳酸盐岩储层存在的可能性。  相似文献   

11.
Based on the organic and carbonate carbon levels of the top 1 m of soil from desertified soils of Northern People's Republic of China, climatic and vegetative cover zones have been derived for some 334000 km2 of desertification-prone lands. Regional accumulations of pedogenic carbonates were examined relative to precipitation, altitude, and temperature. The largest accumulations of pedogenic carbonates were found in Calcic soils in warm, arid areas. Accumulated organic carbon predominated in soils under Betula platyphylla. In the naturally desertified lands of China, for example, the top 1.0-m soil layer contains some 7.84 Pg of organic carbon and 14.9 Pg of carbonate carbon. Total stored carbon, including carbonate carbon, is 1.8-fold more than organic carbon alone. The carbon released through land desertification in China may be an important factor affecting changes in concentrations of greenhouse gases worldwide.  相似文献   

12.
Intensive carbonate and clay mineral authigenesis took place throughout the Late Permian Bowen-Gunnedah-Sydney basin system in eastern Australia. We conducted isotopic and trace element analyses of carbonate and clay minerals from clastic sedimentary rocks of the Gunnedah Basin and the Denison Trough in the Bowen Basin. Rb-Sr isochron age data of the illitic clays are consistent with episodic hydrothermal fluid flow events that occurred in association with Gondwana rifting accompanied by alkaline magmatism at ∼85 Ma and ∼95 Ma. Stable isotope data of carbonate and clay minerals from the Gunnedah Basin are indicative of meteoric waters from a high-latitude environment as the main fluid source, whereas trace element, Sr and Nd isotope data highlight mixing of meteoric fluids with magmatic and/or crustal components, with a possible input from marine carbonates for some samples. Trace metals, oxygen and strontium isotopes of dawsonites from the Denison Trough are interpreted to have been mobilised by fluids that interacted with evolved clastic sedimentary and marine carbonate end members. According to the carbon isotope data, CO2 for calcite and ankerite precipitation was sourced mainly from thermal degradation of organic matter and magmatism, whereas the CO2 used for dawsonite formation is inferred to have been derived from magmatic and marine sources. In the low permeability environments (particularly in coal seams), the increasing accumulation and oversaturation of CO2 particularly promote the precipitation of dawsonite.  相似文献   

13.
The impure marbles of the internal Sesia-Lanzo Zone underwent a multi-stage metamorphic evolution of Alpine age and retain early-Alpine eclogitic assemblages, partially recrystallized under blueschist to greenschist facies conditions. These high-P assemblages consist of carbonates, phengite, quartz, omphacite, grossular-rich (locally spessartinic) garnet, zoisite and Al-rich titanite. Retrogressive stages are characterized by the growth of glaucophane, paragonite, phlogopite, tremolite and albite. Halogen-rich biotite and amphibole are also present. P-T estimates of the early-Alpine metamophism have been calculated from these unique high-P assemblages, in order to test the applicability of some calibrations to impure carbonate systems. In particular, some Gt-Cpx calibrations and the phengite geobarometer give results (T= 575 ± 45° C at 15 kbar for the eclogitic climax and T≤ 500° C at PH2O ≤ 9 kbar for early-Alpine retrogressive stages) which are within the range obtained from the surrounding lithologies. Phase relationships in P-T-XCO2 space indicate that mineral assemblages in the impure marbles coexisted with H2O-rich fluids (XCO2 <0.03) during their entire Alpine evolution.  相似文献   

14.
The ratio of oxygen and carbon isotopes is a criterion for the carbonate-genesis with distinct differences between marine, freshwater, soil and loess carbonates. In addition it becomes clear that there is a number of carbonate soils within the loess of the mediterranean region with distinguishable isotopic compositions. The components affecting the relation of the isotopes in these loesses and the intercalated soils are discussed. The carbonate-turnover during the sedimentation of the loess with carbonate-precipitation from remnant solutions seems to be of some importance. The relatively small participation of biogenic CO2 in the carbonate-turnover ist evident.  相似文献   

15.
The influence of the pedogenic and climatic contexts on the formation and preservation of pedogenic carbonates in a climosequence in the Western Ghats (Karnataka Plateau, South West India) has been studied. Along the climosequence, the current mean annual rainfall (MAR) varies within a 80 km transect from 6000 mm at the edge of the Plateau to 500 mm inland. Pedogenic carbonates occur in the MAR range of 500-1200 mm. In the semi-arid zone (MAR: 500-900 mm), carbonates occur (i) as thick hardpan calcretes on pediment slopes and (ii) as nodular horizons in polygenic black soils (i.e. vertisols). In the sub-humid zone (MAR: 900-1500 mm), pedogenic carbonates are disseminated in the black soil matrices either as loose, irregular and friable nodules of millimetric size or as indurated botryoidal nodules of centimetric to pluricentimetric size. They also occur at the top layers of the saprolite either as disseminated pluricentimetric indurated nodules or carbonate-cemented lumps of centimetric to decimetric size.Chemical and isotopic (87Sr/86Sr) compositions of the carbonate fraction were determined after leaching with 0.25 N HCl. The corresponding residual fractions containing both primary minerals and authigenic clays were digested separately and analyzed. The trend defined by the 87Sr/86Sr signatures of both labile carbonate fractions and corresponding residual fractions indicates that a part of the labile carbonate fraction is genetically linked to the local soil composition. Considering the residual fraction of each sample as the most likely lithogenic source of Ca in carbonates, it is estimated that from 24% to 82% (55% on average) of Ca is derived from local bedrock weathering, leading to a consumption of an equivalent proportion of atmospheric CO2. These values indicate that climatic conditions were humid enough to allow silicate weathering: MAR at the time of carbonate formation likely ranged from 400 to 700 mm, which is 2- to 3-fold less than the current MAR at these locations.The Sr, U and Mg contents and the (234U/238U) activity ratio in the labile carbonate fraction help to understand the conditions of carbonate formation. The relatively high concentrations of Sr, U and Mg in black soil carbonates may indicate fast growth and accumulation compared to carbonates in saprolite, possibly due to a better confinement of the pore waters which is supported by their high (234U/238U) signatures, and/or to higher content of dissolved carbonates in the pore waters. The occurrence of Ce, Mn and Fe oxides in the cracks of carbonate reflects the existence of relatively humid periods after carbonate formation. The carbonate ages determined by the U-Th method range from 1.33 ± 0.84 kyr to 7.5 ± 2.7 kyr and to a cluster of five ages around 20 kyr, i.e. the Last Glacial Maximum period. The young occurrences are only located in the black soils, which therefore constitute sensitive environments for trapping and retaining atmospheric CO2 even on short time scales. The maximum age of carbonates depends on their location in the climatic gradient: from about 20 kyr for centimetric nodules at Mule Hole (MAR = 1100 mm/yr) to 200 kyr for the calcrete at Gundlupet (MAR = 700 mm/yr, Durand et al., 2007). The intensity of rainfall during wet periods would indeed control the lifetime of pedogenic carbonates and thus the duration of inorganic carbon storage in soils.  相似文献   

16.
《Applied Geochemistry》2003,18(3):435-444
Stable C and O isotope ratios were measured in carbonate minerals, growing under concrete structures from two locations in the United States. These locations were under a bridge in Michigan and under an overpass in New York. The δ13C of the carbonate samples ranged from −21.6 to −31.4‰ (with respect to V-PDB) and clearly indicated precipitation under non-equilibrium conditions. Indeed, the values in some cases were more negative than could be accounted for by existing models that invoke 4 stages of kinetic fractionation. There have been suggestions that microbial activity involving C from gasoline and other fossil fuel sources might be responsible for the relatively low C isotope ratios measured in these carbonates. To explore this possibility, 14C measurements were made in some of the samples. All samples measured for 14C contained bomb C. The range of 14C concentrations suggested a non-uniform growth rate, although possible fossil fuel-derived carbon in the system needs future investigation. The δ18O values of the carbonates analyzed from Michigan range from 12.5 to 15.7‰ (with respect to V-SMOW), with a mean value of 13.7‰. The δ18O values of the NY samples range from 11.8 to 15.2‰, with a mean value of 13.1‰. The nearly identical mean values at both locations favors incorporation of O from atmospheric CO2 in carbonate precipitation. Additionally, the 210Pb radiometric technique was also attempted to explore the applicability of this technique in dating concrete derived carbonates as well as recent carbonates forming in a wide variety of environments. The results gave ages between 64 and 3.8 a and are consistent when compared with the date the bridge was constructed.  相似文献   

17.
To study what dictates oxygen isotope equilibrium fractionation between inorganic carbonate and water during carbonate precipitation from aqueous solutions, a direct precipitation approach was used to synthesize witherite, and an overgrowth technique was used to synthesize aragonite. The experiments were conducted at 50 and 70°C by one- and two-step approaches, respectively, with a difference in the time of oxygen isotope exchange between dissolved carbonate and water before carbonate precipitation. The two-step approach involved sufficient time to achieve oxygen isotope equilibrium between dissolved carbonate and water, whereas the one-step approach did not. The measured witherite-water fractionations are systematically lower than the aragonite-water fractionations regardless of exchange time between dissolved carbonate and water, pointing to cation effect on oxygen isotope partitioning between the barium and calcium carbonates when precipitating them from the solutions. The two-step approach experiments provide the equilibrium fractionations between the precipitated carbonates and water, whereas the one-step experiments do not. The present experiments show that approaching equilibrium oxygen isotope fractionation between precipitated carbonate and water proceeds via the following two processes:
1.
Oxygen isotope exchange between [CO3]2− and H2O:
(1)  相似文献   

18.
The Berriasian Rupelo Formation of the W Cameros Basin consists of a 2–200 m thickness of marginal and open lacustrine carbonate and associated deposits. Open lacustrine facies contain a non-marine biota with abundant charophytes (both stems and gyrogonites), ostracods, gastropods and rare vertebrates. Carbonate production was mainly biogenic. The associated marginal lacustrine (‘palustrine’) facies show strong indications of subaerial exposure and exhibit a wide variety of pedogenic fabrics. Silicified evaporites found near to the top of the sequence reflect a short hypersaline phase in the lake history. The succession was laid down in a low gradient, shallow lake complex characterized by wide fluctuations of the shoreline. Carbon and oxygen stable isotope analyses from the carbonates show non-marine values with ranges of δ13 from ? 7 to ? 11‰and δ18 from ? 3 to ? 7.5‰. Differences in the isotopic composition of open lacustrine carbonates are consistent with sedimentary evidence of variation in organic productivity within the lake. Analyses from the entire sample suite plot on a linear trend; isotopic compositions become lighter with increasing evidence of pedogenic modification. This suggests progressive vadose zone diagenesis and influence of meteoric waters rich in soil-derived CO2. The stable isotope data thus support evidence from petrography and facies relations that ‘palustrine’limestones form through pedogenic modification of lake carbonates.  相似文献   

19.
Petrological and geochemical studies were carried out on early Precambrian carbonate rocks metamorphosed under granulite facies conditions from three areas of Bahia State (Brazil). Older rocks attributable to the Archean or lower Proterozoic consist of carbonates (mainly dolomite) and abundant, partially-serpentinized forsterite. Chemical data confirm their strong magnesian character and the almost complete absence of elements like Al, Ti, Na, K, Zr etc., which are normally found in the non-carbonate detrital part of impure carbonate rocks. Comparison with other carbonate rocks of similar silica content further emphasizes the scarcity of these elements. Samples of probably more recent origin belonging to migmatized complex of Central Bahia are more calcic in character and have a higher Sr and Ba content. The MgCO3 solvus thermometer in calcites coexisting with dolomite was determined both by chemical and X-ray procedures. Temperature values for carbonates under granulite facies range between 472 and 640° C. These temperatures seem to represent quench or recrystallization temperatures. The general geochemistry of carbonate rocks suggests two main hypotheses for their formation: a) chemical precipitation of pure carbonates during the Archean and later silica enrichment by metasomatic reactions; b) chemical co-precipitation in the Archean or early Proterozoic of carbonates and silica from silica-rich sea water. In this case precipitation would have occurred locally owing to increasing CO2 pressure (due, for example, to exhalative volcanism) or in limited evaporitic basins in areas of temporary stability bordering the continents.  相似文献   

20.
Large-scale atmospheric circulation patterns determine the quantity and seasonality of precipitation, the major source of water in most terrestrial ecosystems. Oxygen isotope (δ18O) dynamics of the present-day hydrologic system in the Palouse region of the northwestern U.S.A. indicate a seasonal correlation between the δ18O values of precipitation and temperature, but no seasonal trends of δ18O records in soil water and shallow groundwater. Their isotope values are close to those of winter precipitation because the Palouse receives  75% of its precipitation during winter. Palouse Loess deposits contain late Pleistocene pedogenic carbonate having ca. 2 to 3‰ higher δ18O values and up to 5‰ higher carbon isotope (δ13C) values than Holocene and modern carbonates. The late Pleistocene δ18O values are best explained by a decrease in isotopically light winter precipitation relative to the modern winter-dominated infiltration. The δ13C values are attributed to a proportional increase of atmospheric CO2 in soil CO2 due to a decrease in soil respiration rate and 13C discrimination in plants under much drier paleoclimate conditions than today. The regional climate difference was likely related to anticyclonic circulation over the Pleistocene Laurentide and Ice Sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号