首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied Geochemistry》2000,15(9):1383-1397
Water pollution arising from base metal sulphide mines is problematic in many countries, yet the hydrogeology of the subsurface contaminant sources is rarely well-characterized. Drainage water pumped from an active F–Pb mine in northern England has unusual chemistry (alkaline with up to 40 mg.l−1 Zn) which profoundly impacts the ecology of the receiving watercourse. Detailed in-mine surveys of the quantity and quality of all ground water inflows to the mine were made. These revealed major, temporally persistent heterogeneities in ground water quality, with three broad types of water identified as being associated with distinct hydrostratigraphic units. Type I waters (associated with the Firestone Sill aquifer) are cool (<10°C), Ca–HCO3–SO4 waters, moderately mineralized (specific electrical conductance (SEC)≤410 μS.cm−1) with <4 mg.l−1 Zn. Type II waters (associated with the Great Limestone aquifer) are warmer (≈15°C), of Ca–SO4 facies, highly mineralized (SEC≤1500 μS.cm−1) with ≤40 mg.l−1 Zn. Type III waters (in the deepest workings) are tepid (>18°C), of Ca–HCO3–SO4 facies, intermediately mineralized (SEC≤900 μS.cm−1) with ≤13 mg.l−1 Zn, and with significant Fe (≤12 mg.l−1) and Pb (≤8 mg/l). Monotonic increases in temperature and Cl concentration with depth contrast with peaks in total mineralization, SO4 and Zn at medium depth (in Type II waters). Sulphate, Pb and Zn are apparently sourced via oxidation of galena and sphalerite, which would release each metal in stoichiometric equality with SO4. However, molal SO4 concentrations typically exceed those of Pb and Zn by 2–3 orders of magnitude, which mineral equilibria suggest is due to precipitation of carbonate “sinks” for these metals. Contaminant loading budgets demonstrate that, although Type II waters amount to only 25% of the total ground water inflow to the mine, they account for almost 60% of the total Zn loading. This observation has important management implications for both the operational and post-abandonment phases of the mine life cycle.  相似文献   

2.
This study investigates the geochemical characteristics of the acid mine drainage discharged from the abandoned mine adits and tailing piles in the vicinity of the Lousal mine and evaluates the extent of pollution on water and on the stream sediments of the Corona stream. Atmospheric precipitation interacting with sulphide minerals in exposed tailings produces runoff water with pH values as low as 1.9–2.9 and high concentrations of (9,249–20,700 mg l−1), Fe (959–4,830 mg l−1) and Al (136–624 mg l−1). The acidic effluents and mixed stream water carry elevated Cu, Pb, Zn, Cd and As concentrations that exceed the water quality standards. However, the severity of contamination generally decreases 4 km downstream of the source due to mixing with fresh waters, which causes the dilution of dissolved toxic metals and neutralization of acidity. Some natural attenuation of the contaminants also occurs due to the general reduced solubility of most trace metals, which may be removed from solution, by either co-precipitation or adsorption to the iron and aluminium precipitates.  相似文献   

3.
《Applied Geochemistry》2006,21(9):1522-1538
Factors controlling the chemical composition of water interacting with finely-crushed kimberlite have been investigated by sampling pore waters from processed kimberlite fines stored in a containment facility. Discharge water from the diamond recovery plant and surface water from the containment facility, which acts as plant intake water, were also sampled. All waters sampled are pH-neutral, enriched in SO4, Mg, Ca, and K, and low in Fe. Pore-water samples, representing the most concentrated waters, are characterized by the highest SO4 (up to 4080 mg l−1), Mg (up to 870 mg l−1), and Ca (up to 473 mg l−1). The water discharged from the processing plant has higher concentrations of all major dissolved constituents than the intake water. The dominant minerals present in the processed fines and the kimberlite ore are serpentine and olivine, with small amounts of Ca sulphate and Fe sulphide restricted to mud xenoclasts. Reaction and inverse modeling suggest that much of the water-rock interaction takes place within the plant and involves the dissolution of chrysotile and Ca sulphate, and precipitation of silica and Mg carbonate. Evapoconcentration also appears to be a significant process affecting pore water composition in the containment facility. The reaction proposed to be occurring during ore processing involves the dissolution of CO2(g) and may represent an opportunity to sequester atmospheric CO2 through mineral carbonation.  相似文献   

4.
《Applied Geochemistry》2002,17(3):259-284
Groundwaters from Quaternary loess aquifers in northern La Pampa Province of central Argentina have significant quality problems due to high concentrations of potentially harmful elements such as As, F, NO3-N, B, Mo, Se and U and high salinity. The extent of the problems is not well-defined, but is believed to cover large parts of the Argentine Chaco-Pampean Plain, over an area of perhaps 106 km2. Groundwaters from La Pampa have a very large range of chemical compositions and spatial variability is considerable over distances of a few km. Dissolved As spans over 4 orders of magnitude (<4–5300 μg l−1) and concentrations of F have a range of 0.03–29 mg l−1, B of 0.5–14 mg l−l, V of 0.02–5.4 mg l−1, NO3–N of <0.2–140 mg l−1, Mo of 2.7–990 μg l−1 and U of 6.2–250 μg l−1. Of the groundwaters investigated, 95% exceed 10 μg As l−1 (the WHO guideline value) and 73% exceed 50 μg As l−1 (the Argentine national standard). In addition, 83% exceed the WHO guideline value for F (1.5 mg l−1), 99% for B (0.5 mg l−1), 47% for NO3-N (11.3 mg l−1), 39% for Mo (70 μg l−1), 32% for Se (10 μg l−1) and 100% for U (2 μg l−1). Total dissolved solids range between 730 and 11400 mg l−1, the high values resulting mainly from evaporation under ambient semi-arid climatic conditions. The groundwaters are universally oxidising with high dissolved-O2 concentrations. Groundwater pHs are neutral to alkaline (7.0–8.7). Arsenic is present in solution predominantly as As(V). Groundwater As correlates positively with pH, alkalinity (HCO3), F and V. Weaker correlations are also observed with B, Mo, U and Be. Desorption of these elements from metal oxides, especially Fe and Mn oxides under the high-pH conditions is considered an important control on their mobilisation. Mutual competition between these elements for sorption sites on oxide minerals may also have enhanced their mobility. Weathering of primary silicate minerals and accessory minerals such as apatite in the loess and incorporated volcanic ash may also have contributed a proportion of the dissolved As and other trace elements. Concentrations of As and other anions and oxyanions appear to be particularly high in groundwaters close to low-lying depressions which act as localised groundwater-discharge zones. Concentrations up to 7500 μg l−1 were found in saturated-zone porewaters extracted from a cored borehole adjacent to one such depression. Concentrations are also relatively high where groundwater is abstracted from close to the water table, presumably because this zone is a location of more active weathering reactions. The development of groundwaters with high pH and alkalinity results from silicate and carbonate reactions, facilitated by the arid climatic conditions. These factors, together with the young age of the loess sediments and slow groundwater flow have enabled the accumulation of the high concentrations of As and other elements in solution without significant opportunity for flushing of the aquifer to enable their removal.  相似文献   

5.
《Applied Geochemistry》1995,10(3):357-367
Fluorine is a common minor constituent of formation waters throughout the Alberta Basin, and it was detected in each of the 469 samples analyzed for it. Contents range up to 22 mg/l, with an arithmetic mean of 1.83 mg/l and a median value of 1.20 mg/I. There is a trend toward increased mean and median contents of F from the shallower, cooler, less saline formation waters to the deeper, hotter, more saline formation waters. This trend parallels a trend of increasing saturation with respect to fluorite, with most of the less saline formation waters being undersaturated with respect to fluorite. At the same time, the major portion of F occurs as F in the less saline formation waters, with increasing amounts held as MgF+ as the Ca content, ionic strength and temperature increase. Complexes between Al and F, and VO and F account for only a relatively minor portion of the complexed F. A significant portion of the F in high-salinity formation waters from marine strata could well have originated from the initial seawater. However, it is speculated that water-rock reactions with bentonite or bentonitic shales may have to be invoked to account for the very high contents of F in the less saline formation waters from some of the shallow, cooler, non-marine aquifers of the Upper Cretaceous post-Colorado aquifer-aquitard system. Finally, it is possible to use knowledge of the distribution of F in formation waters from individual aquifers to check on the “correctness” of F determinations (primarily when formation waters of similar composition show saturation with respect to fluorite), and in the same case to predict the F content of formation waters in the Alberta Basin for which only the appropriate major ions have been determined.  相似文献   

6.
The Canning Basin contains several Mississippi Valley‐type Zn‐Pb sulphide prospects and deposits in Devonian carbonate reef complexes on the northern edge of the Fitzroy Trough, and in Ordovician and Silurian marine sequences on the northern margin of the Willara Sub‐basin. This study uses the ionic composition and 5D, δ18O, δ34S, 87Sr/86Sr isotopic data on present‐day deep formation waters to determine their origin and possible relationship to the Zn‐Pb mineralizing palaeofluids.

The present‐day Canning Basin formation waters have salinity ranging from typically less than 5000 mg/L up to 250 000 mg/L locally. The brines are mixtures of highly saline water, formed by seawater which evaporated beyond halite saturation (bittern water), with meteoric water ranging in salinity from low (<5000 mg/L) to hypersaline water (up to about 50 000 mg/L) formed by re‐solution of halite and calcium sulphate minerals. The original marine chemical composition of the bittern‐dominated brines was changed to that of a Na‐Ca‐Cl water by addition of Ca and removal of Mg and SO4, initially by bacterial sulphate reduction and later by dolomitization of carbonate. Other reactions with terrigenous components of the sediment have provided additional Ca and Sr, including a small proportion of 87Sr‐rich material. The δ34S values of the bittern‐containing waters are within the range over which marine sulphate has fluctuated from the Ordovician to the Holocene, although one of the hypersaline waters has a value of +6.8%, indicating SO4 of non‐marine origin. The pH of the bittern‐containing waters is low (about 5) and they contain significant concentrations of dissolved Fe (up to 120 mg/L).

The Canning Basin bitterns appear similar in origin and chemical composition to highly saline marine brines in the Mississippi Salt Dome Basin, USA, which are known to be either metal or sulphide‐rich depending on the organic content of the host rock. In the Canning Basin, mixing of the bittern water with the various types of meteoric water has resulted in decreases in salinity, Na, Ca, Mg, K, Sr, Li and Fe, and increases in HCO3, SO4 and pH.

Mixing of the bitterns with other types of metalliferous fluids and/or with sulphate‐containing hypersaline meteoric waters formed from the same marine evaporite sequence should produce ore‐precipitating fluids which are relatively hot and saline, and the resulting ore deposit should be of high grade and contain abundant sulphate minerals. In the southern Canning Basin, this type of mixing and the corresponding style of ore deposit is evident in the evaporite‐associated areas of Zn‐Pb mineralization near the Admiral Bay Fault. If the bitterns mix with low salinity HCO3‐waters in near‐surface environments, then the ore‐precipitating fluids should have relatively low salinities and carbonate minerals would precipitate during later stages of mixing. In the Lennard Shelf, the present‐day formation waters, the style of the Zn‐Pb deposits, and range of salinity and temperature of the ore‐forming palaeofluids are consistent with this type of mixing.  相似文献   

7.
《Applied Geochemistry》2002,17(5):517-568
The range of As concentrations found in natural waters is large, ranging from less than 0.5 μg l−1 to more than 5000 μg l−1. Typical concentrations in freshwater are less than 10 μg l−1 and frequently less than 1 μg l−1. Rarely, much higher concentrations are found, particularly in groundwater. In such areas, more than 10% of wells may be ‘affected’ (defined as those exceeding 50 μg l−1) and in the worst cases, this figure may exceed 90%. Well-known high-As groundwater areas have been found in Argentina, Chile, Mexico, China and Hungary, and more recently in West Bengal (India), Bangladesh and Vietnam. The scale of the problem in terms of population exposed to high As concentrations is greatest in the Bengal Basin with more than 40 million people drinking water containing ‘excessive’ As. These large-scale ‘natural’ As groundwater problem areas tend to be found in two types of environment: firstly, inland or closed basins in arid or semi-arid areas, and secondly, strongly reducing aquifers often derived from alluvium. Both environments tend to contain geologically young sediments and to be in flat, low-lying areas where groundwater flow is sluggish. Historically, these are poorly flushed aquifers and any As released from the sediments following burial has been able to accumulate in the groundwater. Arsenic-rich groundwaters are also found in geothermal areas and, on a more localised scale, in areas of mining activity and where oxidation of sulphide minerals has occurred. The As content of the aquifer materials in major problem aquifers does not appear to be exceptionally high, being normally in the range 1–20 mg kg−1. There appear to be two distinct ‘triggers’ that can lead to the release of As on a large scale. The first is the development of high pH (>8.5) conditions in semi-arid or arid environments usually as a result of the combined effects of mineral weathering and high evaporation rates. This pH change leads either to the desorption of adsorbed As (especially As(V) species) and a range of other anion-forming elements (V, B, F, Mo, Se and U) from mineral oxides, especially Fe oxides, or it prevents them from being adsorbed. The second trigger is the development of strongly reducing conditions at near-neutral pH values, leading to the desorption of As from mineral oxides and to the reductive dissolution of Fe and Mn oxides, also leading to As release. Iron (II) and As(III) are relatively abundant in these groundwaters and SO4 concentrations are small (typically 1 mg l−1 or less). Large concentrations of phosphate, bicarbonate, silicate and possibly organic matter can enhance the desorption of As because of competition for adsorption sites. A characteristic feature of high groundwater As areas is the large degree of spatial variability in As concentrations in the groundwaters. This means that it may be difficult, or impossible, to predict reliably the likely concentration of As in a particular well from the results of neighbouring wells and means that there is little alternative but to analyse each well. Arsenic-affected aquifers are restricted to certain environments and appear to be the exception rather than the rule. In most aquifers, the majority of wells are likely to be unaffected, even when, for example, they contain high concentrations of dissolved Fe.  相似文献   

8.
《Applied Geochemistry》2003,18(7):1095-1110
The exchange of 226Ra and trace metals across the tailings-water interface and the mechanisms governing their mobility were assessed via sub-centimetre resolution profiling of dissolved constituents across the tailings–water interface in Cell 14 of the Quirke Waste Management Area at Rio Algom's Quirke Mine, near Elliot Lake, Ontario, Canada. Shallow zones (<1.5 m water depth) are characterized by sparse filamentous vegetation, well-mixed water columns and fully oxygenated bottom waters. Profiles of dissolved O2, Fe and Mn indicate that the tailings deposits in these areas are sub-oxic below tailings depths of ∼3 cm. These zones exhibit minor remobilization of Ra in the upper 5 cm of the tailings deposit; 226Ra fluxes at these sites are relatively small, and contribute negligibly to the water column activity of 226Ra. The shallow areas also exhibit minor remobilization of Ni, As, Mo and U. The release of these elements to the water cover is, however, limited by scavenging mechanisms in the interfacial oxic horizons. The presence of thick vegetation (Chara sp.) in the deeper areas (>2 m water depth) fosters stagnant bottom waters and permits the development of anoxia above the benthic boundary. These anoxic tailings are characterized by substantial remobilization of 226Ra, resulting in a relatively large flux of 226Ra from the tailings to the water column. The strong correlation between the porewater profiles of 226Ra and Ba (r2=0.99), as well as solubility calculations, indicate that the mobility of Ra is controlled by saturation with respect to a poorly ordered and/or impure barite phase [(Ra,Ba)SO4]. In the anoxic zones, severe undersaturation with respect to barite is sustained by microbial SO4 reduction. Flux calculations suggest that the increase in 226Ra activity in the water cover since 1995 (from <0.5 to 2.5 Bq l−1) can be attributed to an increase in the spatial distribution of anoxic bottom waters caused by increased density of benthic flora. The anoxic, vegetated areas also exhibit minor remobilization with respect to dissolved As, Ni and Zn. The removal of trace metals in the anoxic bottom waters appears to be limited by the availability of free sulphide. Collectively, the data demonstrate that while the water cover over the U mill tailings minimizes sulphide oxidation and metal mobility, anoxic conditions which have developed in deeper areas have led to increased mobility of 226Ra.  相似文献   

9.
《Applied Geochemistry》2003,18(4):503-525
Several laboratory experiments have demonstrated degradation of carbon tetrachloride (CT) in groundwater, but there appear to have been no corroborating long-term field studies. Investigations conducted in 1989 and 1999 at an industrial site constructed on an infilled estuarine environment in France provide data over a decade for which CT degradation could be evaluated. A Dense Non-Aqueous Phase Liquid (DNAPL) containing oil and >90% CT that was present in 1989 was absent in the extremely reducing site groundwater in both 1999 and 2000 (average Eh=−170 mV at pH 7, sulfide up to 21 mg l−1, and Fe+2 up to 3.2 mg l−1). These conditions facilitated dechlorination of CT to chloroform (CF) present at up to 46 mg l−1, and methylene chloride (up to 75 mg l−1). Carbon disulfide (CS2), a terminal degradation product in reducing environments in laboratory experiments, was present at a mass ratio averaging 2.4:1 CF:CS2, indicative of abiotic degradation. The lack of detection of the separate phase CT, the ratio of CF:CS2, the presence of low molecular weight organic acids (i.e., acetate ∼900 mg l−1; citrate 360 mg l−1; and propionate, up to 111 mg l−1) and pyrite in conjunction with excess inorganic Cl in groundwater are all indicators of ongoing degradation of the chlorinated compounds. However, while natural attenuation of chloromethanes may be a viable adjunct to strategies designed to remediate CT in reducing groundwater, its efficacy is hard to quantify in complex field environments where upgradient sources are still present.  相似文献   

10.
论硫化氢生成的地质条件   总被引:1,自引:0,他引:1  
根据硫化氢的赋存环境、组成特征和热还原反应模拟试验等,提出硫化氢生成需具备五项基本地质条件:(1)地层中富含石膏;(2)富含还原剂—烃类物质;(3)较大埋深或较高的地温条件;(4)地层水作为介质和反应场所;(5)严密的封存体系。热还原反应必须在有水条件下才能进行,硫酸盐水解后的硫酸根是硫化氢的直接供体。硫化氢的生成实际经历了一个天然气向地层水的溶入和脱出过程,两者的密切关系造成含硫化氢天然气通常出现在气-水界面附近,密封条件极好的岩性气藏或构造气藏当中,构造低部位或气藏下倾方向。但是,后期构造抬升有可能造成硫化氢与地层水的分离。  相似文献   

11.
Development of unconventional shale gas wells can generate significant quantities of drilling waste, including trace metal-rich black shale from the lateral portion of the drillhole. We carried out sequential extractions on 15 samples of dry-drilled cuttings and core material from the gas-producing Middle Devonian Marcellus Shale and surrounding units to identify the host phases and evaluate the mobility of selected trace elements during cuttings disposal. Maximum whole rock concentrations of uranium (U), arsenic (As), and barium (Ba) were 47, 90, and 3333 mg kg−1, respectively. Sequential chemical extractions suggest that although silicate minerals are the primary host for U, as much as 20% can be present in carbonate minerals. Up to 74% of the Ba in shale was extracted from exchangeable sites in the shale, while As is primarily associated with organic matter and sulfide minerals that could be mobilized by oxidation. For comparison, U and As concentrations were also measured in 43 produced water samples returned from Marcellus Shale gas wells. Low U concentrations in produced water (<0.084–3.26 μg L−1) are consistent with low-oxygen conditions in the wellbore, in which U would be in its reduced, immobile form. Arsenic was below detection in all produced water samples, which is also consistent with reducing conditions in the wellbore minimizing oxidation of As-bearing sulfide minerals.Geochemical modeling to determine mobility under surface storage and disposal conditions indicates that oxidation and/or dissolution of U-bearing minerals in drill cuttings would likely be followed by immobilization of U in secondary minerals such as schoepite, uranophane, and soddyite, or uraninite as conditions become more reducing. Oxidative dissolution of arsenic containing sulfides could release soluble As in arsenate form under oxic acidic conditions. The degree to which the As is subsequently immobilized depends on the redox conditions along the landfill flow path. The results suggest that proper management of drill cuttings can minimize mobilization of these metals by monitoring and controlling Eh, pH and dissolved constituents in landfill leachates.  相似文献   

12.
《Applied Geochemistry》2001,16(11-12):1369-1375
The heavy metal contamination of soils and waters by metalliferous mining activities in an area of Korea was studied. In the study area of the Imcheon Au–Ag mine, soils and waters were sampled and analyzed using AAS for Cd, Cu, Pb and Zn. Analysis of HCO3, F, NO3 and SO42− in water samples was also undertaken by ion chromatography. Elevated concentrations of the metals were found in tailings. The maximum contents in the tailings were 9.4, 229, 6160 and 1640 mg/kg extracted by aqua regia and 1.35, 26.4, 70.3 and 410 mg/kg extracted by 0.1 N HCl solution for Cd, Cu, Pb and Zn, respectively. These metals are continuously dispersed downstream and downslope from the tailings by clastic movement through wind and water. Because of the existence of sulfides in the tailings, a water sample taken on the tailings site was very acidic with a pH of 2.2, with high total dissolved solids (TDS) of 1845 mg/l and electric conductivity (EC) of 3820 μS/cm. This sample also contained up to 0.27, 1.90, 2.80, 53.4, 4,700 mg/l of Cd, Cu, Pb, Zn and SO42−, respectively. TDS, EC and concentrations of metals in waters decreased with distance from the tailings. The total amount of pulverized limestone needed for neutralizing the acid tailings was estimated to be 46 metric tons, assuming its volume of 45,000 m3 and its bulk density of 1855 kg/m3.  相似文献   

13.
《Applied Geochemistry》2003,18(9):1373-1386
The Baccu Locci stream catchment (Sardinia, Italy) is affected by serious As contamination as a consequence of past mining. The presence of both point and widespread sources of contamination (waste-rock dumps and flotation tailings, respectively) strongly affects surface water chemistry, and produces high As concentrations (hundreds of μg l−1) in stream waters. Water chemistry of the Baccu Locci stream changes considerably over a distance of about 10 km as a consequence of various, locally concomitant, processes acting along the stream course: (1) mixing with metal-rich SO4 waters; (2) dissolution/precipitation of metal-bearing phases; (3) mixing with HCO3-dominated lake waters; (4) gypsum dissolution coupled with calcite precipitation; (5) mixing with dilute surface and/or ground waters. In contrast to metals (e.g. Pb, Cu, Zn and Cd), whose dissolved concentrations rapidly decrease downstream of the mined area through (co-)precipitation/adsorption mechanisms, As concentrations tend to gradually increase (up to 0.9 mg l−1) along the stream course as far as the alluvial plain, though significant variations are locally observed. This behaviour is mainly due to the higher mobility of As than metals under the near neutral-oxidative conditions occurring in the Baccu Locci stream waters. Results of a leaching test indicate that part of the As contained in the flotation tailings occurs as As(III), which is more mobile and less strongly sorbed than As(V). The As released to the waters by various mechanisms (i.e. release/desorption from the Fe(III)-hydroxides coatings of silicate grains, oxidation of residual arsenopyrite, decomposition of scorodite) tends to remain in solution and to be transported long distances. As a consequence of the widespread presence of highly As-contaminated flotation tailings all over the medium-lower Baccu Locci stream catchment, long-term As contamination is expected.  相似文献   

14.
《Applied Geochemistry》2005,20(4):727-747
The chemical composition and evolution of produced waters associated with gas production in the Palm Valley gas field, Northern Territory, has important implications for issues such as gas reserve calculations, reservoir management and saline water disposal. The occurrence of saline formation water in the Palm Valley field has been the subject of considerable debate. There were no occurrences of mobile water early in the development of the field and only after gas production had reduced the reservoir pressure, was saline formation water produced. Initially this was in small quantities but has increased dramatically with time, particularly after the initiation of compression in November 1996.The produced waters range from highly saline (up to 300,000 mg/L TDS), with unusual enrichments in Ca, Ba and Sr, to low salinity fluids that may represent condensate waters. The Sr isotopic compositions of the waters (87Sr/86Sr = 0.7041–0.7172) are also variable but do not correlate closely with major and trace element abundances. Although the extreme salinity suggests possible involvement of evaporite deposits lower in the stratigraphic sequence, the Sr isotopic composition of the high salinity waters suggests a more complex evolutionary history.The formation waters are chemically and isotopically heterogeneous and are not well mixed. The high salinity brines have Sr isotopic compositions and other geochemical characteristics more consistent with long-term residence within the reservoir rocks than with present-day derivation from a more distal pool of brines associated with evaporites. If the high salinity brines entered the reservoir during the Devonian uplift and were displaced by the reservoir gas into a stagnant pool, which has remained near the reservoir for the last 300–400 Ma, then the size of the brine pool is limited. At a minimum, it might be equivalent to the volume displaced by the reservoired gas.  相似文献   

15.
《Applied Geochemistry》1997,12(5):643-660
In the Busko and Solec Spas, saline sulphide and sulphate waters are exploited at different depths. The shallow water system in Busko is related to an interglacial or interstadial period shown by the lack of tritium and14C and its δ18O and δD values equal to that of modern water. The noble gas temperatures (NGT) are somewhat lower than the present air temperatures, but the4He and40Ar ages of about 90–480 ka confirm a Pleistocene recharge. The δ18O and δD values of the deep system are much heavier than those of local modern waters, which may mean the recharge of a warm pre-Quaternary climate. The4He,40Ar and21Ne contents and the NGT values confirm the deep system to be recharged at the pre-Quaternary stages of the present hydrologic cycle, i.e. after the sea transgression in the Badenian. High SO42− contents indicate that the Cl and SO42− in both systems originated from simultaneous leaching of NaCl and gypsum. Other components can be explained by cation exchange between water and Badenian clay minerals in marls (e.g. Ca2+ for Mg2+ and Na+ for K+) and by the decay of marine organic matter supplying Br, I and B.  相似文献   

16.
Redistribution of potentially harmful metals and As was studied based on selective extractions in two active sulphide mine tailings impoundments in Finland. The Hitura tailings area contains residue from Ni ore processing, while the Luikonlahti site includes tailings from the processing of Cu–Co–Zn–Ni and talc ores. To characterize the element solid-phase speciation with respect to sulphide oxidation intensity and the water saturation level of the tailings, drill cores were collected from border zones and mid-impoundment locations. The mobility and solid-phase fractionation of Ni, Cu, Co, Zn, Cr, Fe, Ca, Al, As, and S were analysed using a 5-step non-sequential (parallel) selective extraction procedure. The results indicated that metal redistribution and sulphide oxidation intensity were largely controlled by the disposal history and strategy of the tailings (sorting, exposure of sulphides due to delayed burial), impoundment structure and water table, and reactivity of the tailings. Metal redistribution suggested sulphide weathering in the tailings surface, but also in unsaturated proximal areas beside the earthen dams, and in water-saturated bottom layers, where O2-rich infiltration is possible. Sulphide oxidation released trace metals from sulphide minerals at both locations. In the Hitura tailings, with sufficient buffering capacity, pH remained neutral and the mobilized metals were retained by secondary Fe precipitates deeper in the oxidized zone. In contrast, sulphide oxidation-induced acidity and rise in the water table after oxidation apparently remobilized the previously retained metals in Luikonlahti. In general, continuous disposal of tailings decreased the sulphide oxidation intensity in active tailings, unless there was a delay in burial and the reactive tailings were unsaturated after deposition.  相似文献   

17.
《Applied Geochemistry》2002,17(4):445-454
Processing waters contain up to 10 mg l−1 dissolved As at the Macraes mine, New Zealand, and this is all removed by adsorption as the water percolates through a large earth dam. Laboratory experiments were set up to identify which mineral is the most effective substrate for this adsorption of As. The experiments were conducted using infrared (IR) spectroscopy of thin mineral films adhering to a ZnSe prism. Silicates, including kaolinite, adsorbed only small amounts of As which was readily washed off. Hydrated Fe oxides (HFO) were extremely effective at adsorbing As, particularly the natural amorphous HFO currently being deposited from dam discharge waters at the Macraes mine. An adsorption isotherm determined for this natural material has the adsorption constant, Kads=(1.9±0.4)×104 M−1, and the substrate becomes saturated with adsorbed As when solution concentrations exceed about 50 mg l−1. Saturation is not being reached at the Macraes mine. Arsenic adsorbed on to natural HFO has a distinctive IR spectrum with the absorption peak varying from 800 cm−1 (alkaline solutions) to 820 cm−1 (neutral to acid solutions). Much of this adsorbed As is strongly bound and difficult to wash off. Arsenate ions adsorb in a bidentate structure which may be a precursor for scorodite crystallisation.  相似文献   

18.
Bitumen recovery from Alberta oil sands generates fluid fine tailings, which are retained in tailings ponds where solids settle and release process water. The recovered water is recycled for bitumen extraction, while the resulting tailings are incorporated into various landforms for reclamation, with one option being conversion of tailings basins to viable end pit lakes. Tailings ponds commonly host diverse microbial communities, including SO4-reducing prokaryotes. The highly reducing nature of the hydrogen sulfide produced by these prokaryotes may impact the biogeochemical cycling of key nutrients. However, the behavioral dynamics of hydrogen sulfide production in ponds containing fluid fine tailings remain to be clearly explained. In this study, microcosms are used as analogues of the sediment–water interface of a tailings pond undergoing reclamation to determine sulfide generation patterns and the behavior of O2. In the microcosms, hydrogen sulfide fluxes correlated positively with biotic activity, reaching levels of over 2 × 103 nmol cm−2 s−1, leading to Fe sulfide formation. Depth-related hydrogen sulfide profiles in the microcosms were comparable to those encountered in situ, in Syncrude’s West In-Pit, an active tailing pond. Oxygen diffusion across the fluid fine tailing sediment–water interface was controlled to different degrees by both biotic and abiotic processes. The results have implications for quantitatively estimating the impact of hydrogen sulfide production, O2 availability, and biogeochemical cycling of key nutrients important for the success of life in fluid fine tailings-affected ecosystems. This paper shows that this production of hydrogen sulfide may be a self-limiting process, which will begin to decrease after a period of time.  相似文献   

19.
Heavy metal contents have been investigated in sediment and water samples from gold and platinum mining areas of South Africa. Waste waters from Witwatersrand and Orange Free State gold mines exhibit characteristically low pH-values due to the formation of sulphuric acid by oxidation of sulphide ore minerals. Acid leaching of iron, manganese, nickel, cobalt, copper and zinc effects a 1,000–10,000-fold increase of metal concentrations as compared to the respective values in unpolluted river water. Lack of carbonate buffering prevents rapid immobilization and may lead to widespread distribution of toxic metals in the aquatic systems. These findings illustrate that modern ore refining techniques have little effect on the water quality as long as unchecked hydrometallurgical processes take place outside the production plant.  相似文献   

20.
Groundwaters were collected around the Spence porphyry copper deposit, Atacama Desert, northern Chile, to study water-porphyry copper ore bodies interaction and test hypotheses regarding transport of metals through thick overburden leading to the formation of soil geochemical anomalies. The deposit contains 400 Mt of 1% Cu and is completely buried by piedmont gravels of Miocene age. Groundwaters were recovered from the eastern up hydraulic gradient (upflow) margin of the Spence deposit, from within the deposit, and for two kilometers down flow from the deposit. Water table depths decrease from 90 m at the upflow margin to 30 m 1.5 km down flow. Groundwaters at the Spence deposit are compositionally variable with those upflow of the deposit characterized by relatively low salinities (900-7000 mg/L) and Na+-SO42−-type compositions. These waters have compositions and stable isotope values similar to regional groundwaters recovered elsewhere in the Atacama Desert of Northern Chile. In contrast, groundwaters recovered within and down flow of the deposit range in salinity from 10,000 to 55,000 mg/L (one groundwater at 145,000 mg/L) and are dominantly Na+-Cl-type waters. Dissolved sulfate values are, however, elevated compared to upflow waters, and δ34SCDT decreases into the deposit (from >4‰ to 2‰), consistent with increasing influence of sulfur derived from oxidation of sulfide minerals within the deposit. The increase in salinity and conservative tracers (Cl, Br, Li+, and Na+) and the relationship between oxygen and hydrogen isotopes suggests that in addition to water-rock reactions within the deposit, most of the compositional variation can be explained by groundwater mixing (with perhaps a minor role for evaporation). A groundwater-mixing scenario implies a deeper, more saline groundwater source mixing with the less saline regional groundwater-flow system. Flow of deeper, more saline groundwater along pre-existing structures has important implications for geochemical exploration and metal-transport models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号