首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Applied Geochemistry》2001,16(13):1513-1544
Smoke particulate matter from conifers subjected to controlled burning, both under smoldering and flaming conditions, was sampled by high volume air filtration on precleaned quartz fiber filters. The filtered particles were extracted with dichloromethane and the crude extracts were methylated for separation by thin layer chromatography into hydrocarbon, carbonyl, carboxylic acid ester and polar fractions. Then, the total extract and individual fractions were analyzed by gas chromatography and gas chromatography–mass spectrometry. The major organic components directly emitted in smoke particles were straight chain aliphatic compounds from vegetation wax and diterpenoid acids (biomarkers) from resin. The major natural products altered by combustion included derivatives from phenolic (lignin) and monosaccharide (cellulose) biopolymers and oxygenated and aromatic products from diterpenoids. Other biomarkers present as minor components included phytosterols, both the natural and altered products, and unaltered high molecular weight wax esters. Polycyclic aromatic hydrocarbons (PAH) were also present, however, only as minor constituents. Although the concentrations of organic compounds in smoke aerosols are highly variable and dependent on combustion temperature, the biomarkers and their combustion alteration products are source specific. The major components are adsorbed or trapped on particulate matter and thus may be utilized as molecular tracers in the atmosphere for determining fuel type and source contributions from biomass burning.  相似文献   

2.
《Applied Geochemistry》2006,21(6):919-940
Smoke particulate matter from grasses (Gramineae, temperate, tropical and arctic) subjected to controlled burning, both under smoldering and flaming conditions, was sampled by high volume air filtration on pre-cleaned quartz fiber filters. The filtered particles were extracted with dichloromethane/methanol and the crude extracts were methylated for separation by thin layer chromatography into hydrocarbon, carbonyl, carboxylic acid ester and polar fractions. Then, the total extract and individual fractions were analyzed by GC–MS. The major organic components directly emitted in grass smoke particles were the homologous series of n-alkanoic acids from plant lipids, n-alkanes from epicuticular wax, and sterols and triterpenols. The major natural products altered by combustion included pyrolysis products from cellulose and lignin biopolymers, and oxidation products from triterpenoids and sterols. Polycyclic aromatic hydrocarbons (PAH) were also present; however, only as minor components. Although the concentrations of organic compounds in smoke aerosols are highly variable and dependent on combustion temperature, the biomarkers and their combustion alteration products are in these cases source specific. The major components are adsorbed on or trapped in smoke particulate matter and thus may be utilized as molecular tracers in the atmosphere for determining fuel type and source contributions from grass burning.  相似文献   

3.
《Applied Geochemistry》2002,17(3):129-162
Biomass combustion is an important primary source of particles with adsorbed biomarker compounds in the global atmosphere. The introduction of natural product organic compounds into smoke occurs primarily by direct volatilization/steam stripping and by thermal alteration based on combustion temperature. Although the molecular compositions of organic matter in smoke particles are highly variable, the molecular tracers are generally still source specific. Dehydroabietic acid is typically the major tracer for conifer smoke in the atmosphere. Degradation products from biopolymers (e.g. levoglucosan from cellulose, methoxyphenols from lignin) are also excellent tracers. Additional markers of thermally-altered and directly-emitted natural products in smoke have been defined which aids the assessment of the organic matter types and input from biomass combustion to aerosols. The precursor to product approach of compound characterization by organic geochemistry has also been applied successfully to provide source specific tracers for studying the chemistry and dispersion of ambient aerosols and the intermingling of natural with anthropogenic emissions and with smoke plumes. A brief review of the organic matter composition in aerosols derived from the major sources is also given, with emphasis on the detection of biomass burning components. These major sources are the natural background from biogenic detritus (e.g. plant wax, microbes, etc.) and anthropogenic particle emissions (e.g. oils, soot, synthetics, compounds, etc.). The emissions of organic constituents in coal smoke particulate matter are also reviewed and depend on combustion temperature, ventilation, burn time, and coal rank (geologic maturity). The components of peat and brown coal and to a lesser degree semi-bituminous coal consist mainly of hydrocarbons, biomarkers, and aromatic components, quite similar to burning of contemporary biomass. Dispersion from the source and long range transport of smoke particulate matter with the associated organic compounds is also discussed.  相似文献   

4.
《Applied Geochemistry》2006,21(1):166-183
The composition of organic matter (OM) in pine vegetation and soil samples from a pine forest which was charred by a wildfire was analyzed using solid-state nuclear magnetic resonance (13C NMR) and gas chromatography–mass spectrometry (GC–MS) of solvent extracts to study the effects of thermal alteration on soil organic matter (SOM). The NMR data revealed the presence of unaltered biomolecules (cellulose, proteins) and low contents of aromatic C (15%) in the charred pine wood and cones while the charred soil samples exhibited higher contents of aromatic C (39–56%). The solvent extraction of charred and uncharred plant and soil samples yielded diterpenoids, triterpenoids, steroids, a series of aliphatic lipids, phenols and carbohydrates indicating the predominant input of higher plant OM and minor contributions from microorganisms and/or fauna. The lower yield of solvent extractable aliphatic lipids in the charred samples versus the uncharred samples suggests that these compounds are thermally degraded during a wildfire. Molecular markers for the burning of cellulose (levoglucosan, mannosan, galactosan) were detected in all charred samples. The comparison of charred and uncharred samples allowed the identification of unaltered pine derived biomolecules and their thermal alteration products in the charred samples. Terpenoid and steroid biomolecules were in part altered during incomplete combustion to aromatic, unsaturated and polar derivatives (“pyromolecules”) that still retained the characteristic skeleton of their precursors. Since some of the polar degradation products found in the charred soils can be generated either from thermal or microbial degradation, the aromatic and unsaturated hydrocarbon products are preferred as molecular markers for SOM burning. Ratios of biological precursors to aromatic (diterpenoids) or unsaturated products (steroids) indicate that the cyclic lipids in the pine wood and the soil surface horizon were highly altered. In conclusion, the solvent extractable lipids and carbohydrates in charred SOM are valuable, source-specific molecular markers for the burning of plant biomass and for tracing the biogeochemistry of charred residues in soils.  相似文献   

5.
The aliphatic, aromatic and polar (NSO) fractions of seabed petroleums and sediment bitumen extracts from the Guaymas Basin hydrothermal system have been analyzed by gas chromatography and gas chromatography-mass spectrometry (free and silylated). The oils were collected from the interiors and exteriors of high temperature hydrothermal vents and represent hydrothermal pyrolyzates that have migrated to the seafloor by hydrothermal fluid circulation. The downcore sediments are representative of both thermally unaltered and thermally altered sediments. The survey has revealed the presence of oxygenated compounds in samples with a high degree of thermal maturity. Phenols are one class of oxygenated compounds found in these samples. A group of methyl-, dimethyl- and trimethyl-isoprenoidyl phenols (C27-C29) is present in all of the seabed NSO fractions, with the methyl- and dimethyl-isoprenoidyl phenols occurring as major components, and a trimethyl-isoprenoidyl phenol as a minor component. A homologous series of n-alkylphenols (C13-C33) has also been found in the seabed petroleums. These phenols are most likely derived from the hydrothermal alteration of sedimentary organic matter. The n-alkylphenols are probably synthesized under hydrothermal conditions, but the isoprenoidyl phenols are probably hydrothermal alteration products of natural product precursors. The suites of phenols do not appear to be useful tracers of high temperature hydrothermal processes.  相似文献   

6.
River runoff and atmospheric fallout (dust and air particulate matter) are major input sources of natural and anthropogenic terrestrial organic and inorganic components to the Arabian seas. In this study, we report on the various lipid tracer compounds that might be transported to the Arabian Gulf by rivers, dust, and air particulate matter. These are based on geochemical analysis of sediment, dust, and particulate samples collected from Iraq, Kuwait, and Saudi Arabia. The samples were extracted with a dichloromethane/methanol mixture and analyzed by gas chromatography-mass spectrometry. The extractable organic compounds (lipids) in the samples include n-alkanes, n-alkanoic acids, n-alkanols, methyl n-alkanoates, steroids, triterpenoids, carbohydrates, and petroleum hydrocarbons. The steroids and triterpenoids were major components in river and wetland samples. The major sources of these lipids were from natural vegetation, microbial (plankton and bacteria) residues in the sediments, sand, and soils, with some contribution from anthropogenic sources. Accordingly, these sources could be major inputs to the Arabian seas besides the autochthonous marine products. Future studies of the organic and inorganic biogeochemistry on river, dust, and coastal areas are needed to characterize the various regional sources, transformation, and diagenetic processes of the organic matter en route to the marine environment.  相似文献   

7.
Detailed geochemistry studies were conducted to investigate the origin of solid bitumens and hydrocarbon gases in the giant Puguang gas field. Two types of solid bitumens were recognized: low sulfur content, low reflectance (LSLR) solid bitumens in sandstone reservoirs in the Xujiahe Formation and high sulfur content, high reflectance (HSHR) solid bitumens in the carbonate reservoirs in the Lower Triassic Feixianguan and Upper Permian Changxing formations. Solid bitumens in the Upper Triassic Xujiahe Formation correlate well with extracts from the Upper Triassic to Jurassic nonmarine source rocks in isotopic composition of the saturated and aromatic fractions and biomarker distribution. Solid bitumens in the Feixianguan and Changxing formations are distinctly different from extracts from the Cambrian and Silurian rocks but display reasonable correlation with extracts from the Upper Permian source rocks both in isotopic composition of the saturated and aromatic fractions and in biomarker distribution, suggesting that the Permian especially the Upper Permian Longtan Formation was the main source of solid bitumens in the carbonate reservoirs in the Feixianguan and Changxing formations in the Puguang gas field. Chemical and isotopic composition of natural gases indicates that the majority of hydrocarbon gases originated from sapropelic organic matter and was the products of thermal cracking of accumulated oils. This study indicates that source rock dominated by sapropelic organic matter existed in the Upper Permian and had made major contribution to the giant Puguang gas field, which has important implication for petroleum exploration in marine sequences in South China.  相似文献   

8.
Composition of saturated biomarkers revealed the presence of at least two sources of oils of the Romashkino field with the monotypic conditions. All the studied oils are characterized by presence of a large number of components—anoxia testifiers in the photic layer of sedimentation basin in the fractions of aromatic compounds. These are products full or partial hydrogenation, cyclization and degradation of polyene compounds. Total content of this group of compounds is measured in these fractions for the first time. It is shown that the total content of the anoxia testifiers is high. Thus the specific characteristic of oil source rocks is defined—their formation in the conditions of existence of anoxia in the photic layer during the entire accumulation time of initial organic matter, and the thickness of the layer infected with hydrogen sulphide was significant. On the basis of composition and content of the anoxia testifiers it is shown that the hydrogenation of initial polyenes prevailed in diagenesis over the processes of cyclization.  相似文献   

9.
Detailed geochemistry studies were conducted to investigate the origin of solid bitumens and hydrocarbon gases in the giant Puguang gas field. Two types of solid bitumens were recognized: low sulfur content, low reflectance (LSLR) solid bitumens in sandstone reservoirs in the Xujiahe Formation and high sulfur content, high reflectance (HSHR) solid bitumens in the carbonate reservoirs in the Lower Triassic Feixianguan and Upper Permian Changxing formations. Solid bitumens in the Upper Triassic Xujiahe Formation correlate well with extracts from the Upper Triassic to Jurassic nonmarine source rocks in isotopic composition of the saturated and aromatic fractions and biomarker distribution. Solid bitumens in the Feixianguan and Changxing formations are distinctly different from extracts from the Cambrian and Silurian rocks but display reasonable correlation with extracts from the Upper Permian source rocks both in isotopic composition of the saturated and aromatic fractions and in biomarker distribution, suggesting that the Permian especially the Upper Permian Longtan Formation was the main source of solid bitumens in the carbonate reservoirs in the Feixianguan and Changxing formations in the Puguang gas field. Chemical and isotopic composition of natural gases indicates that the majority of hydrocarbon gases originated from sapropelic organic matter and was the products of thermal cracking of accumulated oils. This study indicates that source rock dominated by sapropelic organic matter existed in the Upper Permian and had made major contribution to the giant Puguang gas field, which has important implication for petroleum exploration in marine sequences in South China.  相似文献   

10.
 Surface sediments, suspended particulate matter and fluffy-layer material, collected in the Arkona Basin and the Pomeranian Bay during 1995–1997, as well as air particulate matter, collected on the island of Rügen during August 1995, were analysed for total organic carbon content, saturated and polycyclic aromatic hydrocarbons (PAH). The resulting concentrations and distributions of these compounds and molecular PAH ratios are discussed in terms of matrix, origin of the organic matter and seasonal variations. The data show that the Oder river can be identified as a major source for PAH transported into the southern part of the Arkona Basin. A strong atmospheric input of PAH is noted for the central and northern part of the basin. In general, anthropogenic and bacterially degraded hydrocarbons bound to organic carbon-rich and small particles are mainly deposited in the basin center, whereas their natural counterparts accumulate mainly on the basin flanks covered by coarser grained sediments. Received: 2 March 1999 · Accepted: 8 June 1999  相似文献   

11.
《Applied Geochemistry》2006,21(9):1455-1468
Cyclic base extraction is a commonly used method for the isolation of humic acids from soils and sediments. However, every extract may differ in chemical composition due to the complex nature of humic acids. To better understand the chemical composition of each extract, the heterogeneous property of humic acids and their speciation in environmental samples, eight fractions of humic acids were obtained in the present work by progressive base-extraction of Pahokee peat, and their chemical composition was characterized using two complementary pyrolytic techniques, namely conventional pyrolysis and methylation pyrolysis (TMAH) GC/MS. These quick and effective procedures provide an insight into the structure of macromolecules. The work shows that the lignin-derived aromatic compounds are major components of pyrolysates in both pyrolytic techniques, while aliphatic compounds originating from microorganisms and plants are minor components. Other compounds derived from proteins and carbohydrates at lower concentrations were also detected. Fatty acids were found in the pyrolysis without methylation, indicating their association with humic acid in a free state. These compounds are different from those formed during pyrolysis with in situ methylation, where fatty acids are generally believed to be the cleavage products of carboxylic groups bound to humic acids. A relative decreasing abundance of aromatic components and increasing abundance of aliphatic components in the pyrolysates as the peat was progressively extracted was also observed in this work, suggesting that the extraction of more hydrophobic aliphatics may be delayed in comparison to the aromatic components. Speciation and origin differences may also be important particularly considering that the contribution from lignin organic matter decreased with extraction number, as the contribution of microbial organic matter increased. The observed change in chemical composition with the extracted fractions indicates again that the humic acid distribution and their speciation are complex, and complete extractions are necessary to obtain a representative humic acid sample.  相似文献   

12.
Suspended particle samples from the Yellow River estuary were sorted into five grain size fractions to explore the effect of grain size distribution on organic matter content and composition. The n-alkanes and PAHs were determined for each size fraction. PAHs and n-alkanes were more abundant in the finer fractions and the loading decreases steadily with increasing of grain size. However, the total n-alkanes or PAHs normalized to organic C were lower in the smaller size fractions than those in the larger size fractions, suggesting n-alkanes or PAHs may be diluted by the addition of organic matter or gradually decreased by degradation in the smaller size fractions. The particulate n-alkanes in the Yellow River estuary consist of a mixture of compounds from terrigenous and riverine biogenic n-alkanes and more biogenic n-alkanes accumulate in finer particles. Particulate PAHs are related to combustion/pyrolysis processes of coal/wood, and the relative contribution of petrogenic PAHs increase with increasing grain size. The total particulate n-alkane and PAH discharges passing the Lijin Station are about 3.94 t d−1 and 0.52 t d−1, respectively. Fine particles (<32 μm) play a significant role in organic matter transfer.  相似文献   

13.
It is shown that the absorption capacity of smoke aerosol during mass forest and forest–peat fires is determined to a considerable degree by light absorbing organic compounds or brown carbon. According to the data from the AERONET global network of stations [1], the absorption spectra of smoke aerosol vary significantly if airborne particulate matter is contained in brown carbon. It is established that in several cases, the absorption spectra of smoke aerosol are approximated with satisfactory accuracy by exponents. It is shown that the finely dispersed (submicron) fraction of the smoke aerosol makes a major contribution to its optical characteristics in the 0.44–1.02 μm spectral region. Strong variation in the single scattering albedo is discovered in the presence of brown carbon in the smoke aerosol. It is shown that the optical characteristics of coarsely dispersed and finely dispersed fractions of smoke aerosol differ considerably.  相似文献   

14.
Organic matter contained in particulate matter in Lake Michigan waters and sediments has been characterized by CN ratios and by distributions of biomarker fatty acids, alkanols, sterols, and aliphatic hydrocarbons. Differences in organic constituents of particulate matter from various depths and distances from shore indicate a complex interaction of production, transformation, and destruction of the organic matter contained in sinking particles. Near-surface material contains important contributions of landderived organic matter, presumably of eolian input. Midwater particles have predominantly aquatic organic material of algal origin. At the sediment-water interface, selective suspension of the finer fractions of surficial sediments enriches bottom nepheloid layers with these sediment size classes. As a result, near-bottom particulate matter has an aquatic biomarker character. Organic matter associated with sinking particles undergoes substantial degradation during passage to the bottom of Lake Michigan, and aquatic components are selectively destroyed relative to terrigenous components.  相似文献   

15.
Six North American bituminous coals (four Carboniferous and two Cretaceous) and eight maceral concentrates from Carboniferous British seams have been heated with tetralin and hydrogen to 400°C. The hexane-soluble parts of the products were separated by column chromatography and the fractions were then analyzed by gas chromatography/mass spectrometry. In all cases the aromatic hydrocarbon fraction was a very complex mixture containing a number of alkylated biphenyls, diphenylmethanes and -ethanes, and polycyclic compounds. However single ioncchromatography (m/z = 142) showed that, in addition to these, the products from five of the six American coals contained homologous series of long chain n-alkylnapththalenes with alkyl groups extending to C16. In other fractions from the American coals, homologous series of n-alkylfurans and alkylphenols were found to be major components, as also were many alkylcyclohexenones related to isophorone. Extensive homologous series of n-alkyl aromatics were not detected in products from any of six vitrinites from British seams, though series of n- and iso-alkylphenols were found in the products from two sporinite concentrates. A number of polycyclic ketones apparently related to sterols were found in the products from the British vitrinites but not from any American coals. Reasons for what appear to be systematic structural differences between the American and British coals are discussed. Differences in stratigraphy are noted and it seems not impossible that differences in source vegetation are significant.  相似文献   

16.
The concentrations of n-alkanes, unresolved complex mixture (UCM), petroleum molecular markers, other tracers of cooking and burning emissions, and natural background in atmospheric particles and roadside dust particles were measured at eight locations in the city center and the suburbs of Kuala Lumpur, Malaysia. Atmospheric particles were collected using high-volume filtration (PM-10, GFF) over 24 h average periods. Road dusts were swept up, dried and sieved. Both types of samples were extracted with dichloromethane/methanol mixture (3:1 v/v) by ultrasonic agitation. The extracts were then fractionated by column chromatography and the alkanes subjected to gas chromatography–mass spectrometry (GC–MS). Total extracts were also analyzed directly by GC–MS after silylation. The molecular distributions of compounds as well as diagnostic geochemical ratios were determined in order to identify the sources of the organic compounds. Samples collected from a rural area and lubricating oils were also analyzed for comparisons. Anthropogenic and biogenic sources such as vehicular emissions, waxes of higher plants, food cooking operations, and biomass and domestic refuse burning processes contributed to the organic matter content of atmospheric and to lesser extent, roadside dust particles.  相似文献   

17.
北京首钢地区大气颗粒物中有机污染物的初步研究   总被引:21,自引:0,他引:21  
对北京首钢地区大气颗粒物中有机物浓度、族组成及其饱和烃、多环芳烃的组成和分布特征进行了研究.在大气颗粒物中共检测出40多种多环芳烃, 其中属于美国国家环保局(EPA) 优先控制污染物9种, 且大多具有致癌和致突变性.根据生标特征, 有机污染物主要来源于煤的不完全燃烧, 部分来源于汽车尾气的排放.燃煤对首钢地区造成的污染更为严重.   相似文献   

18.
The erosion of rocks rich in organic matter typically leads to the complete mineralization of the organic material. However, in some cases, it is re-deposited to become a part of sediments once more. This process should be considered to be a part of global carbon cycle, possibly much more significant than assumed to-date. The research presented here aims to characterize re-worked organic matter occurring in post-glacial sediments of southern part of Poland, in the Oder river valley (the Racibórz town region, Miocene, Pleistocene and Holocene age). Organic substances extracted from the sediments originated from organic matter that had resided in rocks eroded by glaciers. Sediments were sampled in two boreholes which sediments were correlated. Sediments were extracted and extracts analyzed with gas chromatography-mass spectrometry (GC-MS) to assess distributions of biomarker groups. Organic matter of selected samples was pre-concentrated and analyzed with Py/GC-MS. In the extracts several biomarker parameters of source/environment and thermal maturity were calculated. Organic substances in the investigated sediments come from variable re-deposited organic matter occurring in rocks eroded by glaciers. Three main parent types of re-deposited organic material are identified showing variable geochemical features: 1) organic matter of recent or almost recent age being the source of polar labile compounds; probably formed in situ, 2) re-deposited organic matter of the middle diagenesis showing features similar to lignites (huminite reflectance Rf ~ 0.25–0.35%) deriving from angiosperm remains, mainly monocotyledons and to the lower extend also deciduous trees, 3) re-deposited organic matter at the middle catagenesis (Rf ~ 0.65–0.75%) being the source of most of aromatic hydrocarbons and biomarkers such as steranes, hopanes of the more thermally advanced distribution type. Its geochemical properties and assumed directions of sediment transport indicate bituminous coals of Upper Silesian Coal Basin together with coaly shales as a possible source of this organic matter. Such mixed origin of organic matter caused large discrepancies in values of thermal maturity parameters depending on input from the particular sources and occurrence both geochemical biomarkers and their biochemical precursors in the same samples.  相似文献   

19.
在对东疆地区(包括吐哈盆地和三塘湖盆地)原油饱和烃生物标志物地球化学特征研究基础上,对原油芳烃馏分进行全面分析及地球化学特征研究;通过深入剖析原油芳烃系列组成,明确东疆地区原油类型划分,根据烷基奈、"三芴"系列及卡达烯、惹烯等化合物的分布特征,进一步揭示三塘湖盆地石炭系原油母源沉积水体盐度低、还原性弱,成油母质中包含丰...  相似文献   

20.
Samples around a coal gangue dump of the Gequan Coal Mine were collected in April 2009. GC (gas chromatography) and GC/MS (gas chromatography/mass spectrometry) were employed to analyze the composition of organic matter in the samples. ICP-MS (inductively coupled plasma mass spectrometry) was used to determine the concentrations of heavy metals. The contents of organic extracts are within the range of 140-750 mg/kg. Alkand aro-ratios are relatively high. Compared to those of the background sample (GQ13 ), the contents of saturated hydrocarbon compounds in all the samples are relatively high. The contents of polycyclic aromatic hydrocarbons (PAHs) are relatively high with the distance getting closer to the coal gangue dump. These indicate that organic matter in the samples is from coal particles of the coal gangue dump. The distributions of heavy metals are very similar: the contents decrease with distance from the dump, which indicates that the harmful heavy metals from the coal gangue dump have polluted as thick as at least 500 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号