首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Late Hercynian-early Indosinian (Triassic) granite is widely distributed around the Taer region of the northern margin of West Kunlun. The rock mass is mainly composed of calc-alkaline porphyroid biotite adamellite and characterized by SiO2-rich, high-Ca, moderate-alkaline, and strongly peraluminous attributes, and relatively low ΣREE with LREE enrichment and a moderate Eu anomaly. As shown in the trace element spider web diagram, distinct peaks appear for Th, La, Nd, and Zr and clearly low values appear for Ba, Nb, Sr, P, and Ti. Further, compared with the primitive mantle, Rb/Sr and Rb/Ba are considerably higher and Nd/Th and Nb/Ta are relative low, all falling into the scope of the crust-origin rocks, indicating the characteristics of the crust-origin S-type granite. The rock mass’s zircon U-Pb isotopic age is determined to be 235.7 ± 3.9 Ma. On the basis of the age data, spatio-temporal location, lithology, and geochemistry of the rock mass, we conclude that the formation of the rock mass is closely related to the strong compressional orogenic movement (240 Ma) of the Tianshuihai terrane and the South Kunlun terrane. The rock mass is the product of the collision orogenic movement. However, distinct differences are observed between the studied rock mass and the synorogenic Bulunkou rock mass, which may be caused by the different collision strength and different positions with respect to the collision zone.  相似文献   

2.
Geochemical characteristics of the Chagande’ersi molybdenum deposit in Inner Mongolia and its genesis were analyzed in this study using rock mineralography and rock geochemical testing. The mineralized country rocks of the Chagande’ersi molybdenum deposit consist mainly of medium-to fine-grained monzogranite,medium-to fine-grained rich-K granite,with minor fine-grained K-feldspar granite veins and quartz veins.The rocks are characterized by high silica,rich alkali,high potassium,which are favorable factors for molybdenum mineralization.The rocks have the Rittmann index ranging from 1.329 to 1.961,an average Na2O+K2O value of 7.41,and Al2O3/(CaO+Na2O+K2O)>1,suggesting that the rocks belong to the high-K calc-alkaline peraluminous granite.The typical rock samples are enriched in Rb,Th,K and light rare earth elements,depleted in Sr,Ba,Nb,P and Ti, and these features are similar to that of the melt granite resulting from collision of plate margins.TheδEu of the rocks falls the zone between the crust granite and crust-mantle granite,and are close to that of the crust granite;(La/Lu)N indicates the formation environment of granite is a continental margin setting.The Nb/Ta ratios are close to that of the average crust(10);the Zr/Hf ratios of monzogranite are partly below the mean mantle(34-60),while the Zr/Hf ratio of K-feldspar granite are close to the mean value in the crust.Comprehensive analyses show that the granite in this area formed during the transition period between tectonic collision and post-collision.During the plate collision and orogeny,the crust and mantle material were mixed physically,remelting into lava and then crystal fractionation,finally gave rise to the formation of the rock body in this area.This has close spatial and temporal relation with the molybdenum mineralization.  相似文献   

3.
In intermediate-acid magmatic rocks,alkaline magmatic rocks,gneisses and migmatitic rocks K-feldspar is a rock-forming rock in which the contents of Pb are highest,just 2-10 times those of the whole rock,3-16 times those of mica minerals and 6-32 times those of quartz.The lowest contents of K-feldspar are recognized in Early Proterozoic and Achaean rocks,with Pb in the K-feldspar accounting for less than 10% of that in the whole rock;in post Middle Proterozoic alkaine magmatic rocks,K-feldspar-rich granites and metamorphic rocks the contents of K-feldspar tend to increase,with the proportion granites and metamorphic rocks the contents of K-feldspar tend to increase,with the proportion of Pb over that in the whole rock being obviously increased.In the alkaline rocks in which K-feldspar accounts for 50%-70% of the total in the whole rock,the contents of Pb in K-feldspar account approximately for 70%-95% of the total lead in the whole rock.Being accessible to hydrothermal alteration in the late periods,K-feldspar was conversed to sericite,calcite,quartz,etc.In the process of such conversion the lead would be leached out and then find its way into fluid phase.This kind of trans-formation can provide sufficient ore-forming material for later Pb metallogenesis.  相似文献   

4.
The newly discovered Laomiaogou porphyry-skarn Mo deposit is located south of the Machaoying fault in western Henan province. The ore-body is hosted in the contact between the Laomiaogou granite porphyry dyke and the Duguan Formation. LA-ICP-MS U-Pb analyses for zircons from the granite porphyry yield a weighted mean 206Pb/238U age of 152.1±0.6 Ma, and seven molybdenite separates yield a weighted mean age of 151.9±0.9 Ma and isochron age of 151.6±5.1 Ma. Thus, the granite porphyry dyke and Mo mineralization are contemporaneous. The ore-related granite porphyry dyke is a peraluminous I-type granite with high contents of SiO2 and K2O. The rocks are strongly depleted in P, Nb, Ta and Ti, indicative of intensive fractionation of apatite and Fe-Ti oxides, and characterized by low whole-rock εNd(t) (-20.6 to -17.6) and zircon εHf(t) values (-26.9 to -22.6). The old tDM2(Nd) ages (2.37 to 2.61 Ga) and zircon tDM2(Hf) ages (2.62 to 2.88 Ga) suggest that the granite porphyry was likely derived from an ancient crustal source. Considering the tectonic evolution and geochemical characteristics of the granite as well as other Mesozoic granites in the southern margin of the North China Craton, we suggest that the Laomiaogou granite porphyry dyke and Mo were most likely derived from partial melting of the Taihua Group metamorphic rocks under extensional tectonic regime related to the subduction of the paleo-pacific plate. © 2018, Science Press. All right reserved.  相似文献   

5.
The mechanism of formation of the Lincang germanium deposit is discussed in the light of the spatial distribution of Ge-rich coal and siliceous rocks,the sulfur isotopic composition of pyrite in the Ge-rich coal,the variation of Ge abundance in the coal seams and the geochemical characteristics of the siliceous rocks.The results show that the siliceous rocks intercalated with the coal seamw were deposited from a hyrothermal medium through which germanium was enriched in the coal beds.The primary source of germanium is thought to be the Gerich granite in the basement of the sedimentary basin.  相似文献   

6.
The Early Jurassic bimodal volcanic rocks in the Yeba Formation, situated between Lhasa, Dagzê and Maizhokunggar, composed of metabasalt, basaltic ignimbrite, dacite, silicic tuff and volcanic breccia, are an important volcanic suite for the study of the tectonic evolution of the Gangdise magmatic arc and the Mesozoic Tethys. Based on systematic field investigations, we carried out geochemical studies on representative rock samples. Major and trace element compositions were analyzed for these rock samples by XRF and ICP-MS respectively, and an isotope analysis of Rb-Sr and Sm-Nd was carried out by a MAT 262 mass spectrograph. The results show that the SiO2 contents in lava rocks are 41 %-50.4 % and 64 %-69 %, belonging to calc-alkaline basalt and dacite. One notable feature of the basalt is its low TiO2 content, 0.66 %-1.01 %, much lower than those of continental tholeiite. The ΣREE contents of basalt and dacite are 60.3-135 μg/g and 126.4-167.9 μg/g respectively. Both rocks have similar REE and other trace element characteristics, with enriched LREE and LILE relative to HREE and HFS, similar REE patterns without Eu anomaly. The basalts have depleted Ti, Ta and Nb and slightly negative Nb and Ta anomalies, with Nb*=0.54-1.17 averaging 0.84. The dacites have depleted P and Ti and also slightly negative Nb and Ta anomalies, with Nb*=0.74-1.06 averaging 0.86. Major and trace elemental and isotopic studies suggest that both basalt and dacite originated from the partial melting of the mantle wedge at different degrees above the subduction zone. The spinal lherzolite in the upper mantle is likely to be their source rocks, which might have been affected by the selective metasomatism of fluids with crustal geochemistry. The LILE contents of both rocks were affected by metamorphism at later stages. The Yeba bimodal volcanic rocks formed in a temporal extensional situation in a mature island arc resulting from the Indosinian Gangdise magmatic arc.  相似文献   

7.
The Jiangla'angzong granite in the northern part of the Central Lhasa Terrane is composed of syenogranite and adamellite. LA-ICP-MS zircon U-Pb analyses suggest that syenogranite has a weighted mean ~(206) Pb/~(238) U age of 86±1 Ma(mean square weighted deviation=0.37), which is in accordance with the muscovite Ar-Ar age(85±1 Ma) of Cu-Au ore-bearing skarns and the zircon U-Pb age(84±1 Ma) of adamellite. This suggests that the Jiangla'angzong magmatism and Cu–Au mineralization events took place during the Late Cretaceous. The granite contains hornblende, biotite, and pyroxene, and does not contain Al-bearing minerals, such as muscovite, cordierite, and garnet. It has high contents of SiO_2(65.10–70.91 wt%), K_2O(3.44–5.17 wt%), and total K_2O+Na_2O(7.13–8.15 wt%), and moderate contents of A_(12)O_3(14.14–16.45 wt%) and CaO(2.33–4.11 wt%), with a Reitman index(σ43) of 2.18 to 2.33, and A/CNK values of 0.88 to 1.02. The P_2O_5 contents show a negative correlation with SiO_2, whereas Pb contents show a positive correlation with SiO_2. Th and Y contents are relatively low and show a negative correlation with the Rb contents. These characteristics suggest that the Jiangla'angzong granite is a high K calc–alkaline metaluminous I–type granite. It is enriched in light rare earth elements(LREE) and large ion lithofile elements(LILE), and depleted in heavy rare earth elements(HREE) and high field strength elements(HFSE), with LREE/HREE ratios of 11.7 to 18.1. The granite has negative Eu anomalies of 0.58 to 0.94 without obvious Ce anomalies(δCe=1.00–1.04). The relatively low initial 87 Sr/86 Sr ratios of 0.7106 to 0.7179, positive εHf(t) values of 1.0 to 4.1, and two-stage Hf model ages(TDM2) ranging from 889 Ma to 1082 Ma, These geochemical features indicate that the granite derived from a juvenile crust. The(~(143) Nd/~(144) Nd)_t values from the Jiangla'angzong granite range from 0.5121 to 0.5123, its εNd(t) values range from-10.17 to-6.10, its(~(206) Pb/~(204) Pb)_t values range from 18.683 to 18.746, its(~(207) Pb/~(204) Pb)_t values range from 15.695 to 15.700, and its(~(208) Pb/~(204) Pb)_t values range from 39.012 to 39.071. These data indicate that the granite was formed by melting of the upper crust with the addition of some mantle materials. We propose that the Jiangla'angzong granite was formed during the postcollision extension of the Qiangtang and Lhasa terranes.  相似文献   

8.
Acid intrusions are widespread in the Sawur region, Xinjiang. The Ka'erjiao intrusion is mainly composed of albite granite porphyry, K-feldspar granite porphyry, ivernite and granite porphyry. Being a transitional product between magma intrusion and eruption in the Sawur region, the Ka'erjiao intrusion was formed at the telophase of the late Carboniferous to the begining of early Permian as determined by the SHRIMP U-Pb zircon dating, with an age of 302.6±7.6 Ma (1σ). The intrusion consists of alkali-enriched rock, whose REE distribution patterns are of the LREE enrichment type, theδEu value is low and Nd, Sr, Pb isotopes reflect its mantle source characteristics. Theδ18O value of intrusion is low as a result of isotope exchange with meteoric water. The geochemical characteristics show that it was formed in a post-collisional tectonic setting. Taking combined considerations of current studies of A-type granites and Permian volcanic rocks, we think that in the telophase of the late Carboniferous to the beginning of the early Permian, the Sawur region was within the extension or compressional to extensional period of a post-collisional stage. The Ka'erjiao intrusion from mantle sources can confirm the vertical continental crust growth in the late Paleozoic. The Sawur region in west Junggar is consistent with east Junggar in post-collisional tectonic evolution process.  相似文献   

9.
The Tashisayi nephrite deposit is located in South Altyn Tagh.in Qiemo County,Xinjiang Province,northwest China.It is a recent discovery in the vast,well-known Kunlun-Altyn nephrite belt distributed along the south of the Tarim Basin,producing more than half of the nephrite from the whole belt in 2017.Field investigations revealed that it is a dolomitic marble-related(D-type)nephrite deposit,but little is known about its age of formation and relationships between the granites and marble.Here we report field investigations,petrography of the neph rite,as well as petrography,geochemistry,geochronology of the zoisite-quartz altered intrusive rock and adjacent granites.An A-type granite is identified with a SHRIMP U-Pb zircon age of 926± 7 Ma,suggesting it was emplaced in an extensional tectonic environment at that time.The altered intrusive rock has a cluster of U-Pb zircon age of 433± 10 Ma.with similar trace element features to the A-type granite,suggesting it was formed in an extensional regime at this later time.Nephrite formed because of the metasomatism of dolomite marble by hydrothermal fluids.It is inferred that Ca~(2+) was released from the dolomitic marble by metasomatism forming Ca-rich fluids,which caused alteration of both the intrusive rocks(6.00-8.22 wt.% CaO)and granite(1.76-3.68 wt.% CaO)near the nephrite ore bodies.It is also inferred that Fe2+ from the granite migrated towards the dolomite marble.The fluids gave rise to the formation of Ca-minerals.such as zoisite,in the nephrite and altered intrusive rock,and epidote in the granite.Based on the contact relationships.similarity in hydrothermal processes,and consumption of Ca~(2+),the Tashisayi nephrite is considered to have formed at the same time as the alteration of the intrusive rocks,i.e.~433 Ma.The geochronological similarity(~926 Ma.433 Ma)of South Altyn and North Qaidam may suggest that tectonically they belong to one single complex in the past,which was offset by the Altyn Tagh fault(ATF).The similar formation ages of the nephrites from Altyn Tagh(433 Ma)and the previously studied areas of West Kunlun(378-441 Ma)and East Kunlun(416 Ma)indicate that these nephrites formed during the closure of Proto-Tethys and in the accompanving post-collisional.extensional environment.  相似文献   

10.
Acid intrusions are widespread in the Sawur region, Xinjiang. The Ka'erjiao intrusion is mainly composed of albite granite porphyry, K-feldspar granite porphyry, ivernite and granite porphyry. Being a transitional product between magma intrusion and eruption in the Sawur region, the Ka'erjiao intrusion was formed at the telophase of the late Carboniferous to the begining of early Permian as determined by the SHRIMP U-Pb zircon dating, with an age of 302.6±7.6 Ma (1σ). The intrusion consists of alkali-enriched rock, whose REE distribution patterns are of the LREE enrichment type, theδEu value is low and Nd, Sr, Pb isotopes reflect its mantle source characteristics. Theδ18O value of intrusion is low as a result of isotope exchange with meteoric water. The geochemical characteristics show that it was formed in a post-collisional tectonic setting. Taking combined considerations of current studies of A-type granites and Permian volcanic rocks, we think that in the telophase of the late Carboniferous to the beginning of the early Permian, the Sawur region was within the extension or compressional to extensional period of a post-collisional stage. The Ka'erjiao intrusion from mantle sources can confirm the vertical continental crust growth in the late Paleozoic. The Sawur region in west Junggar is consistent with east Junggar in post-collisional tectonic evolution process.  相似文献   

11.
Acid intrusions are widespread in the Sawur region, Xinjiang. The Ka'erjiao intrusion is mainly composed of albite granite porphyry, K-feldspar granite porphyry, ivernite and granite porphyry. Being a transitional product between magma intrusion and eruption in the Sawur region, the Ka'erjiao intrusion was formed at the telophase of the late Carboniferous to the begining of early Permian as determined by the SHRIMP U-Pb zircon dating, with an age of 302.6±7.6 Ma (1σ). The intrusion consists of alkali-enriched rock, whose REE distribution patterns are of the LREE enrichment type, theδEu value is low and Nd, Sr, Pb isotopes reflect its mantle source characteristics. Theδ18O value of intrusion is low as a result of isotope exchange with meteoric water. The geochemical characteristics show that it was formed in a post-collisional tectonic setting. Taking combined considerations of current studies of A-type granites and Permian volcanic rocks, we think that in the telophase of the late Carboniferous to the beginning of the early Permian, the Sawur region was within the extension or compressional to extensional period of a post-collisional stage. The Ka'erjiao intrusion from mantle sources can confirm the vertical continental crust growth in the late Paleozoic. The Sawur region in west Junggar is consistent with east Junggar in post-collisional tectonic evolution process.  相似文献   

12.
The Lanhualing tungsten-molybdenum deposit is a skarn-type deposit located in Ningguo county, Anhui province. This deposit is mainly hosted in the Yinzhubu Formation and the Yanwashan Formation of Ordovician, and genetically related to the Lanhualing granite. The Lanhualing granite belongs to high-K calc-alkaline series with high alkali (Na2O+K2O=4.00%-7.03%), SiO2 (67.87%-74.92%) and MgO (0.62%-1.23%) contents. The granitic rocks show right-dipping chondrite normalized REE patterns with weak δEu anomalies. The granitic rocks are relatively enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE). The ore-bearing granite was dated at 148.17±0.94 Ma by LA-ICP-MS zircon U-Pb method. The late Yanshanian is the main tungsten mineralization epoch in the South Anhui-north Jiangxi area; and indeed, the Dongyuan, Zhuxi, Yangchuling, Dahutang and other large and super-large tungsten deposits were formed in this period. Geochemical Characteristics of the Lanhualing granite indicate a crustal source but with mantle input under tectonic regime of compression thickening. ©, 2015, Science Press. All right reserved.  相似文献   

13.
The discoveries of oil and gas reservoirs in the volcanic rocks of the Songliao Basin(SB) have attracted the attention of many researchers. However, the lack of studies on the genesis of the volcanic rocks has led to different opinions being presented for the genesis of the SB. In order to solve this problem, this study selected the volcanic rocks of the Yingcheng Formation in the Southern Songliao Basin(SSB) as the research object, and determined the genesis and tectonic setting of the volcanic rocks by using LA-ICP-MS zircon U-Pb dating and a geochemical analysis method(major elements, trace elements, and Hf isotopes). The volcanic rocks of the Yingcheng Formation are mainly composed of rhyolites with minor dacites and pyroclastic rocks. Our new zircon U-Pb dating results show that these volcanic rocks were erupted in the Early Cretaceous(113–118 Ma). The primary zircons from the rhyolites have εHf(t) values of +4.70 to +12.46 and twostage model age(TDM2) of 876–374 Ma. The geochemical data presented in this study allow these rhyolites to be divided into I-type rhyolites and A-type rhyolites, both of which were formed by the partial melting of the crust. They have SiO2 contents of 71.62 wt.%–75.76 wt.% and Al2 O3 contentsof 10.88 wt.% to 12.92 wt.%. The rhyolites have distinctively higher REE contents than those of ordinary granites, with obvious negative Eu anomalies. The light to heavy REE fractionation is not obvious, and the LaN/YbN(average value = 9.78) is less than 10. The A-type rhyolites depleted in Ba, Sr, P, and Ti, with relatively low Nb/Ta, indicating that the rocks belong A2 subtype granites formed in an extensional environment. The adakitic dacites are characterized by high Sr contents(624 to 1,082 ppm), low Y contents(10.6 to 12.6 ppm), high Sr/Y and Sr/Yb ratios, and low Mg# values(14.77 to 36.46), indicating that they belong to "C" type adakites. The adakitic dacite with high Sr and low Yb were likely generated by partial melting of the lower crust under high pressure conditions at least 40 km depth. The I-type rhyolites with low Sr and high Yb, and the A-type rhyolites with very low Sr and high Yb, were formed in the middle and upper crust under low pressure conditions, respectively. In addition, the formation depths of the former were approximately 30 km, whereas those of the latter were less than 30 km. The geochemical characteristics reveal that the volcanic rocks of Yingcheng Formation were formed in an extensional environment which was related to the retreat of subducted Paleo-Pacific Plate. At the late Early Cretaceous Period, the upwelling of the asthenosphere mantle and the lithosphere delamination caused by the retreat of the subducted Paleo-Pacific Plate, had resulted in lithosheric extension in the eastern part of China. Subsequently, a large area of volcanic rocks had formed. The SB has also been confirmed to be a product of the tectonic stress field in that region.  相似文献   

14.
Discovered and mined in recent years, the Jinchangliang gold deposit has not yet been studied in its genetic type. In this paper, the geological features of ore deposit, S isotopic composition, metallogenic age and elements geochemical of the granite closely related to mineralization were discussed. The results of the geological features of ore deposit and S isotopic composition show that ore-bearing hydrothermal solution was closely related with the intrusion of magmatic. The granite is characteristic of high silica SiO_2=72.38%–72.98%, high aluminum and Al_2O_3=14.22%–14.35%, low calcium CaO=0.16% –0.26%, and low value of FeOT/MgO(6.86–7.73), and rich in alkalis Na_2O+K_2O=9.11%–9.24%, suggesting that it is high-K calc-alkaline, highly fractionated, weak aluminum A-type granite. The REE patterns are inclined to right and show intense fractionation between LREE and HREE, without obvious negative Eu anomaly(δEu=0.80–0.84). The primitive mantle-normalized spidergrams are characterized by depletion of Ba, U, Ta, Nb, Zr, Ti and P, which implies that the granite has the characteristics of the crust-mantle mixing. S isotopes also indicate that the material source of gold deposit is closely related to the granite rocks. The LA-ICP-MS Zircon UPb age of the Damiao rock mass medium-fine grained monzogranite(belonging to the early IndoChina) is(245±1) Ma. It shows that Jinchangliang gold deposit was not formed in Yanshanian, but the early Indo-China. Specifically speaking, the deposit was formed in the collision stage of the North China plate and the Siberian plate.  相似文献   

15.
The Tertiary granitic intrusive body(~21 Ma) of the Jabal Sabir area was emplaced during the early stages of the Red Sea opening.This intrusive body occupies the southern sector of Taiz City.It is triangular in shape,affected by two major faults,one of which is in parallel to the Gulf of Aden,and the other is in parallel to the eastern margin of the Red Sea coast.The petrogenesis of such a type of intrusion provides additional information on the origin of the Oligo-Miocene magmatic activity in relation to the rifting tectonics and evolution of this part of the Arabian Shield.The granitic body of Jabal Sabir belongs to the alkaline or peralkaline suite of A-type granites.It is enriched in the REE.The tight bundle plot of its REE pattern reflects neither tectonism nor metamorphism.This granite body is characterized by high alkali(8.7%-10.13%),high-field strength elements(HFSE),but low Sr and Ba and high Zn contents.The abundance of xenoliths from the neighboring country rocks and prophyritic texture of the Jabal Sabir granite body indicate shallow depths of intrusion.The major and trace elements data revealed a fractional crystallization origin,probably with small amounts of crustal contamination.It is interpreted that the Jabal Sabir intrusion represents an anorogenic granite pertaining to the A-type,formed in a within-plate environment under an extensional tectonic setting pertaining to rift-related granites.  相似文献   

16.
The karst area accounts for 61.9% of the total area in Guizhou Province, which gives rise to a fragile environment and backward economy. Comparative studies on the element contents of rock and soil and agriculture production in both carbonate area and non-carbonate area have been made to establish factors leading to low output and poor quality of agricultural products in the karst area. The result shows that there is an apparent lack of nutrient elements in carbonate rocks. The trace element contents of carbonate rocks are only 3532.27×10-6, but those of non-carbonate rocks are 10894.21×10-6. The available element contents in culti-vated soil delivered from carbonate rocks are merely 101.4×10-6, but those from non-carbonate rocks are 326.05×10-6. The available element contents and total element contents in cultivated soil delivered from non-carbonate rocks are 3 times higher than those from carbonate rocks. Besides, high-quality agricultural products such as rice, potato and tea are mainly produced in the non-carbonate area. It is indicated that the low output and quality of agricultural products are caused by the above-mentioned low trace element contents and poor agricultural environment. Therefore, a new method of mineral nutrients compensation has been put forward, which is very effective to raise the load-bearing capacity of agricultural environment, agricultural output and quality of agricultural products.  相似文献   

17.
Owing to the low contents of their acid-insoluble components, carbonate rocks tend to decrease sharply in volume in association with the formation of weathering crust. The formation of a 1 m-thick weathering crust would usually consume more than ten meters to several tens of meters of thickness of parent rocks. The knowledge of how to identify the homogeneity of parent rocks is essential to understand the formation mechanism of weathering crust in karst regions, especially that of thick-layered red weathering crust. In this work the grain-size analyses have demonstrated that the three profiles studied are the residual weathering crust of carbonate rocks and further showed that there objectively exists the heterogeneity of parent rocks in the three studied weathering crusts. The heterogeneity of parent rocks can also be reflected m geochemical parameters of major elements, just as the characteristics of frequency plot of grain-size distribution. Conservative trace element ratios Zr/Hf and Nb/Ta are proven  相似文献   

18.
In this study, we present zircon U-Pb ages, whole-rock geochemical data and Hf isotopic compositions for the Meiguifeng and Arxan plutons in Xing'an Massif, Great Xing'an Range, which can provide important information in deciphering both Mesozoic magmatism and tectonic evolution of NE China. The zircon U-Pb dating results indicate that alkali feldspar granite from Meiguifeng pluton was emplaced at ~145 to 137 Ma, and granite porphyry of Arxan pluton was formed at ~129 Ma. The Meiguifeng and Arxan plutons have similar geochemical features, which are characterized by high silica, total alkalis, differentiation index, with low P_2O_5, CaO, MgO, TFe_2O_3 contents. They belong to high-K calc-alkaline series, and show weakly peraluminous characteristics. The Meiguifeng and Arxan plutons are both enriched in LREEs and LILEs(e.g., Rb, Th, U and K), and depleted in HREEs and HFSEs(e.g., Nb, Ta and Ti). Combined with the petrological and geochemical features, the Meiguifeng and Arxan plutons show highly fractionated I-type granite affinity. Moreover, the Meiguifeng and Arxan plutons may share a common or similar magma source, and they were probably generated by partial melting of Neoproterozoic high-K basaltic crust. Meanwhile, plagioclase, K-feldspar, biotite, apatite, monazite, allanite and Ti-bearing phases fractionated from the magma during formation of Meiguifeng and Arxan plutons. Combined with spatial distribution and temporal evolution, we assume that the generation of Early Cretaceous Meiguifeng and Arxan plutons in Great Xing'an Range was closely related to the break-off of Mudanjiang oceanic plate. Furthermore, the Mudanjiang Ocean was probably a branch of Paleo-Pacific Ocean.  相似文献   

19.
The Tanjianshan Group, which was previously divided into a, b, c and d formations, has been controversial for a long time. It mainly distributes in the northern margin of Qaidam Basin and is an important early Paleozoic greenschist facies metamorphic volcanic sedimentary rock formation. Detailed field investigation and zircon LA-ICPMS U-Pb dating of the key strata suggest that the original lower part of a Formation(a-1) versus the original middle upper of d Formation(d-3 and d-4), the original upper part of a Formation(a-2) and b Formation versus the original lower part of d Formation(d-1 and d-2) of Tanjianshan Group are contemporaneous heterotopic facies volcanicclasolite deposit, respectively. The former formations formed during the middle-late Ordovician(463–458 Ma), while the latter ones formed in the late Ordovician(about 445 Ma). The original c formation of Tanjianshan Group, which formed after 430 Ma, is similar to the Maoniushan Formation of Kunlun Mountains and north Qaidam Basin. According to the rules of stratigraphic division and naming, new stratum formations of Tanjianshan Group are re-built and divided into Duancenggou(O1-2td), Zhongjiangou(O2-3tz) and Xitieshan(O3tx) formations. The original c Formation is separated from Tanjianshan Group and is renamed as the Wuminggou Formation(S3-D1w), which shows a discordant contact with underlying Tanjianshan Group and overlying Amunike Formation(D3a). The zircon U-Pb age frequency spectrogram of Tanjianshan Group indicates three prominent peaks of 430 Ma, 460 Ma and 908 Ma, which is consistent with the metamorphic and magmatic crystallization ages obtained from para- and orthogneisses in north Qaidam HP-UHP metamorphic belt, implying that strong Caledonian and Jinningian tectonic and magmatic events have ever happened in North Qaidam.  相似文献   

20.
The Longwangzhuang granite pluton occurs on the southern margin of the North China Craton and consists mainly of biotite syenogranite with aegirine granite being locally distributed.The granites are characterized by high silicon and alkaline contents(SiO2=72.17%-76.82%,K2O+Na2O=8.28%-10.22%,K2O/Na2O>>1),AI(agpaitic index) =0.84-0.95,DI=95-97,ASI(aluminum saturation index)=0.96-1.13,and very high Fe* number(FeO*/(FeO*+Mg)=0.90-0.99),thus the granites are assigned to the metaluminous to weakly peraluminous,alkalic to calc-alkalic ferroan A-type granites.The granites are rich in large ion lithophile elements(LILE),especially high in REE concentrations(REE+Y=854×10-6-1572×10-6);whereas the enrichment of high strength field elements(Nb,Ta,Zr,Hf) is obviously less than that of LILEs,exhibiting mild depletions on trace element spider plots;and the rocks are significantly depleted in Ba,Sr,Ti,and Pb.The low εNd(t) values(-4.5--7.2) and high model ages(2.3-2.5 Ga) of the granites as well as the low εHf(t) values(-1.11--5.26) and high Hf model ages(THf1= 2.1-2.3 Ga,THf2=2.4-2.6 Ga) of zircons from the biotite syenogranite suggest that the granites were probably derived from an enriched mantle source.The zircons from the biotite syenogranite are mainly colorless transparent crystals exhibiting well-developed oscillatory zoning on the cathodoluminescence images with a LA-ICPMS zircon U-Pb age of 1602.1±6.6 Ma(MSWD=0.48).Petrochemical,trace elements,as well as Nd and Hf isotopic compositions of the rocks demonstrate that the granites were formed in a within-plate extensional tectonic regime possibly related to the breakup of the Columbia supercontinent.The granites were most likely formed through extreme fractional crystallization of alkali basaltic magma resulted from partial melting of the mantle,which was fertilized by recycling crustal rocks triggered by the delamination of lithospheric mantle and lower crust following the ~1.8 Ga collision and amalgamation of the North China Craton which is part of the Columbia supercontinent.However,contamination of neo-Archean to Paleoproterozoic crustal rocks during the ascent and emplacement of the magma could not be excluded.Being the youngest known anorogenic magmatism on the southern margin of the North China Craton related to Columbia breakup,it might represent the break off of the North China Craton from Columbia supercontinent at the end of Paleoproterozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号