首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The building-up of the Andean Range is linked to the subduction of the Pacific lithosphere beneath the South American plate. However, the formation of the Central Andes is marked by continental crustal shortening, whereas accretion and underplating of exotic oceanic terranes occurred in the northern Andes. The study of various magmatic and metamorphic rocks exhumed in the Western Cordillera of Ecuador by Miocene transpressive faults enables us to constrain the nature and thermal evolution of the crustal root of this part of Ecuador. These rocks are geochemically similar to oceanic plateau basalts. The thermobarometric peak conditions of a granulite and an amphibolite indicate temperatures of 800–850?°C and pressures less than 6–9 kbar (lack of garnet). The abnormally high geothermal gradient (≈40?°C?km?1) is probably due to the activity of the magmatic arc, which developed on the accreted oceanic terranes after Late Eocene times, and may have provoked the re-mobilisation of deeply underplated oceanic material during the genesis of the Neogene to Recent arc. To cite this article: É. Beaudon et al., C. R. Geoscience 337 (2005).  相似文献   

2.
The exhumation mechanism of high‐pressure (HP) and ultrahigh‐pressure (UHP) eclogites formed by the subduction of oceanic crust (hereafter referred to as oceanic eclogites) is one of the primary uncertainties associated with the subduction factory. The phase relations and densities of eclogites with MORB compositions are modelled using thermodynamic calculations over a P–T range of 1–4 GPa and 400–800 °C, respectively, in the NCKFMASHTO (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3) system. Our modelling suggests that the mineral assemblages, mineral proportions and density of oceanic crust subducted along a cold P–T path are quite different from those of crust subducted along a warm P–T path, and that the density of oceanic eclogites is largely controlled by the stability of low‐density hydrous minerals, such as lawsonite, chlorite, glaucophane and talc. Along a cold subduction P–T path with a geotherm of ~6 °C km?1, lawsonite is always present at 1.1 to >4.0 GPa, and chlorite, glaucophane and talc can be stable at pressures of up to 2.3, 2.6 and 3.6 GPa respectively. Along such a P–T path, the density of subducted oceanic crust is always lower than that of the surrounding mantle at depths shallower than 110–120 km (< 3.3–3.6 GPa). However, along a warm subduction P–T path with a geotherm of ~10 °C km?1, the P–T path is outside the stability field of lawsonite, and the hydrous minerals of chlorite, epidote and amphibole break down completely into dry dense minerals at relatively lower pressures of 1.5, 1.85 and 1.9 GPa respectively. Along such a warm subduction P–T path, the subducted oceanic crust becomes denser than the surrounding mantle at depths >60 km (>1.8 GPa). Oceanic eclogites with high H2O content, oxygen fugacity, bulk‐rock XMg [ = MgO/(MgO + FeO)], XAl [ = Al2O3/(Al2O3 + MgO + FeO)] and low XCa [ = CaO/(CaO + MgO + FeO + Na2O)] are likely suitable for exhumation, which is consistent with the bulk‐rock compositions of the natural oceanic eclogites on the Earth's surface. On the basis of natural observations and our calculations, it is suggested that beyond depths around 110–120 km oceanic eclogites are not light enough and/or there are no blueschists to compensate the negative buoyancy of the oceanic crust, therefore explaining the lack of oceanic eclogites returned from ultradeep mantle (>120 km) to the Earth's surface. The exhumed light–cold–hydrous oceanic eclogites may have decoupled from the top part of the sinking slab at shallow depths in the forearc region and are exhumed inside the serpentinized subduction channel, whereas the dense–hot–dry eclogites may be retained in the sinking slab and recycled into deeper mantle.  相似文献   

3.
The fractionation of lithium isotopes between synthetic spodumene as representative of Li-bearing clinopyroxene and Cl- and OH-bearing aqueous fluids was experimentally determined between 500 and 900°C at 2.0 GPa. In all the experiments, 7Li was preferentially partitioned into the fluid. The fractionation is temperature dependent and approximated by the equation Δ7Li(clinopyroxene–fluid)=−4.61×(1,000/T [K]) + 2.48; R 2=0.86. Significant Li isotopic fractionation of about 1.0‰ exists even at high temperatures of 900°C. Using neutral and weakly basic fluids revealed that the amount of fractionation is not different. The Li isotopic fractionation between altered basalt and hot spring water (350°C) in natural samples is in good agreement with our experimentally determined fractionation curve. The data confirm earlier speculations drawn from the Li isotopic record of dehydrated metamorphic rocks that fluids expelled from a dehydrating slab carry heavier Li into the mantle wedge, and that a light Li component is introduced into the deeper mantle. Li and Li isotopes are redistributed among wedge minerals as fluids travel across the wedge into hotter regions of arc magma production. This modifies the Li isotopic characteristics of slab-derived fluids erasing their source memory, and explains the absence of cross-arc variations of Li isotopes in arc basalts.  相似文献   

4.
Low‐temperature eclogite and eclogite facies metapelite together with serpentinite and marble occur as blocks within foliated blueschist that was originated from greywacke matrix; they formed a high‐pressure low‐temperature (HPLT) subduction complex (mélange) in the North Qilian oceanic‐type suture zone, NW China. Phengite–eclogite (type I) and epidote–eclogite (type II) were recognized on the basis of mineral assemblage. Relic lawsonite and lawsonite pseudomorphs occur as inclusions in garnet from both types of eclogite. Garnet–omphacite–phengite geothermobarometry yields metamorphic conditions of 460–510 °C and 2.20–2.60 GPa for weakly deformed eclogite, and 475–500 °C and 1.75–1.95 GPa for strongly foliated eclogite. Eclogite facies metasediments include garnet–omphacite–phengite–glaucophane schist and various chloritoid‐bearing schists. Mg‐carpholite was identified in some high‐Mg chloritoid schists. PT estimates yield 2.60–2.15 GPa and 495–540 °C for Grt–Omp–Phn–Gln schist, and 2.45–2.50 GPa and 525–530 °C for the Mg‐carpholite schist. Mineral assemblages and PT estimates, together with isotopic ages, suggest that the oceanic lithosphere as well as pelagic to semi‐pelagic sediments have been subducted to the mantle depths (≥75 km) before 460 Ma. Blueschist facies retrogression occurred at c. 454–446 Ma and led to eclogite deformation and dehydration of lawsonite during exhumation. The peak PTconditions for eclogite and metapelite in the North Qilian suture zone demonstrate the existence of cold subduction‐zone gradients (6–7 °C km?1), and this cold subduction brought a large amount of H2O to the deep mantle in the Early Palaeozoic times.  相似文献   

5.
Raman microspectroscopy on carbonaceous material (RSCM) from the eastern Tauern Window indicates contrasting peak‐temperature patterns in three different fabric domains, each of which underwent a poly‐metamorphic orogenic evolution: Domain 1 in the northeastern Tauern Window preserves oceanic units (Glockner Nappe System, Matrei Zone) that attained peak temperatures (Tp) of 350–480 °C following Late Cretaceous to Palaeogene nappe stacking in an accretionary wedge. Domain 2 in the central Tauern Window experienced Tp of 500–535 °C that was attained either within an exhumed Palaeogene subduction channel or during Oligocene Barrovian‐type thermal overprinting within the Alpine collisional orogen. Domain 3 in the Eastern Tauern Subdome has a peak‐temperature pattern that resulted from Eo‐Oligocene nappe stacking of continental units derived from the distal European margin. This pattern acquired its presently concentric pattern in Miocene time due to post‐nappe doming and extensional shearing along the Katschberg Shear Zone System (KSZS). Tp values in the largest (Hochalm) dome range from 612 °C in its core to 440 °C at its rim. The maximum peak‐temperature gradient (≤70 °C km?1) occurs along the eastern margin of this dome where mylonitic shearing of the Katschberg Normal Fault (KNF) significantly thinned the Subpenninic‐ and Penninic nappe pile, including the pre‐existing peak‐temperature gradient.  相似文献   

6.
The Qinling‐Tongbai‐Dabie‐Sulu orogenic belt comprises a Palaeozoic accretion‐dominated system in the north and a Mesozoic collision‐dominated system in the south. A combined petrological and geochronological study of the medium‐to‐high grade metamorphic rocks from the diverse Palaeozoic tectonic units in the Tongbai orogen was undertaken to help elucidate the origins of Triassic ultrahigh‐pressure metamorphism and collision dynamics between the Sino‐Korean and Yangtze cratons. Peak metamorphic conditions are 570–610 °C and 9.3–11.2 kbar for the lower unit of the Kuanping Group, 630–650 °C and 6.6–8.9 kbar for the upper unit of the Kuanping Group, 550–600 °C and 6.3–7.7 kbar for the Erlangping Group, 770–830 °C and 6.9–8.5 kbar for the Qinling Group and 660–720 °C and 9.1–11.5 kbar for the Guishan complex. Reaction textures and garnet compositions indicate clockwise P–T paths for the amphibolite facies rocks of the Kuanping Group and Guishan complex, and an anticlockwise P–T path for the granulite facies rocks of the Qinling Group. Sensitive high‐resolution ion microprobe U–Pb zircon dating on metamorphic rocks and deformed granite/pegmatites revealed two major Palaeozoic tectonometamorphic events. (i) During the Silurian‐Devonian (c. 440–400 Ma), the Qinling continental arc and Erlangping intra‐oceanic arc collided with the Sino‐Korean craton. The emplacement of the Huanggang diorite complex resulted in an inverted thermal gradient in the underlying Kuanping Group and subsequent thermal relaxation during the exhumation. Meanwhile, the oceanic subduction beneath the Qinling continental arc produced magmatic underplating and intrusion, leading to granulite facies metamorphism followed by a near‐isobaric cooling path. (ii) During the Carboniferous (c. 340–310 Ma), the northward subduction of the Palaeo‐Tethyan ocean generated a medium P/T Guishan complex in the hangingwall and a high P/T Xiongdian eclogite belt in the footwall. The Guishan complex and Xiongdian eclogite belt are therefore considered to be paired metamorphic belts. Subsequent separation of the paired belts is inferred to be related to the juxtaposition of the Carboniferous eclogites with the Triassic HP metamorphic complex during continental subduction and exhumation.  相似文献   

7.
http://www.sciencedirect.com/science/article/pii/S1674987114000309   总被引:8,自引:2,他引:6  
In the early 1980s, evidence that crustal rocks had reached temperatures 〉1000 ℃ at normal lower crustal pressures while others had followed low thermal gradients to record pressures characteristic of mantle conditions began to appear in the literature, and the importance of melting in the tectonic evolution of orogens and metamorphic-metasomatic reworking of the lithospheric mantle was realized. In parallel, new developments in instrumentation, the expansion of in situ analysis of geological ma- terials and increases in computing power opened up new fields of investigation. The robust quantifi- cation of pressure (P), temperature (T) and time (t) that followed these advances has provided reliable data to benchmark geodynamic models and to investigate secular change in the thermal state of the lithosphere as registered by metamorphism through time. As a result, the last 30 years have seen sig- nificant progress in our understanding of lithospheric evolution, particularly as it relates to Precambrian geodynamics.  相似文献   

8.
The Gangdese magmatic arc, southeastern Tibet, was built by mantle‐derived magma accretion and juvenile crustal growth during the Mesozoic to Early Cenozoic northward subduction of the Neo‐Tethyan oceanic slab beneath the Eurasian continent. The petrological and geochronological data reveal that the lower crust of the southeastern Gangdese arc experienced Oligocene reworking by metamorphism, anatexis and magmatism after the India and Asia collision. The post‐collisional metamorphic and migmatitic rocks formed at 34–26 Ma and 28–26 Ma respectively. Meta‐granitoids have protolith ages of 65–38 Ma. Inherited detrital zircon from metasedimentary rocks has highly variable ages ranging from 2708 to 37 Ma. These rocks underwent post‐collisional amphibolite facies metamorphism and coeval anatexis under P–T conditions of ~710–760 °C and ~12 kbar with geothermal gradients of 18–20 °C km ? 1, indicating a distinct crustal thickening process. Crustal shortening, thickening and possible subduction erosion due to the continental collision and ongoing convergence resulted in high‐P metamorphic and anatectic reworking of the magmatic and sedimentary rocks of the deep Gangdese arc. This study provides a typical example of the reworking of juvenile and ancient continental crust during active collisional orogeny.  相似文献   

9.
High-pressure, low-temperature (HP-LT) rocks from a Cretaceous age subduction complex occur as tectonic blocks in serpentinite mélange along the Motagua Fault (MF) in central Guatemala. Eclogite and jadeitite among these are characterized by trace element patterns with enrichments in fluid mobile elements, similar to arc lavas. Eclogite is recrystallized from MORB-like altered oceanic crust, presumably at the boundary between the down-going plate and overlying mantle wedge. Eclogite geochemistry, mineralogy and petrography suggest a two step petrogenesis of (1) dehydration during prograde metamorphism at low temperatures (<500 °C) followed by (2) partial rehydration/fertilization at even lower T during exhumation. In contrast, Guatemalan jadeitites are crystallized directly from low-T aqueous fluid as veins in serpentinizing mantle during both subduction and exhumation. The overall chemistry and mineralogy of Guatemalan eclogites are similar to those from the Franciscan Complex, California, implying similar P-T-x paths.Li concentrations (?90 ppm) in mineral separates and whole rocks (WR) from Guatemalan and Franciscan HP-LT rocks are significantly higher than MORB (4-6 ppm), but similar to HP-LT rocks globally. Li isotopic compositions range from −5‰ to +5‰ for Guatemalan HP-LT rocks, and −4‰ to +1‰ for Franciscan eclogites, overlapping previous findings for other HP-LT suites. The combination of Li concentrations greater than MORB, and Li isotopic values lighter than MORB are inconsistent with a simple dehydration model. We prefer a model in which Li systematics in Guatemalan and Franciscan eclogites reflect reequilibration with subduction fluids during exhumation. Roughly 5-10% of the Li in these fluids is derived from sediments.Model results predict that the dehydrated bulk ocean crust is isotopically lighter (δ7Li ? +1 ± 3‰) than the depleted mantle (∼+3.5 ± 0.5‰), while the mantle wedge beneath the arc is the isotopic complement of the bulk crust. A subduction fluid with an AOC-GLOSS composition over the full range of model temperatures (50-600 °C) gives an average fluid δ7Li (∼+7 ± 5‰ 1σ) that is isotopically heavier than the depleted mantle. If the lowest temperature steps are excluded (50-260 °C) as too cold to participate in circulation of the mantle wedge, then the average subduction fluid (δ7Li = +4 ± 2.3‰ 1σ, is indistinguishable from depleted mantle. Because of the relatively compatible nature of Li in metamorphic minerals, the most altered part of the crust (uppermost extrusives), may retain a Li isotopic signature (∼+5 ± 3‰) heavier than the bulk crust. The range of Li isotopic values for OIB, IAB and MORB overlap, making it is difficult to resolve which of these components may contribute to the recycled component in the mantle using δ7Li alone.  相似文献   

10.
Compared to the extensively documented ultrahigh-pressure metamorphism at North Qaidam, the pre-metamorphic history for both continental crust and oceanic crust is poorly constrained. Trace element compositions, U–Pb ages, O and Lu–Hf isotopes obtained for distinct zircon domains from eclogites metamorphosed from both continental and oceanic mafic rocks are linked to unravel the origin and multi-stage magmatic/metamorphic evolution of eclogites from the North Qaidam ultrahigh-pressure metamorphic (UHPM) belt, northern Tibet.For continental crust-derived eclogite, magmatic zircon cores from two samples with U–Pb ages of 875–856 Ma have both very high δ18O (10.6 ± 0.5‰) and mantle-like δ18O (averaging at 5.2 ± 0.7‰), high Th/U and 176Lu/177Hf ratios, and steep MREE-HREE distribution patterns (chondrite-normalized) with negative Eu anomalies. Combined with positive εHf (t) of 3.9–14.3 and TDM (1.2–0.8 Ga and 1.3–1.0 Ga, respectively), they are interpreted as being crystallized from either subduction-related mantle wedge or recycled material in the mantle. While the metamorphic rims from the eclogites have U–Pb ages of 436–431 Ma, varying (inherited, lower, and elevated) oxygen isotopes compared with cores, low Th/U and 176Lu/177Hf ratios, and flat HREE distribution patterns with no Eu anomalies. These reflect both solid-state recrystallization from the inherited zircon and precipitation from external fluids at metamorphic temperatures of 595–622 °C (TTi-in-zircon).For oceanic crust-derived eclogite, the magmatic cores (510 ± 19 Ma) and metamorphic rims (442.0 ± 3.7 Ma) also show distinction for Th/U and 176Lu/177Hf ratios, and the REE patterns and Eu anomalies. Combined with the mantle-like δ18O signature of 5.1 ± 0.3 ‰ and two groups of model age (younger TDM close to the apparent ages and older > 700 Ma), two possible pools, juvenile and inherited, were involved in mixing of mantle-derived magma with crustal components. The relatively high δ18O of 6.6 ± 0.3‰ for metamorphic zircon rims suggests either the protolith underwent hydrothermal alteration prior to the ~ 440 Ma oceanic crust subduction, or external higher δ18O fluid activities during UHP metamorphism at ~ 440 Ma.Therefore, the North Qaidam UHPM belt witnesses multiple tectonic evolution from Late Mesoproterozoic–Neoproterozoic assembly/breakup of the Rodinia supercontinent with related magmatic emplacement, then Paleozoic oceanic subduction, and finally transition of continental subduction/collision related to UHP metamorphism.  相似文献   

11.
The contact zone between two major allochthonous lithotectonic units in the French Massif Central (FMC) is characterized by the presence of corundum‐bearing amphibolites associated with serpentinites, flaser‐gabbros, eclogites and granulites. These unusual amphibolites are best preserved in the Western FMC, where they are found within the lower oceanic crust of the Limousin ophiolite. Mineralogical observations and thermodynamic modelling of the spinel–corundum–sapphirine–kyanite amphibolites in the CMASH system show that they were formed at peak P–T conditions around 800 °C/10 kbar in response to near isothermal burial followed by a retrogressive anticlockwise path. Metamorphic reactions are controlled both by modification of P–T conditions and by local chemical changes linked to fluid infiltration. Pargasite growth has been enhanced by infiltration of Ca‐ and Al‐rich fluids whereas kyanite‐ and sapphirine‐forming reactions are partly controlled by local inputs of MgO–SiO2 components, most probably during infiltration metasomatism. By analogy with worldwide ophiolites (Oman, Tethyan, Appalachian) and published numerical models, subduction of a still‐hot oceanic ridge is proposed to form these Al‐rich amphibolites from plagioclase‐rich troctolites. The trace‐element composition of high‐Ti, fine‐grained amphibolites (former fine‐grained Fe–Ti gabbros) adjacent to the corundum‐bearing ones, further indicates that the oceanic crust was initially created at a mid‐ocean ridge (rather than within a back‐arc basin), followed by the emplacement of supra‐subduction zone‐type magmas, probably due to intraoceanic subduction close to the ridge.  相似文献   

12.
The early Palaeozoic South Qilian–North Qaidam orogenic belt in northwestern China records a nearly complete history of early‐stage long‐lived oceanic subduction–accretion followed by late‐stage continental collision. Most previous studies have focused on low dT/dP metamorphism (HP–UHP) in this belt whereas the paired high dT/dP belt in the hinterland has received little attention. In this contribution, phase equilibrium modelling is combined with zircon petrochronology to determine the P–T–t evolution of granulites in the North Wulan gneiss complex in the high dT/dP hinterland of the South Qilian–North Qaidam orogen. Granulites record a clockwise P–T path with near‐peak temperatures of ~800–900°C at 5.5–7 kbar. Peak metamorphism was followed by high‐T decompression. Zircon petrochronology reveals protracted zircon growth from c. 474 to 446 Ma during the high‐T portion of the P–T path. High dT/dP metamorphism in the North Wulan gneiss complex was likely the result of heat transfer from the underlying hot asthenosphere and minor coeval magmatism in an arc–back‐arc system during slab retreat and roll‐back of the South Qilian oceanic plate. Broadly contemporaneous but slightly younger HP–UHP metamorphism in the foreland of the South Qilian–North Qaidam orogenic belt indicates that the region records an early Palaeozoic paired metamorphic belt. This early Palaeozoic paired metamorphic belt provides a detailed example of dual thermal regimes in a modern‐style orogenic system that can be applied to understanding the time‐scales and P–T conditions of high dT/dP metamorphism that accompany subduction in Phanerozoic and Precambrian orogenic belts.  相似文献   

13.
Previously studied thermosequences of wood (chestnut) and grass (rice straw) biochar were subjected to hydrogen pyrolysis (hypy) to evaluate the efficacy of the technique for determining pyrogenic carbon (CP) abundance. As expected, biochar from both wood and grass produced at higher temperature had higher CP amount. However, the trend was not linear, but more sigmoidal. CP/CT ratio values (CT = total organic carbon) for the wood thermosequence were ⩽0.03 at biochar production temperature (TCHAR)  300 °C. They increased dramatically until 600 °C and remained relatively constant and near unity at higher biochar production temperature. Grass biochar was similar in profile, but CP/CT values rose dramatically after 400 °C. The findings are consistent with the hypothesis that hypy residues contain polycyclic aromatic hydrocarbons (PAHs) with a degree of condensation above at least 7–14 fused rings, with labile organic matter and pyrogenic PAHs below this degree of condensation removed by hypy.Both wood and grass thermosequences displayed δ13CP values that decreased with increased TCHAR, indicating that recalcitrant carbon compounds (pyrogenic aromatic PAHs with a relatively high degree of condensation) were first formed from structural components with relatively high δ13C values (e.g. cellulose). Relatively constant δ13C values at TCHAR  500 °C suggested the dominant pyrolysis reaction was condensation of PAHs with no additional fractionation. Comparison of hypy with benzene polycarboxylic acid (BPCA), ‘ring current’ NMR and pyrolysis gas chromatography–mass spectrometry (GC–MS) results from the same suite of samples indicated a consistent overview of the structure of CP, but provided unique and complimentary information.  相似文献   

14.
The Mikabu and Sorachi–Yezo belts comprise Jurassic ophiolitic complexes in Japan, where abundant basaltic to picritic rocks occur as lavas and hyaloclastite blocks. In the studied northern Hamamatsu and Dodaira areas of the Mikabu belt, these rocks are divided into two geochemical types, namely depleted (D-) and enriched (E-) types. In addition, highly enriched (HE-) type has been reported from other areas in literature. The D-type picrites contain highly magnesian relic olivine phenocrysts up to Fo93.5, and their Fo–NiO trend indicates fractional crystallization from a high-MgO primary magma. The MgO content is calculated as high as 25 wt%, indicating mantle melting at unusually high potential temperature (T p) up to 1,650 °C. The E-type rocks represent the enrichment in Fe and LREE and the depletion in Mg, Al and HREE relative to the D-type rocks. These chemical characteristics are in good accordance with those of melts from garnet pyroxenite melting. Volcanics in the Sorachi–Yezo belts can be divided into the same types as the Mikabu belt, and the D-type picrites with magnesian olivines also show lines of evidence for production from high T p mantle. Evidence for the high T p mantle and geochemical similarities with high-Mg picrites and komatiites from oceanic and continental large igneous provinces (LIPs) indicate that the Mikabu and Sorachi–Yezo belts are accreted oceanic LIPs that were formed from hot large mantle plumes in the Late Jurassic Pacific Ocean. The E- and D-type rocks were formed as magmas generated by garnet pyroxenite melting at an early stage of LIP magmatism and by depleted peridotite melting at the later stage, respectively. The Mikabu belt characteristically bears abundant ultramafic cumulates, which could have been formed by crystal accumulation from a primary magma generated from Fe-rich peridotite mantle source, and the HE-type magma were produced by low degrees partial melting of garnet pyroxenite source. They should have been formed later and in lower temperatures than the E- and D-type rocks. The Mikabu and Sorachi Plateaus were formed in a low-latitude region of the Late Jurassic Pacific Ocean possibly near a subduction zone, partially experienced high P/T metamorphism during subduction, and then uplifted in association with (or without, in case of Mikabu) the supra-subduction zone ophiolite. The Mikabu and Sorachi Plateaus may be the Late Jurassic oceanic LIPs that could have been formed in brotherhood with the Shatsky Rise.  相似文献   

15.
The transition from oceanic subduction to continental collision is a key stage in the evolution of ancient orogens. We present new data for Early Cretaceous diorite and granite porphyry from north–central Tibet to constrain the evolution of the Bangong–Nujiang Tethyan Ocean (BNTO). The diorites have moderate SiO2 and high MgO contents, similar to high-Mg andesites. Zircon grains yield U–Pb ages of 128–124 Ma and positive εHf(t) values between +13.2 and + 16.3, corresponding to Hf depleted-mantle model ages (TDM) of 281–131 Ma. The high-Mg diorite was probably formed by partial melting of hydrous mantle wedge fluxed by slab-derived fluids in an oceanic subduction setting. The granite porphyries yield zircon U–Pb ages of 117–115 Ma and zircon εHf(t) values ranging from +0.1 to +4.5. Most samples have high SiO2 and Fe2O3T contents, variable FeOT/MgO and Ga/Al ratios, and are depleted in Ba, Sr, P, and Ti, similar to I- and A-type granites. The granite porphyries were most likely derived from partial melting of juvenile dioritic or granodioritic crust due to break-off of the BNTO lithosphere following collision between the Lhasa and Qiangtang blocks. The Early Cretaceous high-Mg diorite and A-type granite porphyry thus record the Early Cretaceous transition from oceanic subduction to continental collision along the Bangong–Nujiang suture zone (BNSZ).  相似文献   

16.
A subduction complex composed of ocean floor material mixed with arc-derived metasediments crops out in the Elephant Island group and at Smith Island, South Shetland Islands, Antarctica, with metamorphic ages of 120–80 Ma and 58–47 Ma, respectively. Seven metamorphic zones (I–VII) mapped on Elephant Island delineate a gradual increase in metamorphic grade from the pumpellyite–actinolite facies, through the crossite–epidote blueschist facies, to the lower amphibolite facies. Geothermometry in garnet–amphibole and garnet–biotite pairs yields temperatures of about 350 °C in zone III to about 525 °C in zone VII. Pressures were estimated on the basis of Si content in white mica, Al2O3 content in alkali amphibole, NaM4/AlIV in sodic-calcic and calcic amphibole, AlVI/Si in calcic amphibole, and jadeite content in clinopyroxene. Mean values vary from about 6–7.5 kbar in zone II to about 5 kbar in zone VII. Results from the other islands of the Elephant Island group are comparable to those from the main island; Smith Island yielded slightly higher pressures, up to 8 kbar, with temperatures estimated between 300 and 350 °C. Zoned minerals and other textural indications locally enable inference of P–T t trajectories, all with a clockwise evolution. A reconstruction in space and time of these PT t paths allows an estimate of the thermal structure in the upper crust during the two ductile deformation phases (D1 & D2) that affected the area. This thermal structure is in good agreement with the one expected for a subduction zone. The arrival and collision of thickened oceanic crust may have caused the accretion and preservation of the subduction complex. In this model, D1 represents the subduction movements expressed by the first vector of the clockwise P–T–t path, D2 reflects the collision corresponding to the second vector with increasing temperature and decreasing pressure, and D3 corresponds to isostatic uplift accompanied by erosion, under circumstances of decreasing temperature and pressure.  相似文献   

17.
Metamorphic rocks form a minor component of the NE Arabian margin in Oman and the United Arab Emirates (UAE). Conditions span almost the entire range of crustal metamorphism from very high-P/low-T eclogite and blueschist to high-P/moderate-T epidote- to upper-amphibolite and low-P/high-T granulite facies. The NE Arabian margin experienced at least six metamorphic events, each characterized by distinct peak metamorphic temperature, depth of burial, average thermal gradient and timing. Synthesis of the available metamorphic data defines five different tectonic settings that evolved during the middle Cretaceous: [1] The Saih Hatat window exposes former continental margin crust that was buried and metamorphosed in a SW-dipping subduction system. Lower-plate units in the window include relict oceanic crust with eclogite (M1–M2) parageneses that recrystallized at pressures of ~14–23 kbar under very low thermal gradients of 7–10 °C/km. Peak metamorphism occurred at ~110 Ma. Peak assemblages were overprinted by garnet–glaucophane-blueschist foliations (M3) at about ~104–94 Ma that formed at ~10–15 kbar and 10–15 °C/km during the first-stage of isothermal exhumation. [2] Metamorphic soles in the footwall of the Semail ophiolite experienced a two-stage history of deep burial and peak metamorphism at ~96–94 Ma, followed by retrogression during obduction onto the continental margin between ~93 and 84 Ma. Peak metamorphic garnet–clinopyroxene–hornblende–plagioclase assemblages (M4s), exposed at highest structural levels, formed at 743 ± 13 °C and 10.7 ± 0.4 kbar, indicating Barrovian thermal regimes of 20.0 ± 2.2 °C/km. Burial of seafloor sediments and oceanic crust to ~38 km depth, was attained within a short-lived, NE-dipping intra-oceanic subduction system. The relatively high average thermal gradient during the peak of metamorphism was the result of heating after subcretion onto the base of hanging-wall oceanic lithosphere. [3] The Bani Hamid terrane consists of seafloor cherts and calcareous turbidites, metamorphosed to low-P/high-T granulite condition at ~96–94 Ma. Diagnostic assemblages (M4b) such as orthopyroxene–cordierite–quartz–plagioclase and orthopyroxene–sapphirine–hercynite–quartz–plagioclase, formed at conditions averaging ~915 ± 35 °C, ~6.1 ± 0.9 kbar and ~42.9 ± 6.5 °C/km. The elevated average thermal gradient, combined with significant depths of burial, is anomalous for typical oceanic settings. This suggests that these sea-floor sediments were buried to ~22 km depths within the intra-oceanic subduction system, accreted onto the hanging-wall, and metamorphosed at high-T during subduction of a recently active spreading ridge. [4] A plausible plate tectonic arrangement that can account for the different metamorphic elements on the Arabian margin is one composed of divergent subduction systems: a relatively long-lived SW-dipping subduction zone at the continental margin, and a short-lived, NE-dipping intra-oceanic subduction system. Consumption of the intervening oceanic crust led to obduction of the Semail ophiolite and accreted metamorphic soles from the upper-plate of the floundered outboard subduction system. SW-directed obduction was initiated between 93.7 and 93.2 Ma and continued until ~84 Ma, producing lower-amphibolite to sub-greenschist facies retrograde fabrics in the metamorphic soles (M5) and sub-metamorphic melange in the footwall. [5] The lower-plate of the Saih Hatat window was reworked by top-to-NE extensional shear at epidote-greenschist facies grades (M6) between ~84 and 76 Ma. Crustal-scale structures were reactivated as extensional detachments that telescoped the continental margin, leading to isothermal decompression and development of an asymmetric core complex that segmented the Semail ophiolite and formed the Saih Hatat domal window.  相似文献   

18.
New field observations and petrological data from Early Cretaceous metamorphic rocks in the Central Cordillera of the Colombian Andes allowed the recognition of thermally overprinted high-pressure rocks derived from oceanic crust protoliths. The obtained metamorphic path suggests that the rocks evolved from blueschist to eclogite facies towards upper amphibolite to high-pressure granulite facies transitional conditions. Eclogite facies conditions, better recorded in mafic protoliths, are revealed by relic lawsonite and phengite, bleb- to worm-like diopside-albite symplectites, as well as garnet core composition. Upper amphibolite to high pressure granulite facies overprinting is supported by coarse-grained brown-colored Ti-rich amphibole, augite, and oligoclase recrystallization, as well as the record of partial melting leucosomes.Phase equilibria and pressure-temperature (P-T) path modeling suggest initial high-pressure metamorphic conditions M1 yielding 18.2–24.5 kbar and 465–580 °C, followed by upper amphibolite to high pressure granulite facies overprinting stage M2 yielding 6.5–14.2 kbar and 580–720 °C. Retrograde conditions M3 obtained through chlorite thermometry yield temperatures ranging around 286–400 °C at pressures below 6.5–11 kbar. The obtained clockwise P-T path, the garnet zonation pattern revealing a decrease in Xgrs/Xprp related to Mg# increment from core to rim, the presence of partial melting veins, as well as regional constraints, document the modification of the thermal structure of the active subduction zone in Northern Andes during the Early Cretaceous. Such increment of the metamorphic gradient within the subduction interface is associated with slab roll-back geodynamics where hot mantle inflow was triggered. This scenario is also argued by the reported trench-ward magmatic arc migration and multiple extensional basin formation during this period. The presented example constitutes the first report of Cretaceous roll-back-related metamorphism in the Caribbean and Andean realms, representing an additional piece of evidence for a margin-scale extensional event that modified the northwestern border of South America during the Early Cretaceous.  相似文献   

19.
The electrical conductivity of calcite cleavage fragments was measured using direct current. Five temperature intervals, characterized by different activation energies of conduction, were established — T 1: (300°)–500° C, T 2: 500–725° C, T 3: 725°–800° C, T 4: 800°–985° C and T 5: 985°–(1,200)° C. The data above 600° C indicate various intrinsic conduction mechanisms which are likely to be related to disorder in the CO3-sublattice of calcite. The transitions between the temperature intervals T 2-T 3-T 4 and T 4-T 5 are probably correlated with high-temperature transitions of calcite at 800° and 985° C. Measurement of the thermoelectric voltage indicates a conductivity dominated by negatively charged carriers.  相似文献   

20.
Mutual relationships among temperatures estimated with the most widely used geothermometers for garnet peridotites and pyroxenites demonstrate that the methods are not internally consistent and may diverge by over 200°C even in well-equilibrated mantle xenoliths. The Taylor (N Jb Min Abh 172:381–408, 1998) two-pyroxene (TA98) and the Nimis and Taylor (Contrib Mineral Petrol 139:541–554, 2000) single-clinopyroxene thermometers are shown to provide the most reliable estimates, as they reproduce the temperatures of experiments in a variety of simple and natural peridotitic systems. Discrepancies between these two thermometers are negligible in applications to a wide variety of natural samples (≤30°C). The Brey and Köhler (J Petrol 31:1353–1378, 1990) Ca-in-Opx thermometer shows good agreement with TA98 in the range 1,000–1,400°C and a positive bias at lower T (up to +90°C, on average, at T TA98 = 700°C). The popular Brey and Köhler (J Petrol 31:1353–1378, 1990) two-pyroxene thermometer performs well on clinopyroxene with Na contents of ~0.05 atoms per 6-oxygen formula, but shows a systematic positive bias with increasing NaCpx (+150°C at NaCpx = 0.25). Among Fe–Mg exchange thermometers, the Harley (Contrib Mineral Petrol 86:359–373, 1984) orthopyroxene–garnet and the recent Wu and Zhao (J Metamorphic Geol 25:497–505, 2007) olivine–garnet formulations show the highest precision, but systematically diverge (up to ca. 150°C, on average) from TA98 estimates at T far from 1,100°C and at T < 1,200°C, respectively; these systematic errors are also evident by comparison with experimental data for natural peridotite systems. The older O’Neill and Wood (Contrib Mineral Petrol 70:59–70, 1979) version of the olivine–garnet Fe–Mg thermometer and all popular versions of the clinopyroxene–garnet Fe–Mg thermometer show unacceptably low precision, with discrepancies exceeding 200°C when compared to TA98 results for well-equilibrated xenoliths. Empirical correction to the Brey and Köhler (J Petrol 31:1353–1378, 1990) Ca-in-Opx thermometer and recalibration of the orthopyroxene–garnet thermometer, using well-equilibrated mantle xenoliths and TA98 temperatures as calibrants, are provided in this study to ensure consistency with TA98 estimates in the range 700–1,400°C. Observed discrepancies between the new orthopyroxene–garnet thermometer and TA98 for some localities can be interpreted in the light of orthopyroxene–garnet Fe3+ partitioning systematics and suggest localized and lateral variations in mantle redox conditions, in broad agreement with existing oxybarometric data. Kinetic decoupling of Ca–Mg and Fe–Mg exchange equilibria caused by transient heating appears to be common, but not ubiquitous, near the base of the lithosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号