首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
深反射地震剖面法为了获取深部结构特征常常采取大的偏移距采集数据.目前公开发表的相关资料中,鲜有利用深反射地震炮集数据获取近地表的结构特征.为此,本文通过正演测试了相关数据处理流程,即利用有限差分正演了起伏地表模型的大偏移距地震单炮弹性波场特征,通过共检波点域面波信号F-K频谱叠加构建新方法,从深反射地震数据集中提取了高品质的多阶面波频散曲线,再利用多阶面波联合反演获得了近地表的结构特征.在前述正演流程基础上,利用跨越班公湖—怒江缝合带的SinoProbe深反射地震剖面中的实际炮集数据,求取了基阶和一阶瑞利波频散曲线,联合反演后得到近地表横波速度结构.该结果与初至波走时反演获取的纵波速度结构具有较好的一致性,且在近地表的浅层分辨率较纵波速度结构特征更高,而更与已有地质认识相吻合.本文提供的相关数据处理流程表明利用深反射地震炮集数据,也能够获取近地表浅层的横波速度结构.  相似文献   

2.
Measurements of surface velocity, ice deformation (at 42 and 89% ice depth) and proglacial stream discharge were made at Haut Glacier d'Arolla, Switzerland, to determine diurnal patterns of variation in each. Data are analysed in order to understand better the relationship between hydraulically induced basal motion and glacier ice deformation over short timescales. The data suggest that hydraulically induced localized basal ‘slippery’ spots are created over diurnal cycles, causing enhanced basal motion and spatially variable glacier speed‐up. Our data indicate that daily glacier speed‐up is associated with reduced internal deformation over areas previously identified as slippery spots and increased deformation in areas located adjacent to or down‐glacier from slippery spots. We interpret this pattern in terms of a transfer of mechanical support for basal shear stress away from slippery spots to adjacent sticky areas, where the resulting stronger ice–bed coupling causes increased ice deformation near the bed. These patterns indicate that basal ice is subjected to stress regimes that are variable at a high spatial and temporal resolution. Such variations may be central to the creation of anomalous vertical velocity profiles measured above and down‐glacier of basal slippery zones, which have shown evidence for ‘plug flow’ and extrusion flow over annual timescales. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Holocene glaciers have contributed to an abundance of unstable sediments in mountainous environments. In permafrost environments, these sediments can contain ground ice and are subject to rapid geomorphic activity and evolution under condition of a warming climate. To understand the influence of ground ice distribution on this activity since the Little Ice Age (LIA), we have investigated the Pierre Ronde and Rognes proglacial areas, two cirque glacier systems located in the periglacial belt of the Mont Blanc massif. For the first time, electrical resistivity tomography, temperature data loggers and differential global positioning systems (dGPS) are combined with historical documents and glaciological data analysis to produce a complete study of evolution in time and space of these small landsystems since the LIA. This approach allows to explain spatial heterogeneity of current internal structure and dynamics. The studied sites are a complex assemblage of debris‐covered glacier, ice‐rich frozen debris and unfrozen debris. Ground ice distribution is related to former glacier thermal regime, isolating effect of debris cover, water supply to specific zones, and topography. In relation with this internal structure, present dynamics are dominated by rapid ice melt in the debris‐covered upper slopes, slow creep processes in marginal glacigenic rock glaciers, and weak, superficial reworking in deglaciated moraines. Since the LIA, geomorphic activity is mainly spatially restricted within the proglacial areas. Sediment exportation has occurred in a limited part of the former Rognes Glacier and through water pocket outburst flood and debris flows in Pierre Ronde. Both sites contributed little sediment supply to the downslope geomorphic system, rather by episodic events than by constant supply. In that way, during Holocene and even in a paraglacial context as the recent deglaciation, proglacial areas of cirque glaciers act mostly as sediment sinks, when active geomorphic processes are unable to evacuate sediment downslope, especially because of the slope angle weakness. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A GeoVision Micro™ colour video camera was used to investigate the internal structure of 11 boreholes at Haut Glacier d'Arolla, Switzerland. The boreholes were distributed across a half-section of the glacier, with closest spacing towards the glacier margin. The boreholes were used to investigate the hydrology of the glacier through automatic monitoring of borehole water level and electrical conductivity (EC) at the glacier bed. EC profiling was undertaken in several boreholes to determine the existence of water quality stratification. Temporal variations in EC stratification were used to infer borehole water sources and patterns of water circulation. Borehole video was used to confirm the conclusions made from these indirect sources of evidence, and to provide an independent source of information on the structure and hydrology of this temperate valley glacier. The video showed variations in water turbidity, englacial channels and voids, conditions at the glacier bed and down-borehole changes in ice structure. Based on the video observations, englacial channels accounted for approximately 0·1% of the vertical ice thickness, and englacial voids for approximately 0·4%. Overall, the video images provided useful qualitative and semi-quantitative data that reinforce interpretations of a range of physical and chemical parameters measured in boreholes. © 1997 by John Wiley & Sons Ltd.  相似文献   

5.
三维复杂地形近地表速度估算及地震层析静校正   总被引:18,自引:6,他引:18  
在地表一致性模型的基础上提出一种可适用于宽线剖面、弯曲测线、传统的二维和目前广泛使用的三维地震观测.在地形及近地表低降速带地质结构复杂的探区,低降速带厚度及速度估算的精度是静校正处理的关键.本研究根据三维地震观测的初至走时数据,利用最小平方与QR分解相结合的算法,在三维空间重建近地表低降速带速度模型,根据重建速度模型实现了静校正长波长分量与短波长分量的同步计算.分析了复杂的近地表低降速带模型初至波的性质,在观测值的自动拾取以及理论值的计算中充分考虑了可能成为初至波的直达波、折射波和反射波的利用,提高了低降速带速度模型反演的精度.在初至走时观测数据的拾取中,本研究采用分形算法克服了初至波波形差异以及折射波相位反转导致的拾取误差,实现了三维初至拾取的大规模全自动化运算.在射线路径与初至波理论走时的计算中,本研究采用一种计算量与模型复杂程度无关的三维射线追踪方法,该方法以最小走时射线路径保证了与观测数据有同等意义的初至波的射线追踪及理论走时的计算.野外实际资料的处理结果表明了方法的有效性.  相似文献   

6.
Mass balance of the Lambert Glacier basin, East Antarctica   总被引:2,自引:1,他引:2  
Since it is the largest glacier system in Antarctica, the Lambert Glacier basin plays an important role in the mass balance of the overall Antarctic ice sheet. The observed data and shallow core studies from the inland traverse investigations in recent years show that there are noticeable differences in the distribution and variability of the snow accumulation rate between east and west sides. On the east side, the accumulation is higher on the average and has increased in the past decades, while on the west side it is contrary. The ice movement measurement and the ice flux calculation indicate that the ice velocity and the flux are larger in east than in west, meaning that the major part of mass supply for the glacier is from the east side. The mass budget estimate with the latest data gives that the integrated accumulation over the upstream area of the investigation traverse route is larger than the outflow ice flux by 13%, suggesting that the glacier basin is in a positive mass balance state and the ice thickness will increase if the present climate is keeping.  相似文献   

7.
As part of an integrated study of the hydrology, meltwater quality and dynamics of the Haut Glacier d'Arolla, Switzerland, the glacier's drainage network structure was determined from patterns of dye recovery in 342 injection experiments conducted from 47 moulins distributed widely across the glacier. This structure was compared with theoretical predictions based upon reconstructed patterns of water flow governed by (a) the subglacial hydraulic potential surface, and (b) the subglacial bedrock surface. These reconstructions were based on measurements of ice surface and bedrock topography obtained by a combination of ground survey and radio-echo sounding techniques. The two reconstructions simulate the drainage system structures expected for (a) closed channels, in which water is pressurized by the overlying ice, and (b) gravity-driven, open-channel flow. The closed-channel model provides the best fit to the observed structure, even though theoretical calculations suggest that, under summer discharge conditions, open-channel flow may be widespread beneath the glacier. Possible reasons for this apparent discrepancy are discussed.  相似文献   

8.
The landscape of Antarctica, hidden beneath kilometre-thick ice in most places, has been shaped by the interactions between tectonic and erosional processes. The flow dynamics of the thick ice cover deepened pre-formed topographic depressions by glacial erosion, but also preserved the subglacial landscapes in regions with moderate to slow ice flow. Mapping the spatial variability of these structures provides the basis for reconstruction of the evolution of subglacial morphology. This study focuses on the Jutulstraumen Glacier drainage system in Dronning Maud Land, East Antarctica. The Jutulstraumen Glacier reaches the ocean via the Jutulstraumen Graben, which is the only significant passage for draining the East Antarctic Ice Sheet through the western part of the Dronning Maud Land mountain chain. We acquired new bed topography data during an airborne radar campaign in the region upstream of the Jutulstraumen Graben to characterise the source area of the glacier. The new data show a deep relief to be generally under-represented in available bed topography compilations. Our analysis of the bed topography, valley characteristics and bed roughness leads to the conclusion that much more of the alpine landscape that would have formed prior to the Antarctic Ice Sheet is preserved than previously anticipated. We identify an active and deeply eroded U-shaped valley network next to largely preserved passive fluvial and glacial modified landscapes. Based on the landscape classification, we reconstruct the temporal sequence by which ice flow modified the topography since the beginning of the glaciation of Antarctica.  相似文献   

9.
A numerical simulation of electromagnetic propagation through a multilayered medium is performed in order to explain and interpret the signal received from the radar sounding of a temperate glacier. During the winter of 1990, several radar profiles were obtained on the Mont-de-Lans glacier in the French Alps with a ground penetrating radar which uses a phase modulation of the transmitted pulse by coded sequences. The pulse compression is obtained by applying the matched filter to the received signal, which provides a range-resolution of about 8 m in the ice. The profiles recorded on the temperate glacier do not show a single clear reflection from the ice-bedrock interface, but they exhibit widely distributed energy decreasing with depth. This may be due to the inhomogeneous inner structure of the temperate glacier and we use a simple model of a layered medium to compute a simulation of the propagation. Thus, partial reflection at each layer and scattering from a rough basal interface may explain the observed signal. A computer-based technique is used to locate on the data the bottom of the glacier in order to estimate the ice thickness. The results from the different radar profiles are consistent and are a good fit to the thickness which has been determined by other geophysical methods.  相似文献   

10.
浅层反射地震方法是城市活断层探测常用的技术,但在基岩埋深比较浅的地区,往往只能识别出基岩顶面的反射波,而仅根据反射地震剖面上单个同相轴的变化很难准确判定断层是否存在.浅层地层的错断往往会引起速度的横向变化,利用高分辨折射地震方法采集的数据,应用层析成像方法获得的速度剖面,能够反映地下速度结构的变化,可以从另一方面揭示浅层断层存在的可能性.在四川某地,将这两种方法同时应用于活断层浅层地震勘探中.结果表明,两种方法联合应用可在一定程度上弥补浅层反射地震勘探方法在基岩埋深较浅地区的不足.  相似文献   

11.
Abstract

Low-temperature scanning electron microscopy (SEM) was used to observe metamorphosed snow, glacial firn, and glacial ice obtained from South Cascade Glacier in Washington State, USA. Biotic samples consisting of algae (Chlamydomonas nivalis) and ice worms (a species of oligochaetes) were also collected and imaged. In the field, the snow and biological samples were mounted on copper plates, cooled in liquid nitrogen, and stored in dry shipping containers which maintain a temperature of-196°C. The firn and glacier ice samples were obtained by extracting horizontal ice cores, 8 mm in diameter, at different levels from larger standard glaciological (vertical) ice cores 7.5 cm in diameter. These samples were cooled in liquid nitrogen and placed in cryotubes, were stored in the same dry shipping container, and sent to the SEM facility. In the laboratory, the samples were sputter coated with platinum and imaged by a low-temperature SEM. To image the firn and glacier ice samples, the cores were fractured in liquid nitrogen, attached to a specimen holder, and then imaged. While light microscope images of snow and ice are difficult to interpret because of internal reflection and refraction, the SEM images provide a clear and unique view of the surface of the samples because they are generated from electrons emitted or reflected only from the surface of the sample. In addition, the SEM has a great depth of field with a wide range of magnifying capabilities. The resulting images clearly show the individual grains of the seasonal snowpack and the bonding between the snow grains. Images of firn show individual ice crystals, the bonding between the crystals, and connected air spaces. Images of glacier ice show a crystal structure on a scale of 1–2 mm which is considerably smaller than the expected crystal size. Microscopic air bubbles, less than 15 μm in diameter, clearly marked the boundaries between these crystal-like features. The life forms associated with the glacier were easily imaged and studied. The low-temperature SEM sample collecting and handling methods proved to be operable in the field; the SEM analysis is applicable to glaciological studies and reveals details unattainable by conventional light microscopic methods.  相似文献   

12.
东辛油田是一个典型的断块复杂构造。在这个油田上,地震精查的方法在搞清断裂系统方面,取得了较好的成效。本文简述了在该油田早期所采用的一套三维地震解释(立体归位)方法,其中有些方法对当前搞三维地震勘探,及断层面的地质解释方面都还有着参考价值。近年来,又用数字地震方法,在此浅层的复杂构造的下面,发现了比较简单的深层构造,在几张附图中展示了深浅层构造之间的关系。  相似文献   

13.
《水文科学杂志》2013,58(1):278-291
Abstract

Hydrological and glaciological data were gathered in the watershed (1.37 km2) of the Antizana Glacier 15 (0.7 km2) in the periods 1997–2002 and 1995–2005, respectively. In addition, tracer experiments were carried out to analyse the flow through permeable morainic deposits located between the glacier snout and the runoff gauging station. Over 11 years, the mean specific net balance of the glacier was negative (–627 mm w.e.), despite the occurrence of positive values in the La Niña years (1999–2000). From the glacier net mass balance between 1997 and 2002, it was found that the mean flow originating from ice melt was significantly higher than the mean discharge measured at the hydrological station. Analyses of tracer experiments and of the different components of the hydrological balance suggest groundwater flow that originates below the glacier accounts for the remaining water. This result is important for regional analyses of available water resources and for the relationship between hydro-cryospheric processes and volcanic activity.  相似文献   

14.
The multipart Riffeltal rock glacier, located in a tributary valley of the Kaunertal, Tyrol, Austria is investigated to enlarge the knowledge about spatial and temporal development of rock glaciers in and at the margins of pro‐glacial areas and to get a better understanding of glacier–rock glacier interactions. The subject of interest consists of a complex system of two adjacent rock glacier tongues and various superposed lobes with differing ages, origin and root zones, and therefore diverse development. To determine the reasons for their diverging development, the internal structure and permafrost occurrence on and in the surrounding area of the rock glacier were studied by application of geomorphological mapping, geophysical methods and measurement of the basal temperature of the winter snow cover (BTS). Permafrost modelling was performed on the basis of BTS data and land surface parameters derived from a high resolution airborne laser scanning (ALS) digital elevation model (DEM). Additionally, the ALS data were used to measure vertical and horizontal changes of the rock glacier surface between 2006 and 2012. Glacier–rock glacier interactions during and since the Little Ice Age (LIA) are evident for the development of the studied rock glacier. A geomorphic map gives important information about the connection between glacial advance or retreat and permafrost or ground ice occurrence. The combination of all information helps in the analysis of diverse kinematic action of neighbouring rock glacier tongues. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Radar surveys of Bench Glacier, Alaska, collected over five field seasons between 2002 and 2006 reveal a surface layer of radar transparent ice in this temperate valley glacier. The transparent layer covers the up‐glacier half of the ablation zone and is defined by a distinct lack of the radar scattering events considered typical of temperate ice. Radar scattering ice underlies the transparent zone, and extends to the surface elsewhere on the glacier. We observed the layering in constant offset radar surveys conducted with characteristic frequencies ranging from 5 MHz to 100 MHz. The radar transparent layer extends from the surface to 20 m depth on average, but up to 50 m in some places. Bench Glacier's transparent layer appears similar to the cold surface layer of polythermal glaciers, however, observations in over 50 boreholes on Bench Glacier suggest there is no cold ice corresponding to the radar transparent layer. We conclude that spatially extensive radar‐transparent layers normally used to identify cold ice in polythermal glaciers are present in some temperate glaciers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The links between structural glaciology, glacial debris entrainment and transport have been established in a number of different glacier settings. Here we document the structural evolution of a temperate Alpine valley glacier (Vadrec del Forno, Switzerland) and demonstrate that individual flow units within the glacier have very different structural and debris characteristics. The glacier consists of a broad accumulation area with multiple basins feeding a relatively narrow tongue and is formed from six distinct flow units. Each flow unit has its own characteristic structural assemblage. Flow units that narrow rapidly down‐glacier are dominated by primary stratification that has evolved into longitudinal foliation. In contrast, wider flow units preferentially develop an axial planar foliation. Glacier structure plays a limited role in the entrainment of debris, which is more strongly influenced by ice‐marginal rockfall and avalanche inputs onto the glacier surface. However, once entrained, glacier structure controls the reorientation and redistribution of debris within the ice mass. By taking a whole‐glacier approach to describing glacier structure and debris transport, we conclude that individual flow units are unique with regard to structure and debris transfer. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Thick supraglacial debris layers often have an undulating, hummocky topography that influences the lateral transport of debris and meltwater and provides basins for supraglacial ponds. The role of ablation and other processes associated with supraglacial debris in giving rise to this hummocky topography is poorly understood. Characterizing hummocky topography is a first step towards understanding the feedbacks driving the evolution of debris-covered glacier surfaces and their potential impacts on mass balance, hydrology and glacier dynamics. Here we undertake a geomorphological assessment of the hummocky topography on five debris-covered glaciers in the Everest region of the central Himalaya. We characterize supraglacial hummocks through statistical analyses of their vertical relief and horizontal geometry. Our results establish supraglacial hummocks as a distinct landform. We find that a typical hummock has an elongation ratio of 1.1:1 in the direction of ice flow, length of 214 ± 109 m and width of 192 ± 88 m. Hummocky topography has a greater amplitude across-glacier (15.4 ± 10.9 m) compared to along the glacier flow line (12.6 ± 8.3 m). Consequently, hummock slopes are steeper in the across-glacier direction (8.7 ± 4.3°) than in the direction of ice flow (5.6 ± 4.0°). Longer, wider and higher-amplitude hummocks are found on larger glaciers. We postulate that directional anisotropy in the hummock topography arises because, while the pattern of differential ablation driving topography evolution is moderated by processes including the gravitational redistribution of debris across the glacier surface, it also inherits an orientation preference from the distribution of englacial debris in the underlying ice. Our morphometric data inform future efforts to model these interactions, which should account for additional factors such as the genesis of supraglacial ponds and ice cliffs and their impact on differential ablation.  相似文献   

18.
Proglacial icings are one of the most common forms of extrusive ice found in the Canadian Arctic. However, the icing adjacent to Fountain Glacier, Bylot Island, is unique due to its annual cycle of growth and decay, and perennial existence without involving freezing point depression of water due to chemical characteristics. Its regeneration depends on the availability of subglacial water and on the balance between ice accretion and hydro‐thermal erosion. The storage and conduction of the glacial meltwater involved in the accretion of the icing were analyzed by conducting topographic and ground penetrating radar surveys in addition to the modelling of the subglacial drainage network and the thermal characteristics of the glacier base. The reflection power analysis of the geophysical data shows that some areas of the lower ablation zone have a high accumulation of liquid water, particularly beneath the centre part of the glacier along the main supraglacial stream. A dielectric permittivity model of the glacier – sediment interface suggests that a considerable portion of the glacier is warm based; allowing water to flow through unfrozen subglacial sediments towards the proglacial outwash plain. All these glacier‐related characteristics contribute to the annual regeneration of the proglacial icing and allow for portions of the icing to be perennial. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
汤阴地堑位于太行山脉与华北平原的过渡带,是太行山前重要的地质构造单元。为研究汤阴地堑上地壳结构和断裂特征,利用安阳市与新乡市活断层探测获得的深、浅地震反射剖面,结合研究区已有地震、地质资料,对汤阴地堑浅部结构、汤东断裂特征进行分析研究。结果表明,汤阴地堑北部与南部地壳结构差异明显。地堑北部是由汤东断裂控制的半地堑,地堑内反射震相丰富、反射波层组关系清晰,多组新生代、古生代沉积层强反射不整合地覆盖在自西向东倾伏的结晶基底反射Tg上,且随着深度增加,地层倾角增大,显示出明显的多期掀斜运动特征。地堑南部表现为由汤东、汤西断裂共同控制的断陷型地堑,地堑内新近系底界面反射波TN自西向东倾伏,其下为一些横向呈水平或东倾、延续性较短的反射震相。地堑南部与北部不同的反射震相特征表明,测线控制区域内的汤阴地堑沉积环境与运动特征可能有所差异。汤东断裂为走向NE,倾向NW的铲型正断层,汤西断裂为走向NE、倾向SE的正断层,北部中深层地震反射剖面上未发现该断层的存在。  相似文献   

20.
Summary Detailed gravity measurements recently carried out on the Gorner glacier, Switzerland, are used to determine the variation of thickness across the glacier ice. The Gorner glacier was chosen as a test site because seismic control was available. The glacier ice at a profile near the Monte Rosa massif is associated with a relative gravity low of about –23 mgal. Model oalculations yield a corresponding ice thickness of about 400 m at the central part of the profile. A comparison of the derived residual gravity anomaly with the calculated effect of the 3-D ice model based on seismic information is made. It is shown that the regional field determined for the Gorner glacier is appropriate and gives the correct residual anomaly associated with the glacier ice. Therefore, the proposed gravity technique for determining variations of the thickness of glacier ice appears to be a valuable and rather inexpensive method for surveying glaciers.Institut für Geophysik, ETH-Zürich, Contribution No 145.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号