首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The watershed in the central Guizhou Province (Guizhou Province is called simply Qian) (CQW) is a karstic area. Rare earth elements (REEs) of dissolved loads, suspended particulate material (SPM) and sediments of riverbed are first synthetically reported to investigate REE geochemistry in the three phases in karstic watershed during the high-flow season. Results show that the low dissolved REE concentrations in the CQW are attributed to these rivers draining carbonate rocks. The dissolved REE have significant negative Eu anomaly and coexistence of middle and light REE (MREE??PAAS-normalized La N /Sm N and Gd N /Yb N ; LREE??PAAS-normalized La N /Yb N )-enrichment, which are due to the dissolution of impure Triassic carbonates. REE concentrations in most of SPM exceed that of sediments in the CQW and the average continental crust (UCC). The SPM and the sediments show some common features: positive Eu, Ce anomalies, and MREE enrichment. The controls on the patterns seem to be from weathering profiles: the oxidation state, the REE-bearing secondary minerals (cerianite, potassium feldspar and plagioclase), which are also supported by the evidence of Y/Ho fractionations in the three phases.  相似文献   

2.
安山岩风化过程中元素行为——以豫西熊耳山地区为例   总被引:1,自引:0,他引:1  
马云涛 《地质与勘探》2015,51(3):545-554
在风化过程中主量元素的风化行为可用风化指数来表征,但对在地球化学中更重要的微量元素的风化行为还缺少研究。本文研究了豫西熊耳山地区—安山岩风化剖面,发现花岗岩风化指数(WIG)也适用于安山岩风化过程的定量表征。基于上陆壳作标准绘制风化剖面样品稀土元素配分曲线时,发现风化过程稀土元素出现分馏现象,表现为富集中稀土;但基于球粒陨石作标准时,风化壳样品均具有相似的稀土配分曲线形态,即上陆壳是一种比球粒陨石更为敏感的稀土元素标准化标尺。牛头沟金矿区安山岩风化过程中部分微量表现出随风化程度增强而显著富集的特征,Au、Ag含量变化可达两个数量级以上,Pb、As、Hg可达一个数量级以上。  相似文献   

3.
Rare earth elements (REE) have been extensively used to indicate for material provenance since they behave conservatively and mainly transport in particulate form during earth surface processes. Nevertheless, the application of REE for material provenance study has to be cautious because grain size and mineral fractionations can alter bulk compositions of weathered sediments. Central Asia is one of the most important dust source regions globally and numerous studies on REE compositions of surface materials have been conducted. In this study, REE compositions of various materials from this area are summarized to explore the existing REE-related problems. Overall, chondrite-normalized REE patterns for many surface materials are so uniform that they cannot serve as reliable approaches in tracing material source regions. In contrast, great variations of REE compositions occur among different materials that are derived even from the same parent rock due to influences of grain-size distributions and heavy minerals. For the same reason, small-scale loess around the Tibetan Plateau has different upper continental crust (UCC)-normalized REE patterns compared to those of typical loess. Therefore, great cautions should be made when UCC-normalized REE patterns and REE ratios are utilized to investigate material provenance. Finally, some suggestions are proposed for such studies in future.  相似文献   

4.
Major and trace elements including rare earth elements (REEs) chemistry of the metapelitic rocks of Bulfat Complex (Iraqi Zagros Suture Zone) indicate their enrichment in large-ion Lithophile, light rare earth (LREE) elements, and relative depletion of high field strength and heavy rare earth (HREE) elements. The linear correlation coefficients between TiO2, K2O, and Al2O3 and total REE reveal that phyllosilicates (e.g., mica) and accessory minerals mainly Ti-bearing phases (e.g., ilmenite) are likely the dominant hosts for REEs. Chondrite-normalized REE patterns typical of continental margin settings with significant enrichment of LREE, prominent negative Eu anomalies, and nearly flat HREE are positively correlated with post-Archean Australian shale (PAAS) and upper continental crust (UCC) patterns. Additionally, their consistent elemental La/Sc, Th/Sc, La/Co, Th/Co, Cr/Th, and Eu/Eu* values suggest that sediments may have been originally derived from an old post-Archean upper continental crust composed chiefly of granitic component. It seems most likely that the felsic source rocks were originated by a process of intra-crustal differentiation such as partial melting and/or fractional crystallization involving fractionation of Ca-plagioclase. The geochemical evidences particularly REEs evaluation show that deposition of clasts occurred in an active continental margin setting during lower–upper Cretaceous period contemporaneous with the igneous activities. It is evident therefore that the clasts source is from the north–northeast side, i.e., from the active margin of Iranian microcontinent (Sanandaj–Sirjan Zone).  相似文献   

5.
There is a correlation between thorium and the light rare earth elements, indicated by La/Th ratios in fine grained sedimentary rocks of various ages from Australia and Greenland. The correlation between Th and the heavy rare earth elements (Th/Yb) is much less significant. Archean sedimentary rocks have a higher La/Th (3.6 ± 0.4) than post-Archean sedimentary rocks (La/Th = 2.7 ± 0.2).The cause of this correlation can be attributed to the coherent behaviour of these elements during most sedimentary processes (weathering, transport, diagenesis, etc.). Since the chondrite-normalized rare earth element distribution of clastic fine grained sedimentary rocks is accepted to be parallel to the distribution of REE in the upper continental crust, an estimate of upper crustal Th abundances can be made. Using reasonable assumptions of certain elemental ratios (K/U, Th/U, K/Rb) in the upper crust, minimum estimates of the abundances of K, U and Rb can also be made for the post-Archean and Archean upper crusts.The post-Archean values (K = 2.9%; Rb = 115 ppm; Th = 11.1 ppm; U = 2.9 ppm) compare favourably to some previous estimates made from direct sampling and theoretical considerations and help confirm a granodiorite present day upper continental crust. The Archean data (K = 0.92%; Rb = 30ppm; Th = 3.5 ppm; U = 0.92 ppm) support models which suggest a significantly more mafic exposed crust at that time.  相似文献   

6.
Oil‐source correlation studies have demonstrated that the crude oils in the Ordos Basin were mainly derived from organic‐rich lacustrine mudstones of the Yanchang Formation. The sedimentology, petrology and organic geochemistry of these mudstones have been studied intensively, but their trace and rare earth element (REE) characteristics have received little attention. In this paper, we present trace and rare earth element data of the Upper Triassic Yanchang Formation mudstones in the southern Ordos Basin to constrain the palaeoenvironment, provenance and depositional setting. Our results show that the REE and trace element concentrations of the Yanchang Formation mudstones are higher than those of the upper continental crust (UCC). The Sr contents and Sr/Ba and Y/Ho ratios of these mudstones indicate the absence of a marine transgression during the sedimentation of the Upper Triassic mudstones. The depositional environment of the Upper Triassic mudstones was slightly oxic as evidenced by the values of Eu/Eu*, Ce/Ce*, Ceanom, δU, U/Th, V/Cr and Ni/Co. The UCC‐normalized distribution pattern of REEs, spider diagrams, the ratios of related elements, the bivariate diagrams of Th/Sc–Zr/Sc and La/Th–Hf and the ternary plots of La–Th–Sc and Th–Sc–Zr/10 signify that the provenances of the Chang9–7 mudstones were mainly derived from a continental island arc, whereas the provenances of the Chang6–3 mudstones were mainly derived from a mixture of continental island arc and active continental margin, and the latter contain less recycled materials. Combined with the previous studies of detrital zircon dating and petrography of the Yanchang Formation sandstones in the southern Ordos basin, we propose that the Qinling orogenic belt served as one of the primary source regions occurring between the Chang7 and Chang6 periods, corresponding to the initial uplift of the west Qinling Mountains due to the collision between the Yangtze and North China blocks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Sandstones of Jhuran Formation from Jara dome, western Kachchh, Gujarat, India were studied for major, trace and rare earth element (REE) geochemistry to deduce their paleo-weathering, tectonic setting, source rock characteristics and provenance. Petrographic analysis shows that sandstones are having quartz grains with minor amount of K-feldspar and lithic fragments in the modal ratio of Q 89:F 7:L 4. On the basis of geochemical results, sandstones are classified into arkose, sub-litharenite, wacke and quartz arenite. The corrected CIA values indicate that the weathering at source region was moderate to intense. The distribution of major and REE elements in the samples normalized to upper continental crust (UCC) and chondrite values indicate similar pattern of UCC. The tectonic discrimination diagram based on the elemental concentrations and elemental ratios of Fe2O3 + MgOvs. TiO2, SiO2 vs. log(K2O/Na2O), Sc/Cr vs. La/Y, Th–Sc–Zr/10, La–Th–Sc plots Jhuran Formation samples in continental rift and collision settings. The plots of Ni against TiO2, La/Sc vs. Th/Co and V–Ni–Th ?10 reveals that the sediments of Jhuran Formation were derived from felsic rock sources. Additionally, the diagram of (Gd/Yb) N against Eu/Eu ? suggest the post-Archean provenance as source possibly Nagar Parkar complex for the studied samples.  相似文献   

8.
寻乌岩组变沉积岩发育在江西南部新元古代—早古生代南城—寻乌盆地内,时代为震旦—寒武纪。寻乌岩组的Si O2含量变化较大,除1个含量较低的样品外,平均为63.01%,具有相对较高的K2O、Al2O3及(TFe O+Mg O)值,较低的Na2O、Ca O。相容元素含量与后太古代澳大利亚页岩(PAAS)十分接近,高于中国东部上地壳,与其较高的(TFe O+Mg O)特征相吻合,说明源区具有一定数量的中基性组分。稀土元素总量高于上地壳及PAAS,但其球粒陨石标准化配分模式与典型的上地壳及PAAS相似,表现为明显向右倾斜,轻稀土富集,重稀土平坦,铕负异常显著,铈负异常不明显。岩石地球化学特征显示其原岩属于一种中等成熟度的陆源碎屑岩,物源主要为被改造的上地壳长英质和花岗质物源区,少部分物源为中基性火山岩。高场强元素及稀土元素等不活动元素地球化学特征表明其沉积环境为浅海—半深海,其构造环境属于发育有裂谷系的被动大陆边缘,该认识从沉积岩地球化学方面为华南早古生代构造属性提供了新资料。  相似文献   

9.
With a few exceptions, shales from the Archean Witwatersrand Supergroup (~2800 Ma) in South Africa are depleted in Na, Ca, LILE, REE and HFSE compared to Phanerozoic shales. Cr, Co and Ni are enriched in all Witwatersrand shales and Fe and Mg are high in shales from the West Rand Groups (WRG) and lower Central Rand Group (CRG). Shales from the CRG and uppermost WRG are enriched in Na, Al, LILE, REE, HFSE and transition metals relative to shales from the lower WRG. Chondrite-normalized REE patterns for all Witwatersrand shales are enriched in light-REE and exhibit small to moderate negative Eu anomalies. A positive correlation of REE and Al2O3 contents in the shales suggests that REE are contained principally in clay minerals.Relative to shales from the CRG, shales from the WRG exhibit depletions of Na, Ca and Sr, a feature probably reflecting intense chemical weathering of their source rocks. CIA indices in Witwatersrand shales are variable (chiefly 70–98), even within the same shale unit. Such variations reflect chiefly variable climatic zones or rates of tectonic uplift in source areas with perhaps some contribution from provenance and element remobilization during metamorphism.Compared to present-day upper continental crust, all but the Orange Grove, Roodepoort, and K8 shales appear to have been derived from continental sources depleted in LILE, REE, and HFSE and enriched in transition metals. Computer mixing models based on six relatively immobile elements (Th, Hf, Yb, La, Sc, Co) and four source rocks indicate that the relative proportions of granite, basalt and komatiite increased with time in sediment source areas at the expense of tonalite. The contributions of basalt and komatiite appear to reach a maximum during deposition of the Booysens shale, and granite during deposition of the K8 shales and possibly during deposition of the Orange Grove shales.  相似文献   

10.
Geochemical study of the Holocene sediments of the Meghna River Delta, Chandpur, Bangladesh was conducted to investigate the distribution of arsenic and related trace and major elements. The work carried out includes analyses of core sediments and provenance study by rare earth element (REE) analysis. Results showed that the cores pass downward from silty clays and clays into fine to medium sands. The uppermost 3 m of the core sediments are oxidized [average oxidation reduction potential (ORP) + 230 mV], and the ORP values gradually become negative with depths (−45 to −170 mV), indicating anoxic conditions prevail in the Meghna sediments. The REE patterns of all lithotypes in the study areas are similar and are comparable to the average upper continental crust. Arsenic and other trace elements (Pb, Zn, Cu, Ni, and Cr) have greater concentrations in the silts and clays compared to those in the sands. Positive correlation between As and Fe was found in the sediments, indicating As may be adsorbed on Fe oxides in aquifer sediments.  相似文献   

11.
《Quaternary Science Reviews》2007,26(9-10):1362-1368
Sediments deposited on the bottom of Lake Baikal have contributed to the understanding of a long-term environmental history of continents. Rare earth elements (REEs) along with major elements and loss on ignition (LOI) of Baikal sediments were determined with the aim of evaluating their suitability for a new paleoenvironmental proxy. Our interest is concentrated on paleoenvironmental change during the Last Glacial/Interglacial transition (LGIT). Chondrite-normalized REE patterns for Baikal sediments show a similar variation to those for typical upper continental crustal materials. Three parameters of (La/Yb)n (n: chondrite-normalized value) ratio, ΣREE/TiO2 and Eu anomaly were used to express detailed characteristics of Baikal sediments. Depth profile of (La/Yb)n ratio shows abrupt change, whose timing corresponds to the beginning of climatic warming inferred from the profiles of SiO2/TiO2 and LOI. In addition, (La/Yb)n ratio, ΣREE/TiO2 and the degree of Eu anomaly correlate with each other. This suggests that inflow process of particulate materials into the lake may have changed during the LGIT. The analytical results of this study lead to the conclusion that REE is a useful paleoenvironmental proxy in the Baikal region.  相似文献   

12.
Different sampling media (moss, lichen and attic dust) were used for monitoring the distribution of 15 elements, including certain trace elements, in the vicinity of an intensively exploited copper mine in the east of the Republic of Macedonia. Moss species (Hypnum cupressiforme and Campothecium lutescens), epiphytic lichens (Hypogymnia physodes and Evernia prunastri) and attic dust were collected for comparative analysis for monitoring air pollution. In both cases (lithological and anthropogenic affected areas) for the distribution of elements, the sampling media follows the expression capabilities: attic dust > moss > lichens. Enrichment factors M/L—moss vs. lichen, for plant response to elements distribution and D/L—attic dust vs. lichen, for historical response of elements distribution were significant for Cu and Ni, which were singled out as the main markers for anthropogenic and geogenic distribution. The factor analysis highlighted geogenic (F1: Ni-Cr-Cd-Fe-Al-K-Mn-Zn) and anthropogenic (F2: As-Cu-Pb) association of elements from three types of media samples. For anthropogenic affected areas, T value and F value for Cu content were significant at p < 0.05 and higher enrichment factors were obtained for lichen, moss and attic dust media (3.8, 5.0 and 5.7, respectively). Spatial distribution for element deposition (with emphasis on Cu and Ni) is not disturbed by the significant differences in the sampling media matrix. Treated sample materials (attic dust, moss, lichen) are shown to be useful in determining an anthropogenic impact, as well as the chemical properties or geological background on orographic diverse terrain in the presence of complex geological structure.  相似文献   

13.
碳酸盐岩风化形成的红土保存着喀斯特发展演化历史证据,同时也是喀斯特地区土壤研究的重要对象。文章选取云 南石林地区的两处典型碳酸盐岩剖面为研究对象,对主量元素,微量元素及稀土元素在风化层的迁移特征及分布规律进行 研究,为探究风化层的成因提供依据。结果显示:(1) 以Ti为参比元素的剖面迁移特征表明,两剖面的主量元素在成土过 程中有相似的迁移规律,多数表现为淋失;微量元素略有差异,富集淋失程度不一。(2) UCC 标准化蜘蛛图显示,相对于 基岩,风化层中的Ca和Sr均出现亏损;与UCC相比,Fe、Ti等元素轻微富集,Mg、Ca、Na、K、P等元素显示了强烈的亏 损特征。(3) 基岩与风化层的REE分布模式相似,但风化层的稀土相对富集,轻稀土元素间的分异较大而重稀土元素间的 分异较小,且SJC剖面的轻、重稀土元素比值大于QST剖面;稀土元素球粒陨石标准化后,SJC剖面的Eu为负异常,剖面 上部和下部出现Ce负异常;QST剖面Ce负异常,Eu明显负异常。(4) 元素含量变化和元素对Al-Ti、Al-Fe及Zr-Hf相关性 说明剖面上覆红土是下伏基岩风化的结果。研究结果显示,两个剖面的元素地球化学特征与基岩存在很好的继承性,风化 层是基岩原位风化的产物。  相似文献   

14.
15.
Petrography and geochemistry (major, trace and rare earth elements) of clastic rocks from the Lower Cambrian Lalun Formation, in the Posht-e-badam block, Central Iran, have been investigated to understand their provenance. Petrographical analysis suggests that the Lalun conglomerates are dominantly with chert clasts derived from a proximal source, probably chert bearing Precambrian Formations. Similarly, purple sandstones are classified as litharenite (chertarenite) and white sandstones as quartzarenite types. The detrital modes of purple and white sandstones indicate that they were derived from recycled orogen (uplifted shoulders of rift) and stable cratonic source. Most major and trace element contents of purple sandstones are generally similar to upper continental crust (UCC) values. However, white sandstones are depleted in major and trace elements (except SiO2, Zr and Co) relative to UCC, which is mainly due to the presence of quartz and absence of other Al-bearing minerals. Shale samples have considerably lower content in most of the major and trace elements concentration than purple sandstones, which is possibly due to intense weathering and recycling. Modal composition (e.g., quartz, feldspar, lithic fragments) and geochemical indices (Th/Sc, La/Sc, Co/Th, Cr/Th, Cr/V and V/Ni ratios) of sandstones, and shales (La/Sc and La/Cr ratios) indicate that they were derived from felsic source rocks and deposited in a passive continental margin. The chondrite-normalized rare earth element (REE) patterns of the studied samples are characterized by LREE enrichment, negative Eu anomaly and flat HREE similar to an old upper continental crust composed chiefly of felsic components in the source area. The study of paleoweathering conditions based on modal composition, chemical index of alteration (CIA), plagioclase index of alteration (PIA) and A–CN–K (Al2O3 − CaO + Na2O − K2O) relationships indicate that probably chemical weathering in the source area and recycling processes have been more important in shale and white sandstones relative to purple sandstones. The results of this study suggest that the main source for the Lalun Formation was likely located in uplifted shoulders of a rifted basin (probably a pull-apart basin) in its post-rift stage (Pan-African basement of the Posht-e-badam block).  相似文献   

16.
分析了塔里木盆地塔北隆起奥陶系、三叠系和侏罗系泥岩的稀土元素丰度。不同时代泥岩都表现出轻稀土富集、重稀土含量均一和具有Eu负异常特征;但它们∑LREE/∑HREE、LaN/YbN、(La/Yb)UCC、Eu/Eu和Ce/Ce等参数则显示这些泥岩形成时的物源和环境有差别。奥陶纪时,研究区处于相对稳定的沉积环境,物源为成熟度高的大陆上地壳;二叠纪到三叠纪构造-火山活动强烈,部分沉积物来自火山岩的风化;侏罗纪塔北隆起区则进入稳定构造沉降阶段。这一差别对认识塔里木盆地及周边造山带形成演化研究有指示意义。  相似文献   

17.
Trace elements and rare earth elements (REEs) of Lias-aged cherts in the Gumushane area were studied in order to understand their origin and depositional environment. Twenty three chert samples from five stratigraphic sections were analysed by inductively coupled plasma-mass spectrometry, X-ray diffraction, and mineralogical investigation. Lias cherts in the study area are microcrystalline, cryptocrystalline quartz, and megaquartz depending on mineralogical content. Trace elements of the cherts were compared with PAAS, Co, Y, and Th had stronger depletions in the five sections, whereas V, Ni, Zr, Nb, and Hf had smaller depletions. The distribution of Zr, Hf, and Ta yields Zr/Hf, Zr/Ta and Hf/Ta ratios (25/645, 37/665, and 0.18/3, respectively) that differ from those of chondrites and average upper continental crust, suggesting that these elements are likely non-detrital but are sourced from seawater. Th/U ratios range from 0.04 to 0.45 and are lower than those of the upper continental crust (average: 3.9). Lias-aged cherts have low total REE abundances and stronger depletions in five sections of the PAAS and chondrite-normalised plots. The cherts are characterised by a positive Eu anomaly (average: 4.9) and LREE-enrichment (LaN/YbN = average: 3.5). In addition, about one-half of the cherts exhibit positive Ce anomaly (range: 0.25–2.58), chondritic Y/Ho values (range: 3.3–60), and low (La/Ce)N values (average: 1.8). REE and trace element abundance in Lias cherts indicate that these elements were likely derived from hydrothermal solutions, terrigenous sources, and seawater. The REE patterns of the cherts show that they were probably deposited close to a continental margin.  相似文献   

18.
Terrestrial geochemistry of Cd,Bi, Tl,Pb, Zn and Rb   总被引:1,自引:0,他引:1  
About 2000 common magmatic, metamorphic and sedimentary rocks and rockforming minerals contained in 465 individual samples have been analyzed for 6 trace metals and potassium with high precision, mainly by combined distillation and AAS methods. Estimates of average abundances in the continental crust are: 98 ppb Cd. 82 ppb Bi. 490 ppb Tl, 14.8 ppm Pb, 77 ppm Zn and 98 ppm Rb (K/Rb: 223). These averages are close to the mean concentrations of the 6 elements in sedimentary and in low to medium grade metamorphic rocks. In relation to the upper mantle the earth's crust has very effectively accumulated Rb, Pb, Tl (and Bi). Cd and Zn are equally distributed between the upper and lower crust. Bi, Tl, Rb, Pb and K are accumulated in the upper relative to the lower continental crust by factors between 3.5 and 1.4. This is mainly due to higher concentrations in granites and lower abundances in granulites relative to gneisses and schists. The five metals form large ions with bulk coefficients less than one for the partition between metamorphic rocks and anatectic granitic melts. The major hosts of Rb, Tl, Pb and Bi in rocks are minerals with 8- to 12-coordinated sites such as mica, K-feldspar, plagioclase etc. (except for some preference of Bi for sphene and apatite). As examples of significant correlations those of Pb with Tl, K, Bi and Rb in mafic rocks and of Bi with K, Rb, Tl and Pb in sedimentary rocks can be reported. In granites and gneisses hydroxyl containing Fe2+-Mg-silicates are major host minerals for Zn and Cd. Except in some carbonate rocks Cd has no preference for Ca minerals.  相似文献   

19.
China’s continental crust (CCC) has an average thickness of 47km, with the upper continental crust (CUCC) being 31 km and the sedimentary layer(CSL) 5 km in thickness. The CCC, CUCC and CSL measure 12.437 × 10−17, 8.005 × 10−17 and 1.146 × 1017 metric tons in mass, respectively. The mass ratio of the upper continental crust to the lower one is 1.8:1. The element abundances were calculated for the CCC, CUCC and CSL respectively in terms of the chemical compositions of 2246 samples of various types and some complementary trace element data. The total abundance of 13 major elements accounts for 99.6% of the CCC mass while the other minor elements only account for 0.4%. REE characteristics, the abundance ratios of element pairs and the amounts of ore-forming elements are also discussed in the present paper.  相似文献   

20.
长江与黄河沉积物REE地球化学及示踪作用   总被引:62,自引:4,他引:62  
杨守业  李从先 《地球化学》1999,28(4):374-380
长江与黄河沉积物的稀土元素(REE)组成特征不同。长江沉积物REE含量较高,元素含量变化也大于黄河样品;球粒陨石标准化模式表明长江沉积物的(La/Lu)N、(La/Yb)N、(Gd/Yb)N的值也相应地比黄河沉积物中的高10%左右,分布曲线均呈明显的石倾状,轻重稀土分馏明显,相对富集LREE。且长江样品比黄河样品更富集LREE,但Eu亏损不及黄河样品;两者的北美页岩标准化曲线均呈平坦稍右倾状,具有  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号