首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study area Mettur forms an important industrial town situated NW of Salem district. The geology of the area is mainly composed of Archean crystalline metamorphic complexes. To identify the major process activated for controlling the groundwater chemistry an attempt has been made by collecting a total of 46 groundwater samples for two different seasons, viz., pre-monsoon and post-monsoon. The groundwater chemistry is dominated by silicate weathering and (Na + Mg) and (Cl + SO4) accounts of about 90% of cations and anions. The contribution of (Ca + Mg) and (Na + K) to total cations and HCO3 indicates the domination of silicate weathering as major sources for cations. The plot for Na to Cl indicates higher Cl in both seasons, derived from Anthropogenic (human) sources from fertilizer, road salt, human and animal waste, and industrial applications, minor representations of Na also indicates source from weathering of silicate-bearing minerals. The plot for Na/Cl to EC indicates Na released from silicate weathering process which is also supported by higher HCO3 values in both the seasons. Ion exchange process is also activated in the study area which is indicated by shifting to right in plot for Ca + Mg to SO4 + HCO3. The plot of Na-Cl to Ca + Mg-HCO3-SO4 confirms that Ca, Mg and Na concentrations in groundwater are derived from aquifer materials. Thermodynamic plot indicates that groundwater is in equilibrium with kaolinite, muscovite and chlorite minerals. Saturation index of silicate and carbonate minerals indicate oversaturation during pre-monsoon and undersaturation during post-monsoon, conforming dissolution and dilution process. In general, water chemistry is guided by complex weathering process, ion exchange along with influence of Cl ions from anthropogenic impact.  相似文献   

2.
Presence of polycyclic aromatic hydrocarbons (PAHs) in the soil and water is of serious environmental concern as they are carcinogenic in nature. The present study was carried out with an aim to identify the presence of PAHs in groundwater of Chennai, Tamil Nadu, India. This is an industrialised area where petrochemical storage tanks are located. Groundwater sampling was carried out in the years 2001, 2011 and 2012 to understand the variation in PAHs content in this area. Concentration of major ions, pH and EC were measured during the year 2001. Of the 24 groundwater samples collected in the year 2001, most of them were alkaline and 62.5 % were not permissible for drinking based on pH and EC, respectively. Influence of seawater was the major reason for the Na–Cl dominant nature of groundwater. TPH and PAHs analysis of groundwater carried out in 2001 and 2011, and physical examination of groundwater in 2012 indicate the increased level of contamination in the eastern part of the study area. The contamination in the eastern part persists because of the fact that groundwater is flowing towards the east and also due to the presence of petrochemical storage tanks near the coast. Thus this area is affected by PAHs pollution which has endured over the past 50 years. An underground storage tank that was functioning in this area was closed about 50 years ago and leakage of PAHs from this tank was reported in the year 1993. However, the present study indicates the decrease in the area of zone of pollution, possibly due to natural flushing of groundwater zone.  相似文献   

3.
The nature and origin of the subsurface 85°E Ridge in the Bay of Bengal has remained enigmatic till date despite several theories proposed by earlier researchers. We reinterpreted the recently acquired high quality multichannel seismic reflection data over the northern segment of the ridge that traverses through the Mahanadi offshore, Eastern Continental Margin of India and mapped the ridge boundary and its northward continuity. The ridge is characterized by complex topography, multilayer composition, intrusive bodies and discrete nature of underlying crust. The ridge is associated with large amplitude negative magnetic and gravity anomalies. The negative gravity response across the ridge is probably due to emplacement of relatively low density material as well as ∼2–3 km flexure of the Moho. The observed broad shelf margin basin gravity anomaly in the northern Mahanadi offshore is due to the amalgamation of the 85°E Ridge material with that of continental and oceanic crust. The negative magnetic anomaly signature over the ridge indicates its evolution in the southern hemisphere when the Earth’s magnetic field was normally polarized. The presence of ∼5 s TWT thick sediments over the acoustic basement west of the ridge indicates that the underlying crust is relatively old, Early Cretaceous age.The present study indicates that the probable palaeo-location of Elan Bank is not between the Krishna–Godavari and Mahanadi offshores, but north of Mahanadi. Further, the study suggests that the northern segment of the 85°E Ridge may have emplaced along a pseudo fault during the Mid Cretaceous due to Kerguelen mantle plume activity. The shallow basement east of the ridge may have formed due to the later movement of the microcontinents Elan Bank and Southern Kerguelen Plateau along with the Antarctica plate.  相似文献   

4.
The hydrogeochemical characterization of groundwater helps to assess the trend of salinization and freshening of the groundwater. The present study was carried out to understand the lateral and vertical variation of groundwater salinity and the process of salinization and freshening of the groundwater in a coastal aquifer comprising a freshwater lens. The partially isolated unconfined aquifer selected for the present study is lying just south of the Chennai City, one of the densely populated cities on the east coast of South India. Critical problems affecting this aquifer include a thin aquifer which is connected/surrounded by saltwater on all the sides, overexploitation of the groundwater, surface impermeabilization due to increasing residential areas, and destruction of existing dune morphology by conversion of barren land to the residential area which causes a reduction in their barrier effect to seawater intrusion. The process of salinization and freshening of the groundwater was studied and monitored by using electrical resistivity survey and hydrogeochemical analysis. The vertical electrical sounding was carried out at 17 locations, and 400 water samples were collected and analyzed from 50 locations during the period from August 2008 to May 2010 for this study. The apparent resistivity values were analyzed and compared with groundwater quality to demarcate the zone of seawater intrusion. The regional flow direction of the groundwater is westward and eastward with respect to the central stretch and groundwater level ranges from 4.96 m MSL at the dune morphology to 0 m MSL along the boundary on all the sides. Base exchange index indicates that salinization trend in the northern part of the study area is due to the extensive groundwater pumping which increases the possibility of seawater intrusion. The increase of base exchange index towards southern part indicates a better groundwater quality of the aquifer due to proper land use practices. A strong trend of quality alteration is clearly visible from the base exchange index in response to the seasonal change between monsoon and dry season. In the western side, the monsoonal variation in the salinization and freshening of the groundwater was not noticed; however, the salinity is slightly higher than freshwater due to the presence of clay.  相似文献   

5.
During transition from open pit extractions to underground mining of an orebody, often both the open pit and the underground workings operate simultaneously, before the former is closed. To avoid the risk of inundation, the underground workings connecting or driven closer to the open pit are isolated using bulkheads. In this paper, the authors reviewed some of the theoretical equations and norms followed worldwide for determining the safe dimensions of a bulkhead to withstand water pressure. It is found that the theoretical equations are insufficient to represent the actual mode of failure and the ultimate pressure–bearing capacity of a bulkhead, as they were developed based on only one mode of failure of the dam construction material. For better representation of the bulkhead failure and its strength determination, it is found prudent to conduct strain-softening numerical modeling simulating a real mining scenario. Mode of dam failure and effect of parameters such as dam thickness and roadway dimensions on the ultimate pressure–bearing capacity of an arched bulkhead are studied. Numerical modeling studies show that the failure initiates with tensile cracking of the dam surface, but the bulkhead ultimately fails in a combination of tension and shear yielding. On comparison, it is found that the tensile failure theories underestimate the pressure-bearing capacity of a dam, while the shear strength– and crushing strength–based equations overestimate the same. Further, an application of the numerical modeling technique for design of water-retaining dams at an underground mine for its safe isolation from the open pit is presented.  相似文献   

6.
The probability of landslide volume, V L , is a key parameter in the quantitative hazard analysis. Several studies have demonstrated that the non-cumulative probability density, p(V L ), of landslide volumes obeys almost invariably a negative power law scaling of p(V L ) for landslides exceeding a threshold volume and a roll-over of small landslides. Some researchers attributed the observed roll-over to under-sampling of data, while others relate it to a geo-morphological (physical) property of landslides. We analyzed 15 sets of a complete landslide inventory containing shallow debris slides (2 ≤ V L  ≤ 3.6 × 103 m3) with sources located on cut slopes along a 17-km-long railroad corridor. The 15 datasets belong to individual years from 1992 to 2007. We obtained the non-cumulative probability densities of landslide volumes for each dataset and analyzed the distribution pattern. The results indicate that for some datasets the probability density exhibits a negative power law distribution for all ranges of volume, while for others, the negative power scaling exists only for a volume greater than 10 m3, with scaling exponent β varying between 0.96 and 2.4. When the spatial distribution of landslides were analyzed in relation to the terrain condition and triggering rainfall, we observed that the number of landslides and the range and the frequency of volumes vary according to the changes in local terrain condition and the amount of rainfall that trigger landslides. We conclude that the probability density distribution of landslide volumes has a dependency on the local morphology and rainfall intensity and the deviation of small landslides from power law, i.e., the roll-over is a “real effect” and not an artifact due to sampling discrepancies.  相似文献   

7.
8.
The Himalayan foothill region is traversed by the Main Boundary Thrust, the Himalayan Frontal Thrust and the Piedmont Fault which make the entire densely populated foothill region vulnerable to seismic damages. Tectonic morphometric studies of selected active tectonic indices in conjunction with analysis of multispectral satellite imagery of the foothill terrain from North of Chandigarh to West of Dehradun have revealed the presence of two major active faults. The Jainti Devi Fault, in the vicinity of Chandigarh, has offset nearly all the drainage channels by about 780 m while the Trilokpur Fault, in the vicinity of Nahan, has offset the streams and rivulets by about 1500 m. The values of ratio of valley floor width to valley height, the stream length gradient index, stream sinuosity index and mountain front sinuosity index have been computed and these reaffirm the active tectonic setup of the foothill terrain. The digital terrain model and field investigations reveal the presence of offset streams, sag ponds, linear valleys, shutter ridges and pressure ridges along the fault trace. Trenching carried out in the region has revealed the presence of numerous seismites.  相似文献   

9.
The Paleo-Meso Proterozoic Gwalior basin (E - W), lying to NW fringe of Bundelkhand massif is represented by litho-package of lower arenaceous Par Formation and upper chemogenic Morar Formation. It is bounded by Indo-Gangetic alluvium in north and east, Kaimur sediments in west and Bundelkhand granitoids in south. Gwalior Basin has been the exploration target for uranium mineralization right from early 60’s. Surface radioactivity anomalies due to uranium has been reported in both Par and Morar Formations of Gwalior Group and Vindhyan sediments. Besides presence of syngenetic uranium in the system, presence of post-depositional faults and fractures are the favorable factors. Aeromagnetic survey was carried out by AMD in 2002 with N-S lines of 500 m interval covering 9406 line km. The data with sampling interval of 0.1 sec was corrected for spikes, diurnal variation, IGRF, heading and lag. Final processed images are prepared after suitable leveling and gridding. First vertical derivative of TMI-RTP and tilt-angle derivative images are used to map the litho-contacts, lineaments and structural features. Numerous NE-SW trending low amplitude and NW-SE trending high amplitude magnetic linears corroborate with quartz reefs and basic dykes respectively. Besides, E-W to WNW-ESE and ENE-WSW trending fractures are also evident from the processed image maps. Further, the Euler’s depth solution of gridded aeromagnetic data calculated for structural indices of 0 and 1 are very consistent in locating the position of the causative sources. Based on the amplitude and textural character of processed aeromagnetic data, alteration zone is delineated well within the Morar Formation. Enhanced Thematic Mapper (ETM+) image with 30m resolution was merged with IRS PAN 1D (5.8 m resolution) for better spatial/radiometric resolution to extract litho-contacts and lineament patterns. Merged PAN band-4 after linear contrast and edge enhancement techniques deciphered detailed lineament pattern, which corroborate the magnetic data. Merged ETM+ (RGB 751) and PC (PC1-PC2-PC5) images depict litho-logical contrast. Integration of aeromagnetic and satellite imagery data helped in understanding the structural fabric of the Gwalior Basin and to identify favorable loci of uranium mineralization.  相似文献   

10.
Palaeomagnetic and magnetomineralogical results are reported from charnockites in basement terrane at the eastern sector of the WSW–ENE granulite belt of South India. Magnetite is the dominant ferromagnet identified by rock magnetic and optical study; it is present in several phases including large homogeneous titanomagnetites and disseminated magnetite in microfractures linked to growth stages ranging from primary charnockite formation to uplift decompression and exhumation within the interval ~2500–2100 Ma. Several components of magnetization are resolved by thermal demagnetization and summarized by four pole positions; in the northern (Pallavaram) sector these are P1 (33°N, 99°E, dp/dm = 8/9°) and P2 (79°N, 170°E, dp/dm = 3/6°), and in the southern (Vandallur) sector they are V1 (23°N, 116°E, dp/dm = 8/9°) and V2 (26°S, 136°E, dp/dm = 5/10°). These magnetizations are linked to uplift cooling of the basement and unblocking temperature spectra suggest acquisition sequences P1  P2 and V1  V2 in each case implying movement of the shield from higher to lower palaeolatitudes sometime between 2500 and 2100 Ma. Palaeomagnetic poles from the cratonic nuclei of Africa, Australia and India all identify motion from higher to lower palaeolatitudes in Early Palaeoproterozoic times, and this is dated ~2400 and ~2200 Ma in the former two shields. The corresponding apparent polar wander (APW) segments match the magnetization record within the charnockite basement terranes of southern India to yield a preliminary reconstruction of the ‘Ur’ protocontinent, the oldest surviving continental protolith with origins prior to 3000 Ma. Although subject to later relative movements these nuclei seem to have remained in proximity until the Mesozoic break-up of Gondwana.  相似文献   

11.
The tannery effluents discharged by the existing units on either side of the Palar river at Ambur town (known for tannery industry), has resulted in vertical and lateral spread of pollution. The study area of 55.3 km2 is situated on a granitic terrain of Archaean age with undulating topography and hillocks. The shallow aquifers, in flood plain and valley fills of the river are highly polluted (with EC: 15340 μS/cm) by tannery effluents making groundwater unfit for any use, hence the local population (20000) face health hazards and shortage of potable water. Hydrogeological, geophysical and in-situ groundwater quality measurement were carried out to demarcate fresh groundwater zones and to delineate lateral and vertical extent of pollution. The results show, brackish aquifer was characterized by low order of resistivity (<20 Ω-m) with a thickness of 8.5 to 28 m located in the flood plains, valley fills, and partially in hard rock formations, whereas the fresh water aquifer resistivity varying from 23 to 216 Ω-m in hard rock. Further, these results were correlated with the water quality data and Ground Penetrating Radar (GPR) signals. The integrated studies revealed that pollution due to tannery effluents has spread over an area of 33.4 km2 (60.4 %) on either side of the river and only a small area of 21.9 km2 (39.6 %) was identified as fresh groundwater zone, which has to be conserved and exploited in sustainable manner for future generations.  相似文献   

12.
Environmental Earth Sciences - Hydrogeochemistry data collected from three multi-level monitoring wells in a sandy alluvial aquifer located in the Keum River watershed, South Korea, are used in...  相似文献   

13.
This study was conducted on recent desert samples—including (1) soils, (2) plants, (3) the shell, and (4) organic matter from modern specimens of the land snail Eremina desertorum—which were collected at several altitudes (316–360 m above sea level) from a site in the New Cairo Petrified Forest. The soils and shellE. desertorum were analyzed for carbonate composition and isotopic composition (δ18O, δ13C). The plants and organic matterE. desertorum were analyzed for organic carbon content and δ13C. The soil carbonate, consisting of calcite plus minor dolomite, has δ18O values from −3.19 to −1.78‰ and δ13C values −1.79 to −0.27‰; covariance between the two values accords with arid climatic conditions. The local plants include C3 and C4 types, with the latter being dominant. Each type has distinctive bulk organic carbon δ13C values: −26.51 to −25.36‰ for C3-type, and −13.74 to −12.43‰ for C4-type plants.The carbonate of the shellE. desertorum is composed of aragonite plus minor calcite, with relatively homogenous isotopic compositions (δ18Omean = −0.28 ± 0.22‰; δ13Cmean = −4.46 ± 0.58‰). Most of the δ18O values (based on a model for oxygen isotope fractionation in an aragonite-water system) are consistent with evaporated water signatures. The organic matterE. desertorum varies only slightly in bulk organic carbon δ13C values (−21.78 ± 1.20‰) and these values suggest that the snail consumed more of C3-type than C4-type plants. The overall offset in δ13C values (−17.32‰) observed between shellE. desertorum carbonate and organic matterE. desertorum exceeds the value expected for vegetation input, and implies that 30% of carbon in the shellE. desertorum carbonate comes from the consumption of limestone material.  相似文献   

14.
《Precambrian Research》1986,33(4):265-282
A recent technique of image analysis of stromatolite laminae has been tested on Proterozoic stromatolitic assemblages in the Aravalli dolomite of Udaipur and Jhabua, the Bhagwanpura limestones of Chittorgarh, the Bilara carbonates of Jodhpur and the Raipur limestones of the Chattisgarh region. The technique involves tracing of the upper lamina boundary of each stromatolite column which permits measurements of different profile shape attributes such as area, length, width, vertical and horizontal intercepts and profile inclination. The numerical data so generated were subjected to statistical analysis. Cluster analysis by the pair group method shows mutually correlatable cluster centres. Dendrograms based thereon have been drawn to depict the nature of correlation. Four major groupings of lamina shape have been recognized: (1) highly convex, (2) flattened convex and irregular shape, (3) erect, highly convex to conical, and (4) horizontal development of flattened laminae. Successful correlation between stromatolites of the Bhagwanpura limestone (Chittorgarh), the Bilara Formation (Jodhpur) and Raipur (Chattisgarh) and negative correlation between the Aravalli stromatolites of Udaipur (Rajasthan) and Jhabua (Madhya Pradesh) clearly indicate the biostratigraphic utility of morphometric analysis.  相似文献   

15.
Landslide is a common hazard in the hilly regions, which causes heavy losses to life and properties every year. Since 1980, various researches and analyses have been carried out in the geographic information systems (GIS) environment to identify factors responsible for causing landslides. The important conditioning factors identified by the researchers are slope, geological, geomorphologic structures, and land use coupled with triggering factors like rainfall and a few of the anthropogenic activities. Almost all landslides vulnerability studies carried out so far used parameters of landslide events of the past as essential inputs and advanced methods like information value, regression analysis, fuzzy logic, etc. The present research is an attempt to investigate the landslide vulnerabilities in different slope areas with simple and realistic method of assignments of weights to the parameters based on experts?? opinion and generic logic, without using the parameters of past landslide events as inputs. The identified factors were assigned appropriate weights based on experts?? opinion and these weights were further balanced with respect to the Shannon??s entropy of their occurrences within the study area. The study area was finally classified into three zones namely least vulnerable zone, moderately vulnerable zone, and most vulnerable zone. When compared with the actual landslide history of the past, it was found that Shannon??s entropy applied zonation model matched to real landslide events with higher value of landslide density as compared to the model developed without Shannon??s entropy.  相似文献   

16.
The morphology of Vamanapuram river basin (VRB), southern Kerala, India has been studied by preparing longitudinal profiles from the source of VRB at Chemmunji Mottai (1,717 m) to its mouth at Muthalapallipozhy (Lakshadweep Sea). Survey of India topographical maps, Geocoded Satellite Imageries, Microsoft Excel and GIS software ILWIS 2.1 are used in this study. The morphometric analysis reveals that there are 1,489, 347, 79, 21, 6, 2 and 1 first-, second-, third-, fourth-, fifth-, sixth- and seventh-order streams, respectively, in VRB, which are responsible for the present-day landform genesis. The mean bifurcation value of VRB is 3.49. The Ponmudi hills receive the highest rainfall in VRB in the Western Ghats Region and Attingal, the lowest in the Coastal Strand Plain. The six land use and land cover profile sections show the distribution of land use–land cover with respect to elevation and depth to water level. The study reveals that mid and high lands generally occupy lower order streams up to fourth order and generally originate from linear ridge, hill crest, rocky slope (scarp face), side slope (S3)/slope 10–15° and hilly terrain.  相似文献   

17.
An extremely large rock avalanche occurred on April 9, 2000 at Yigong, Tibet, China. It started with an initial volume of material of 90?×?106 m3 comprising mainly of loose material lying on the channel bed. The rock avalanche travelled around 10 km in horizontal distance and formed a 2.5-km-long by 2.5-km-wide depositional fan with a final volume of approximately 300?×?106 m3. An energy-based debris flow runout model is used to simulate the movement process with a new entrainment model. The entrainment model considers both rolling and sliding motions in calculating the volume of eroded material. Entrainment calculation is governed by a second order partial differential equation which is solved using the finite difference method. During entrainment, it is considered that the total mass is changed due to basal erosion. Also the profile of the channel bed is adjusted accordingly due to erosion at the end of each calculation time step. For Yigong, the profile used in the simulation was extracted from a digital elevation model (DEM) with a resolution of 30 m?×?30 m. Measurements obtained from site investigation, including deposition depth and flow height at specific location, are used to verify the model. Ground elevation-based DEM before and after the event is also used to verify the simulation results where access was difficult. It is found that the calculated runout distance and the modified deposition height agree with the field observations. Moreover, the back-calculated flow characteristics based on field observations, such as flow velocity, are also used for model verifications. The results indicate that the new entrainment model is able to capture the entrainment volume and depth, runout distance, and deposition height for this case.  相似文献   

18.
This study investigates the post-magmatic reequilibration of Rb-Sr whole-rock isochrons in the Central Aar Granite, Aar Massif, Central Alps. A post-magmatic, preAlpine hydrothermal alteration caused rehomogenization of Sr isotopes in local subsystems of the granites by subsolidus reactions mainly involving k-feldspar. The size of these rehomogenized subsystems is dependent on rock mineralogy and chemistry. Interference between sample size, size of the rehomogenized subsystem and undisturbed magmatic system size yields a series of Rb-Sr wholerock ages intermediate between an Upper Carboniferous intrusion age and the age of a hypothetical Triassic/Liassic alteration event. The microscopic reaction textures as well as the Rb-Sr age systematics of this hydrothermal event can be distinguished from Alpine metamorphic effects.
Zusammenfassung Die vorliegende Arbeit stellt postmagmatisch reequilibrierte Rb-Sr-Gesamtgesteinsalter aus dem Zentralen Aaregranit (Aarmassiv, Zentralalpen) vor. Eine postmagmatische, voralpine Hydrothermalüberprägung verursachte eine Sr-Isotopenhomogenisierung in lokalen Subsystemen des Granits, die sich vor allem in Subsolidus-Reaktionen von Kalifeldspat äußert. Die Größe dieser Subsysteme hängt von der Gesteinsmineralogie und -chemie ab. Zwischenwirkungen zwischen Probengröße, der Größe dieser rehomogenisierten Subsysteme und den ungestörten Systemen führen zu Rb-Sr-Gesamtgesteinsaltern, die zwischen der oberkarbonischen Intrusion und einer hypothetischen triasisch-liasischen Hydrothermal-Überprägung liegen. Die mikroskopischen Reaktionsgefüge und die Systematik der hydrothermal zurückgesetzten Rb-SrGesamtgesteinsalter können von den Auswirkungen der alpinen Metamorphose unterschieden werden.

Résumé Ce travail présente des âges Rb-Sr sur roche totale du Granite de l'Aar (massif de l'Aar, Alpes Centrales), qui ont été rééquilibrés en phase post-magmatique. Une altération hydrothermale pré-alpine et post-magmatique est la cause de l'homogénéisation des isotopes du Sr dans des subsystèmes locaux du granite. Ces altérations se manifestent surtout par des réactions sub-solidus du feldspath potassique. La taille de ces subsystèmes dépend de la minéralogie et de la composition chimique de la roche. Les influences conjugées de la taille des échantillons, de celle du subsystème réhomogénéisé et de celle du système magmatique non perturbé sont à l'origine de l'obtention d'âges intermédiaires entre celui de l'intrusion, datée du Carbonifère supérieur, et celui d'une altération hydrothermale hypothétique à la limite Trias/Lias. Les textures microscopiques et la systématique des âges Rb-Sr rajeunis peuvent être distinguées des effets du métamorphisme alpin.

Aar (Aaremassiv), , -. , - , - . . , , -. .
  相似文献   

19.
Hyderabad is one of the fastest growing mega cities in India and it is facing many economic, social and environmental problems due to rapid urban growth. For the better planning of resources and to provide basic amenities to its residents, it is necessary to have sufficient knowledge about its urban growth activities. Also, it is necessary to monitor the changes in land use over time and to detect growth activities in different parts of the city. To accomplish these tasks with greater accuracy and easiest way, remote sensing and geographic information system (GIS) tools proved to be very advantageous. This study makes an attempt towards the mapping of land use classes for different time periods and analysis of apparent changes in land use using the Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM) data for the urban agglomeration of Hyderabad, India. In this study, three different time periods viz. 1989–2000, 2000–2005 and 2005–2011 are chosen for the analysis. The results have shown that high-density urban area had grown during 1989–2011 by encroaching into other land use classes. The urban growth has also affected water resources both, qualitatively and quantitatively in the region. The transformation of other land use types into urban area dynamically continued in the North-East and Southern parts of the city. In the North-East direction, the urban growth was mostly due to growth in industrial and residential area and in Southern part, mostly due to residential growth.  相似文献   

20.
A hydrogeochemical study was conducted in Thoothukudi district situated in the southeast coast of Tamil Nadu, India to identify the influence of saltwater intrusion and suitability of groundwater for domestic and agricultural purposes. Scattered studies of this coastal region have reported signs of seawater intrusion, salt pan and industrial activity together with natural weathering process. To have a holistic picture of geochemical processes in the entire district, a total of 135 groundwater samples were collected and analyzed for major cations and anions. The geochemical parameters were compared with world and Indian standards and it was found that most samples are unsuitable for drinking purpose. The geochemical facies of the groundwater showed Na–Cl as the dominant water type indicating the saline nature of the groundwater. Chadda’s plots show that most of the samples fall in the Na–Cl type of water due to seawater intrusion. The samples were classified with parameters like sodium absorption ratio, residual sodium carbonate, total hardness, chloride, index to base exchange, electrical conductivity and facies to determine their suitability for irrigation purpose. It was inferred that the samples falling along the coast are not suitable for the irrigation purpose. The seawater-mixing percentage indicates that strong mixing was observed in the near shore and at the proximity of the salt pan. The permanent hardness was predominant in all the samples compared to the carbonate hardness reducing its domestic usability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号