首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
As Suqah area is a NW–SE trending wadi present in the west central part of the Arabian Shield. It comprises Precambrian–Cambrian basement rocks, Cretaceous–Tertiary sedimentary succession, Tertiary–Quaternary basaltic lava flows, and Quaternary–Recent alluvial deposits. The magnetic anomalies indicated the presence of many recent local buried faults. These affected the distribution of the clastic sedimentary succession and seem to have controlled the deep groundwater aquifers. Groundwater movement is towards the west and northwest, following in general the surface drainage system. Hydraulic gradient varies greatly from one point to another depending on the pumping rates and cross-sectional area of the aquifer in addition to its transmissivity. The detailed results of the resistivity and seismic measurements were integrated with those obtained from test holes drilled in the study area. Groundwater occurs mainly in two water-bearing horizons, the alluvial deposits and within the clastic sedimentary rocks of Haddat Ash Sham and Ash Shumaysi formations. The shallow zone is characterized with a saturated thickness of 3–20 m and water is found under confined to semi-confined conditions. Water levels were encountered at depths varying from 3 to 16 m in the alluvial wadi deposits and from 18 to 62 m in the sedimentary succession. The combinations of vertical electrical sounding, horizontal electrical profiling, and drilling led to the identification of groundwater resources in the study area. Resistivity soundings clearly identified the nature of the lithological depth and proved useful at identifying water-bearing zones. Significantly, the majority of the groundwater was found within the deep confined aquifer gravelly sandstone, rather than in the shallow unconfined aquifer.  相似文献   

2.
The research site is the whole landmass of the Federal College of Education, Zaria, seated on basement complex of north-central Nigeria. Direct current resistivity geophysical method was employed to characterise parameters such as the basement depth and topography, aquifer depth and thickness, weathered basement distribution as well as mapping of orientations of fractures and faults present in the premises using radial sounding technique. The conventional vertical electrical sounding (VES) Schlumberger array was carried out at 40 stations, and eight of which were radial stations. Radial sounding was used to establish resistivity anisotropy which gives clue for the choice of consistent VES profile direction used throughout the fieldwork. Results from the resistivity interpretation suggest three layers in most parts of the premises with some minor occurrence of two and four layers. The first layer (topsoil) has its thickness ranging between 3.5 and 14.0 m; second layer (weathered basement) thickness ranges between 9.0 and 36.5 m, while the third layer (fresh basement) is deepest (40.1 m) towards the eastern corner of the area. The aquifer depth ranges from 1.5 to 4.0 m with a thickness range of 5.0 to 14.0 m. The thickest aquifer occurs around the centre to the west in the area. Results from radial sounding show presence of resistivity anisotropy, an insight to fracturing and faulting; this is more pronounced around the west-central part of the premises.  相似文献   

3.
El Bahariya Oasis is a part of the great groundwater reservoir of the Western Desert of Egypt. The different stratigraphic units, the water-bearing zones, aquifer potentiality conditions, and the favorable locations for drilling new wells were evaluated by carrying out 24 Schlumberger vertical electrical soundings (VESs), along with the data of some wells drilled in the near vicinity of the measuring sites. The results of the interpreted field data revealed the presence of ten distinctive subsurface geoelectric layers; a thin surface, dry loose sand and gravel, sandy clay and shale interclations, saturated coarse sand layer, shale and clay, and saturated fine sandstone and saturated coarse sandstone. The aquifer is a multilayer aquifer with different thicknesses represented by the fourth, sixth, eighth, and tenth geoelectric layers. Results also revealed that the thicknesses of the water-bearing horizons increase towards the east direction, consequently the aquifer potentiality increases. Therefore, the best production well locations are in that direction. Depth to water starts from 40 m at VES no. 14 and increases gradually toward the east to reach 66 m at VES no. 5. Hydrogeochemical analysis of two groundwater samples taken from Ein El Ezza and well no. 2 showed that groundwater in the study area is suitable for agricultural purposes but not for human consumption due to the high iron content. Recommendations concerning site selection for drilling new productive groundwater wells are given.  相似文献   

4.
Zarif  Fardous  Slater  Lee  Mabrouk  Mohamed  Youssef  Ahmed  Al-Temamy  Ayman  Mousa  Salah  Farag  Karam  Robinson  Judy 《Hydrogeology Journal》2018,26(4):1169-1185

Understanding and developing groundwater resources in arid regions such as El Salloum basin, along the northwestern coast of Egypt, remains a challenging issue. One-dimensional (1D) electrical sounding (ES), two-dimensional (2D) electrical resistivity imaging (ERI), and very low frequency electromagnetic (VLF-EM) measurements were used to investigate the hydrogeological framework of El Salloum basin with the aim of determining the potential for extraction of potable water. 1D resistivity sounding models were used to delineate geoelectric sections and water-bearing layers. 2D ERI highlighted decreases in resistivity with depth, attributed to clay-rich limestone combined with seawater intrusion towards the coast. A depth of investigation (DOI) index was used to constrain the information content of the images at depths up to 100 m. The VLF-EM survey identified likely faults/fractured zones across the study area. A combined analysis of the datasets of the 1D ES, 2D ERI, and VLF-EM methods identified potential zones of groundwater, the extent of seawater intrusion, and major hydrogeological structures (fracture zones) in El Salloum basin. The equivalent geologic layers suggest that the main aquifer in the basin is the fractured chalky limestone middle Miocene) south of the coastal plain of the study area. Sites likely to provide significant volumes of potable water were identified based on relatively high resistivity and thickness of laterally extensive layers. The most promising locations for drilling productive wells are in the south and southeastern parts of the region, where the potential for potable groundwater increases substantially.

  相似文献   

5.
Integrated geophysical techniques including resistivity image, vertical electrical sounding (VES), and seismic refraction have been conducted to investigate the Wadi Hanifah water system. The groundwater in Wadi Hanifah has problems caused by the high volumes of sewage water percolating into the ground. The combination of VES, resistivity image, and seismic refraction has made a valuable contribution to the identification of the interface between the contaminated and fresh water in Wadi Hanifah area. The contaminated groundwater has lower resistivity values than fresh groundwater due to the higher concentration of ions which reduces the resistivity. Resistivity image and sounding in this area clearly identified the nature of the lithological depth and proved useful at identifying water-bearing zones. Fresh groundwater was found in the study area at a depth of 100 m within the fractured limestone. Water-bearing zones occur in two aquifers, shallow contaminated water at 10 m depth in alluvial deposits and the deeper fresh water aquifer at a depth of about 100 m in fractured limestone. The interface between the contaminated water (sanitary water) and fresh water marked out horizontally at 100 m distance from the main channel and vertically at 20 m depth.  相似文献   

6.
The alluvial aquifer is the primary source of groundwater along the eastern Dead Sea shoreline, Jordan. Over the last 20 years, salinity has risen in some existing wells and several new wells have encountered brackish water in areas thought to contain fresh water. A good linear correlation exists between the water resistivity and the chloride concentration of groundwater and shows that the salinity is the most important factor controlling resistivity. Two-dimensional electrical tomography (ET) integrated with geoelectrical soundings were employed to delineate different water-bearing formations and the configuration of the interface between them. The present hydrological system and the related brines and interfaces are controlled by the Dead Sea base level, presently at 410 m b.s.l. Resistivity measurements show a dominant trend of decreasing resistivity (thus increasing salinity) with depth and westward towards the Dead Sea. Accordingly, three zones with different resistivity values were detected, corresponding to three different water-bearing formations: (1) strata saturated with fresh to slightly brackish groundwater; (2) a transition zone of brine mixed with fresh to brackish groundwater; (3) a water-bearing formation containing Dead Sea brine. In addition, a low resistivity unit containing brine was detected above the 1955 Dead Sea base level, which was interpreted as having remained unflushed by infiltrating rain.  相似文献   

7.
Groundwater in eastern Uganda mostly occurs in fractures in the crystalline basement rocks and at the interface between the overburden and bedrock. The study was aimed at improving the success rate of boreholes through the use of complimentary geophysical siting procedures in 16 locations in Kamuli District, eastern Uganda. Boreholes that were sited after applying appropriate geophysical techniques yielded adequate quantities of water, whereas those sited where such procedures were not applied were out of service sooner than expected. Techniques to determine the precise location of resistivity anomaly and vertical electrical sounding (VES) models were used to locate water-bearing zones. VESs were undertaken to provide an overview of the geology. The apparent resistivities of the water-bearing zones both from VES and resistivity profiling data, had a relationship with the success rates of the boreholes. Electrical resistivities were correlated with hydrogeological parameters. The majority of successful boreholes had, within water-bearing zones, minimum apparent resistivity values less than 200 and 100 Ohmm, from the resistivity profiling anomalies and VES, respectively. The depth to bedrock was generally greater than 20 m below ground level, which indicates potential for medium yielding boreholes.  相似文献   

8.
South Sinai Governorate acts as one of the most vital regions in Egypt for its location and natural resources. This governorate has a special economic importance to increase the national income due to its tourism expansion and petroleum. The fresh water is transferred from Cairo through pipelines to cover the demands of local inhabitants in the north Sinai governorate and the capital city of south Sinai governorate. The groundwater exploration and exploitation in this area have a great importance to cover the need of water for the different activities (tourism, petroleum, and agriculture) and to achieve a maximum development in this region. Therefore, the present study deals with using the different geophysical exploration techniques (magnetic, geoelectrical resistivity and shallow refraction seismic) to detect the groundwater aquifer or aquifers in the area between latitudes 27°52′ and 28°05′?N and longitudes 33°55′ and 34°05′?E. in southwestern Sinai—Egypt. The main results of these tools are the maximum depth to the basement surface 180 m and structure elements which affected on this area are represented by a number of normal faults have a trends (NNW–SSE and ENE–WSW) making two grabens isolated by one horst. Tariff Sandstone bed recorded as water-bearing formation and the basement ridge gates in the gulf direction are not capable to pass the ground water from the study area to the Gulf of Suez. Finally, the best locations for drilling groundwater wells were selected from the decision map which generated by using the GIS technique.  相似文献   

9.
Subsurface structures from two different districts of Istanbul, hosting waste and freshwater transmission lines, were imaged by geoelectrical method. The environmental impact on Ka??thane-Terkos freshwater transmission line is one of the issues. That waterline underwent a substantial landslide damage. The previous site selection of Ka??thane-Terkos line was only based on surface geological observations. Even though the pipeline was positioned away from the surface scarps of landslides, the pipes were damaged. To find out the reason, we made some vertical electrical sounding measurements using Schlumberger array in the region. We inverted the electrical sounding data using 2D inversion technique. The final geoelectrical images show main landslide failures, at about 10–30 m depth, which are overlain by debris with a resistivity value of with <6 Ω m. The geoelectrical findings reveal that a buried major failure surrounds the surface landslides behind. Consequently, the water infrastructure remains under the influence of landslide. Our second application site was the area of the Sazl?dere tunnel, which will transfer wastewater, polluting Sazl?dere dam, to the treatment plant. The geoelectrical images along Sazl?dere tunnel route show resistive (<100 Ω m) and moderately conductive (≤50 Ω m) structures along the tunnel axis, representing unaltered to highly weathered rocks, respectively. Furthermore, consecutive hidden fault zones which severely affect the construction process of the tunnel are detected and located.  相似文献   

10.
The hydrogeological conditions in Uludag (Nilufer River catchment, Bursa, Turkey) were assessed, using time-domain electromagnetic soundings, electrical resistivity and induced polarisation tomography, to detect the most promising zones for new water-well siting, in order to increase the quantity of water for bottling. The hydrogeological model is quite complex: deep mineral and thermal water rises from a main vertical fault which separates two lithological complexes. The highly mineralised (deep) water is naturally mixed with low mineralised water at a shallow depth, 30–40 m; the mixed mineral water is found in some surface springs and shallow wells, while the highly mineralised water is found at depth in some unused deep wells located close to the main fault. All the water points (springs and wells) are located inside a “mineral water belt” on the north side of the Nilufer River. The geophysical survey confirmed the hydrogeological model and highlighted four promising zones for well siting (zones with very low electrical resistivity and high induced polarisation anomalies, corresponding to the main water-bearing faults). One of the geophysical anomalies, the furthest from the exploited sources, was verified by means of a test well; the drilling results have confirmed the water mixing model.  相似文献   

11.
A large number of valleys and basin systems are present in the northwestern part of the Himalayas in Pakistan which form significant aquifers in the region. Hydrogeophysical investigations in the western part of Nowshera District, a part of the intermontane Peshawar basin, were undertaken to help to determine the availability of groundwater resources in the region. Thirty vertical electrical resistivity soundings (VES) were acquired using a Schlumberger expanding array configuration with a maximum current electrode spacing (AB/2) of 150 m in delineating the groundwater potential in the study area. The results of the interpreted VES data using a combination of curve matching technique and computer iterative modeling methods suggest that the area is underlain by 3 to 5 geo-electric layers. The interpretation results showed that the geo-electrical succession consists of alluvium comprising of alternating layers of clay, silty clay, fine to coarse sands, sand with gravels and gravels of variable thickness. High subsurface resistivity values are correlated with gravel–sand units and low resistivity values with the presence of clays and silts. The modeled VES results were correlated with the pumping tests results and lithological logs of the existing wells. The pumping test suggests the transmissivity of the aquifer sediments is variable corresponding to different sediments within the area. The gravel–sand intervals having high resistivity value show high transmissivity values, whereas clay–silt sediments show low transmissivities. It is concluded that majority of the high resistive gravel–sand sediments belong to an alluvial fan environment. These gravel–sand zones are promising zones for groundwater abstraction which are concentrated in the central part of the study area.  相似文献   

12.
康定机场地基土特征及其形成机制   总被引:4,自引:1,他引:4  
拟建的康定机场位于青藏高原东缘、北西向展部的折多山的南西麓,控制标高4232.5m,是仅次于西藏邦达的世界 第二高机场。折多山由一花岗岩基组成,两侧被宽4~5km的巨型第四系坡积裙包围,康定机场位于其南西侧坡积裙上。坡 积裙的岩屑主要是通过崩滑脱离山体的,其演化趋势是完全覆盖折多山。除块石土、碎石土、角砾土及砂土外,地基土中还存 在一种由粒径30~100cm、次圆~次棱角状、表面粗糙的块石组成的特殊块石土,它在平面上有石窝、石窝群、石河及 石海等分布形式,垂向分布深度小于2m,其显著的自沉降现象对跑道稳定具有重要影响。特殊块石土是演化到一定程度 的坡积物经潜蚀作用形成的。四类正常土体及特殊块石土均属良好地基,潜蚀是导致其工程特性劣化及沉降的主要因素,地 基排水是今后工程施工的重点。  相似文献   

13.
Seismic attributes such as: amplitude envelope, instantaneous phase and cosine of instantaneous phase of 2D post-stack seismic data facilitates structural and stratigraphic interpretation of shallow marine offshore, Krishna-Godavari basin. Two seismic sections namely, X and Y oriented N-S passing through wells W-1 andW-2 respectively are considered for seismic attribute analysis and porosity prediction. The gamma ray log trend indicates deposition of cleaning upward sediment. Coarsening upward, clayey-silty-sandy bodies, making a series of about 50-60 m thickness, have been evidenced from the gamma ray log. An extensional structural style comprising growth faults is associated with the progradational style of deposition. Four seismic zones have been distinguished. These zones differ in amplitude, frequency and continuity of the reflectors. Channel sands of Cretaceous age of Raghavapuram shale are identified in well log, seismic section and its acoustic impedance section. Major stratigraphic horizons along with faults extending to basement are marked with the help of attribute analysis. Porosity is mapped from transformation of acoustic impedance. The shales/unconsolidated sediments measure a high porosity with low impedance and the more porous sands are in an intermediate range. The predicted impedance and porosity values may be erroneous beyond the drilled depth because of non availability of well log data for calibration.  相似文献   

14.
The objective of this study was to assess the subsurface strata and groundwater situation of Olomoro, Nigeria using borehole logging and electrical resistivity techniques. The borehole logging consisting of resistivity and spontaneous potential logs were conducted by using the Johnson Keck logger on a drilled well in the study area. The electrical resistivity survey involving 17 vertical electrical soundings (VES) with a maximum current electrode spacing of 100 to 150 m was conducted using the Schlumberger electrode configuration. Analysis of the well cuttings revealed that the lithology of the subsurface consist of topsoil, clay, very fine sand, medium grain sand, coarse sand and very coarse sand. Results of the downhole logging also revealed that the mean electrical conductivity and the total dissolved solid of the groundwater was obtained as 390 μS/cm and 245 mg/cm3 respectively. These values are within the acceptable limit set by the Standard Organization of Nigeria (SON) for drinking water. The result of the vertical electrical sounding interpreted using the computer iterative modeling revealed the presence of four to five geoelectric layers which showed a close correlation with result from the lithology and downhole logging. Results further showed that the resistivity of the subsurface aquifer ranged between 1584 and 5420 Ωm while the aquifer depths varied between 27.8 and 39.3 m. Groundwater development of the area is suggested using the depth and resistivity maps provided in this study.  相似文献   

15.
The presence of coarse-grained sediment can potentially reduce the effectiveness of conventional sampling methods in recovering fluvial sediments. A modification to freeze-core technology was used to collect fine to coarse sands, silts, and clays in fluvial deposits that contain significant amounts of gravels, cobbles, and boulders for the purpose of characterizing the extent of heavy metal contamination. This modification uses either a 2.5 or 2.9 cm diameter by 30-cm- long finned mechanical or hand-driven samplers. The sediment is frozen to the outside of the sampler by injecting liquid CO2 into the sampler. The fins protect the sample from coarse material upon removal. Field testing and laboratory testing of the method were completed to establish a methodology and assess possible cross contamination of the sediment layers during the driving of the sampler. The results indicated that this method is effective for recovering non-cohesive sediment samples at depths up to 6 m for the purpose of characterizing the extent of heavy metal contamination.  相似文献   

16.
地热资源是一种绿色低碳、极具竞争力的可再生能源。江西省会昌县坝背地区断裂构造密集,地热异常广泛发育。为了查明勘查区各断裂构造的产状、规模及深部变化特征,为寻找地热水钻孔布置提供依据,项目组首先在已知温泉位置布置3条高密度试验测线,接着在已知温泉位置以南布置4条高密度测线,然后在高密度电阻率法资料初步解释成果的基础上再施工可控源音频大地电磁测深法(CSAMT),得出其中两条深大断裂是温泉主要的导水导热构造、断裂深切至基底界面、基底界面起伏明显的结论。同时圈定了4个低阻异常区,其中低阻异常范围最大的区域长约1000 m,宽约240 m,高约200 m,是含水最为有利区域,亦是寻找地热水的直接依据,建议在其正上方布设钻孔进行验证,孔深约800 m,满足深大断裂和基底对低阻区的深度控制。  相似文献   

17.
Twenty seven vertical electrical sounding (VES) profiles surrounding four known traverses were obtained in Ngor-Okpala local government area of Imo state to examine the subsurface geomaterials and the associated groundwater potential. The VES data, constrained by borehole data, provided useful information about the subsurface hydrogeologic and lithologic conditions. From the validated interpretation, the area assessed has loamy soil, medium grained sands, well-sorted medium-grained/gravelly sands and river sand as the lithologic succession from top to the bottom of the depth penetrated. The aquifers in the area were found in the medium-grained sands and well-sorted medium-coarse-grained sands. The aquifer depth for all-season groundwater that would be devoid of draw-down can be found at a depth range of 42–50 m. The resistivity maps of selected depths exhibit sharp resistivity changes at depth due mainly to undulating subsurface topography. A map of the distribution of the kσ-values shows that good quality groundwater can be found in most parts of the area.  相似文献   

18.
El Alamein-El-Dabaa area lies in the western Mediterranean coastal zone of Egypt with about 50 km long. The aims of the present study are the shallow groundwater aquifer determination and calculate the electric parameters of the overburden to achieve the easiest way for detecting groundwater contamination and considered it during the planning of new development project(s). To attain this target, 44 vertical resistivity soundings using Schlumberger array of the maximum AB/2?=?1000 m in the form of four profiles were carried out. From the interpretation results, six geoelectrical layers have been established in the area, and iso-resistivity, depth to water, and isopach contour maps are presented. Four geoelectrical cross-sections (two geoelectrical cross-sections are parallel to the Mediterranean shoreline and the other two are normal to the Mediterranean shoreline) have been constructed. According to this work, the upper part of the Oolitic Limestone represents the shallow groundwater aquifer in this area and can be distinguished into two zones. The upper zone is brackish, whereas the lower one is saline. The geoelectrical succession reveals that the aquifer is free type. The depth to water ranges between 20 and 63 m; therefore, it is the choice as the best sites for groundwater exploitation. In the area under study, the depth to water and the thickness of the brackish increase towards the south side as well as the depth to the brackish water. The Dar-Zarrouk parameters clarified that there are some parts that may contaminate pathways and other parts are not.  相似文献   

19.
The Liverpool Plains in northern New South Wales contain some of the best agricultural land in Australia and are underlain by extensive smectite clay-dominated soils sourced from weathering the alkali basalts of the Liverpool Ranges. It had been thought that a relatively simple geological model explained the underlying Cenozoic sequence with salt-rich clays of the Narrabri Formation overlying sands and gravel aquifers comprising the Gunnedah Formation. Extensive groundwater modelling based upon this simple conceptualisation has been used in management plans proposed by the mining and agricultural industries. A 31.5 m core has been recovered using minimally disturbed triple-tube coring methods at Cattle Lane (Latitude –31.52° S, Longitude 150.47° E) to resolve uncertainty concerning the aquitard status of the upper layer. Recovered core has been examined and tested to determine grainsize, cation-exchange capacity, X-ray diffraction, X-ray fluorescence and microscopic examination of granular components. These measurements complement surface and borehole geophysical techniques, hydrogeological data and hydrochemical analysis of water samples recovered from a series of specially constructed piezometers adjacent to the cored hole. The sequence overlies a Late Cretaceous channel cut into Permian bedrock at 91 m depth with sands and clays below 31.5 m considered to represent various alluvial fill events mostly occurring since the Early Pliocene. Erosion of Late Eocene alkali basalts on the Liverpool Ranges, with the formation of smectite clays, pedogenic carbonates and with the addition of quartz from both eolian sources and locally derived from adjacent Triassic sandstone hills, provides the great majority of the sediment recovered from the cores. Late Pleistocene (114 ka) to Holocene ages were determined for the core from three optically stimulated luminescence (OSL) measurements on fine sands (13, 23 and 29 m BG). Detailed examination has failed to detect any evidence of a boundary between Narrabri and Gunnedah formations revealing rather a gradual change in dominance of clays and silts over sands and gravels embedded in a clay-rich matrix. This result challenges the conceptualisation used to conduct groundwater modelling on the Liverpool Plains.  相似文献   

20.
Niger is a landlocked African country and the only source of surface water is the Niger River which flows in the western part of Niger and only few villages near to the river gets benefited from it, leaving most of the areas dependent on groundwater solely. The groundwater resources in Niger are mainly used for drinking, livestock and domestic needs. It can be observed that the water exploitation is minimal there due to several factors like undeveloped areas, less population, limited wells, rain-fed irrigation, etc. The delineation of potential aquifer zones is an important aspect for groundwater prospecting. Hence, the direct current (DC) resistivity soundings method also known as vertical electrical sounding (VES) is one of the most applied geophysical techniques for groundwater prospecting that was used in the capital city, Niamey of Niger. Twelve VES surveys, each of AB spacing 400 m were carried out in lateritic and granitic rock formations with a view to study the layer response and to delineate the potential zones. Potential aquifer zones were at shallow depth ranging from 10 to 25 m for the drilled borehole depth of 80–85 m in every village. Analysis of the result showed a good correlation between the acquired data and the lithologs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号